Soil Health Assessment to Evaluate Conservation Practices in SemiArid Cotton Systems at Producer Site Scale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sites Description
2.2. Soil Health Indicators
2.3. Statistical Analyses
3. Results and Discussion
3.1. Role of Management Practices on Soil Health and Functions in a Water-Limited Region
3.2. Challenges to No-Tillage and Cover Crop Management in Semiarid Cropping Systems
3.3. Ecological Implications of the Results of This Study in Commercial Fields: Knowledge Gaps and Limitations for Future Research
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Claassen, R.; Bowman, M.; McFadden, J.; Smith, D.; Wallander, S. Tillage Intensity and Conservation Cropping in the United States; United States Department of Agriculture, Economic Research Service: Washington, DC, USA, 2018.
- IPCC (Intergovernmental Panel on Climate Change). Climate Change 2007: Synthesis Report; Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Reisinger, A., Eds.; IPCC: Geneva, Switzerland, 2007; p. 104.
- Deines, J.M.; Schipanski, M.E.; Golden, B.; Zipper, S.C.; Nozari, S.; Rottler, C.; Guerrero, B.; Sharda, V. Transitions from irrigated to dryland agriculture in the Ogallala Aquifer: Land use suitability and regional economic impacts. Agric. Water Manag. 2020, 233, 106061. [Google Scholar] [CrossRef]
- Acosta-Martínez, V.; Cotton, J.; Gardner, T.; Moore-Kucera, J.; Zak, J.; Wester, D.; Cox, S. Predominant bacterial and fungal assemblages in agricultural soils during a record drought/heat wave and linkages to enzyme activities of biogeochemical cycling. Appl. Soil Ecol. 2014, 84, 69–82. [Google Scholar] [CrossRef]
- Acosta-Martinez, V.; Moore-Kucera, J.; Cotton, J.; Gardner, T.; Wester, D. Soil enzyme activities during the 2011 Texas record drought/heat wave and implications to biogeochemical cycling and organic matter dynamics. Appl. Soil Ecol. 2014, 75, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Guzmán, L.; Acosta-Martínez, V.; Phillips, L.A.; Mauget, S.A. Resilience of the microbial communities of semiarid agricultural soils during natural climatic variability events. Appl. Soil Ecol. 2020, 149, 103487. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B. Limited effect of organic matter on soil available water capacity. Eur. J. Soil Sci. 2018, 69, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Sun, S.; Yao, B.; Peng, Y.; Gao, C.; Qin, T.; Zhou, Y.; Sun, C.; Quan, W. Effects of straw return and straw biochar on soil properties and crop growth: A review. Front. Plant Sci. 2022, 13, 986763. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Fultz, L.M.; Moore-Kucera, J.; Acosta-Martínez, V.; Horita, J.; Strauss, R.; Zak, J.; Calderón, F.; Weindorf, D. Soil carbon sequestration potential in semi-arid grasslands in the Conservation Reserve Program. Geoderma 2017, 294, 80–90. [Google Scholar] [CrossRef] [Green Version]
- Nilahyane, A.; Ghimire, R.; Acharya, B.S.; Schipanski, M.E.; West, C.P.; Obour, A.K. Overcoming agricultural sustainability challenges in water-limited environments through soil health and water conservation: Insights from the Ogallala Aquifer Region, USA. Int. J. Agric. Sustain. 2023, 21, 2211484. [Google Scholar] [CrossRef]
- Bhandari, K.B.; Acosta-Martínez, V.; Pérez-Guzmán, L.; West, C.P. Soil health within transitions from irrigation to limited irrigation and dryland management. Agric. Environ. Lett. 2022, 7, e20077. [Google Scholar] [CrossRef]
- Ghimire, R.; Norton, J.B.; Stahl, P.D.; Norton, U. Soil Microbial Substrate Properties and Microbial Community Responses under Irrigated Organic and Reduced-Tillage Crop and Forage Production Systems. PLoS ONE 2014, 9, e103901. [Google Scholar] [CrossRef] [Green Version]
- Kallenbach, C.M.; Frey, S.D.; Grandy, A.S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 2016, 7, 13630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acosta-Martínez, V.; Dowd, S.E.; Bell, C.W.; Lascano, R.; Booker, J.D.; Zobeck, T.M.; Upchurch, D.R. Microbial Community Composition as Affected by Dryland Cropping Systems and Tillage in a Semiarid Sandy Soil. Diversity 2010, 2, 910–931. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Canqui, H.; Lal, R. Mechanisms of Carbon Sequestration in Soil Aggregates. Crit. Rev. Plant Sci. 2004, 23, 481–504. [Google Scholar] [CrossRef]
- Li, C.; Fultz, L.M.; Moore-Kucera, J.; Acosta-Martínez, V.; Kakarla, M.; Weindorf, D.C. Soil microbial community restoration in Conservation Reserve Program semi-arid grasslands. Soil Biol. Biochem. 2018, 118, 166–177. [Google Scholar] [CrossRef]
- Pérez-Guzmán, L.; Phillips, L.A.; Seuradge, B.J.; Agomoh, I.; Drury, C.F.; Acosta-Martínez, V. An evaluation of biological soil health indicators in four long-term continuous agroecosystems in Canada. Agrosyst. Geosci. Environ. 2021, 4, e20164. [Google Scholar] [CrossRef]
- Acosta-Martínez, V.; Lascano, R.; Calderón, F.; Booker, J.D.; Zobeck, T.M.; Upchurch, D.R. Dryland cropping systems influence the microbial biomass and enzyme activities in a semiarid sandy soil. Biol. Fertil. Soils 2011, 47, 655–667. [Google Scholar] [CrossRef] [Green Version]
- Thapa, V.R.; Ghimire, R.; Duval, B.D.; Marsalis, M.A. Conservation Systems for Positive Net Ecosystem Carbon Balance in Semiarid Drylands. Agrosyst. Geosci. Environ. 2019, 2, 190022. [Google Scholar] [CrossRef] [Green Version]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate-smart soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghimire, R.; Norton, U.; Bista, P.; Obour, A.K.; Norton, J.B. Soil organic matter, greenhouse gases and net global warming potential of irrigated conventional, reduced-tillage and organic cropping systems. Nutr. Cycl. Agroecosyst. 2016, 107, 49–62. [Google Scholar] [CrossRef]
- Hendrickson, J.; Liebig, M.; Sassenrath, G. Environment and integrated agricultural systems. Renew. Agric. Food Syst. 2008, 23, 304–313. [Google Scholar] [CrossRef]
- Liebig, M.A.; Tanaka, D.L.; Krupinsky, J.M.; Merrill, S.D.; Hanson, J.D. Dynamic cropping systems: Contributions to improve agroecosystem sustainability. Agron. J. 2007, 99, 899–903. [Google Scholar] [CrossRef]
- Ghimire, R.; Ghimire, B.; Mesbah, A.O.; Sainju, U.M.; Idowu, O.J. Soil Health Response of Cover Crops in Winter Wheat–Fallow System. Agron. J. 2019, 111, 2108–2115. [Google Scholar] [CrossRef] [Green Version]
- Thapa, V.R.; Ghimire, R.; VanLeeuwen, D.; Acosta-Martínez, V.; Shukla, M. Response of soil organic matter to cover cropping in water-limited environments. Geoderma 2022, 406, 115497. [Google Scholar] [CrossRef]
- Schroeder, J.L.; Burgett, W.S.; Haynie, K.B.; Sonmez, I.; Skwira, G.D.; Doggett, A.L.; Lipe, J.W. The West Texas Mesonet: A Technical Overview. J. Atmos. Ocean. Technol. 2005, 22, 211–222. [Google Scholar] [CrossRef]
- Schutter, M.E.; Dick, R.P. Microbial community profiles and activities among aggregates of winter fallow and cover-cropped soil. Soil Sci. Soc. Am. J. 2002, 66, 142–153. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Cano, A.; Acosta-Martinez, V.; Veum, K.S.; Moore-Kucera, J. A comparison between fatty acid methyl ester profiling methods (PLFA and EL-FAME) as soil health indicators. Soil Sci. Soc. Am. J. 2020, 84, 1153–1169. [Google Scholar] [CrossRef]
- Zelles, L. Fatty acid patterns of microbial phospholipids and lipopolysaccharides. In Methods in Soil Biology; Schinner, F., Öhlinger, R., Kandeler, E., Margesin, R., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 80–93. [Google Scholar]
- Weil, R.R.; Islam, K.R.; Stine, M.A.; Gruver, J.B.; Samson-Liebig, S.E. Estimating active carbon for soil quality assessment: A simplified method for laboratory and field use. Am. J. Altern. Agric. 2003, 18, 3–17. [Google Scholar] [CrossRef]
- Culman, S.W.; Freeman, M.; Snapp, S.S. Procedure for the Determination of Permanganate Oxidizable Carbon. Kellogg Biological Station-Long Term Ecological Research Protocols, Hickory Corners, MI. 2012. Available online: http://lter.kbs.msu.edu/protocols/133 (accessed on 8 June 2016).
- Brookes, P.C.; Landman, A.; Pruden, G.; Jenkinson, D.S. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 1985, 17, 837–842. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Wu, J.; Joergensen, R.G.; Pommerening, B.; Chaussod, R.; Brookes, P.C. Measurement of soil microbial biomass C by fumigation extraction—An autoclaved procedure. Soil. Biol. Biochem. 1990, 22, 1167–1169. [Google Scholar] [CrossRef]
- Jenkinson, D.S. Determination of microbial biomass carbon and nitrogen in soil. In Advances in Nitrogen Cycling in Agricultural Ecosystems; Wilson, J.R., Ed.; CAB International: Wallingford, UK, 1988; pp. 368–386. [Google Scholar]
- Acosta-Martínez, V.; Pérez-Guzmán, L.; Johnson, J.M. Simultaneous determination of β-glucosidase, β-glucosaminidase, acid phosphomonoesterase, and arylsulfatase activities in a soil sample for a biogeochemical cycling index. Appl. Soil Ecol. 2019, 142, 72–80. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Version 4.1.1. Available online: https://www.r-project.org/ (accessed on 12 June 2023).
- Cano, A.; Núñez, A.; Acosta-Martinez, V.; Schipanski, M.; Ghimire, R.; Rice, C.; West, C. Current knowledge and future research directions to link soil health and water conservation in the Ogallala Aquifer region. Geoderma 2018, 328, 109–118. [Google Scholar] [CrossRef]
- Halvorson, A.D.; Wienhold, B.J.; Black, A.L. Tillage, Nitrogen, and Cropping System Effects on Soil Carbon Sequestration. Soil Sci. Soc. Am. J. 2002, 66, 906–912. [Google Scholar] [CrossRef]
- Thapa, V.R.; Ghimire, R.; Acosta-Martínez, V.; Marsalis, M.A.; Schipanski, M.E. Cover crop biomass and species composition affect soil microbial community structure and enzyme activities in semiarid cropping systems. Appl. Soil Ecol. 2021, 157, 103735. [Google Scholar] [CrossRef]
- Calderón, F.J.; Nielsen, D.; Acosta-Martínez, V.; Vigil, M.F.; Lyon, D. Cover Crop and Irrigation Effects on Soil Microbial Communities and Enzymes in Semiarid Agroecosystems of the Central Great Plains of North America. Pedosphere 2016, 26, 192–205. [Google Scholar] [CrossRef]
- Rosenzweig, S.T.; Stromberger, M.E.; Schipanski, M.E. Intensified dryland crop rotations support greater grain production with fewer inputs. Agric. Ecosyst. Environ. 2018, 264, 63–72. [Google Scholar] [CrossRef]
- Frey, S.D. Mycorrhizal fungi as mediators of soil organic matter dynamics. Annu. Rev. Ecol. Evol. Syst. 2019, 50, 237–259. [Google Scholar] [CrossRef]
- Morris, E.K.; Morris, D.J.P.; Vogt, S.; Gleber, S.-C.; Bigalke, M.; Wilcke, W.; Rillig, M.C. Visualizing the dynamics of soil aggregation as affected by arbuscular mycorrhizal fungi. ISME J. 2019, 13, 1639–1646. [Google Scholar] [CrossRef]
- Allen, V.G.; Brown, C.P.; Kellison, R.; Segarra, E.; Green, C.J.; Wheeler, T.A.; Dotray, P.A.; Conkwright, J.C.; Green, C.J.; Acosta-Martinez, V. Integrating cotton and beef production to reduce water withdrawal from the Ogallala Aquifer in the Southern High Plains. Agron. J. 2005, 97, 556–567. [Google Scholar] [CrossRef] [Green Version]
- Allen, V.G.; Brown, C.P.; Segarra, E.; Green, C.J.; Wheeler, T.A.; AcostaMartinez, V.; Zobeck, T.M. In search of sustainable agricultural systems for the Llano Estacado of the U.S. Southern High Plains. Agric. Ecosyst. Environ. 2008, 124, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Allen, V.G.; Brown, C.P.; Kellison, R.; Green, P.; Zilverberg, C.J.; Johnson, P.; Weinheimer, J.; Wheeler, T.; Segarra, E.; Acosta-Martinez, V.; et al. Integrating Cotton and Beef Production in the Texas Southern High Plains: I. Water Use and Measures of Productivity. Agron. J. 2012, 104, 1625–1642. [Google Scholar] [CrossRef]
- Burke, J.A.; Lewis, K.L.; DeLaune, P.B.; Cobos, C.J.; Keeling, J.W. Soil Water Dynamics and Cotton Production following Cover Crop Use in a Semi-Arid Ecoregion. Agronomy 2022, 12, 1306. [Google Scholar] [CrossRef]
- Paye, W.S.; Ghimire, R.; Acharya, P.; Nilahyane, A.; Mesbah, A.O.; Marsalis, M.A. Cover crop water use and corn silage production in -semi-arid irrigated conditions. Agric. Water Manag. 2022, 260, 107275. [Google Scholar] [CrossRef]
- Paye, W.S.; Acharya, P.; Ghimire, R. Water productivity of forage sorghum in response to winter cover crops in semi-arid irrigated conditions. Field Crop. Res. 2022, 283, 108552. [Google Scholar] [CrossRef]
- Acharya, P.; Ghimire, R.; Acosta-Martinez, V. Mechanisms of cover crop-mediated soil carbon storage in a semi-arid irrigated cropping. 2023; under review. [Google Scholar]
- Rinot, O.; Levy, G.J.; Steinberger, Y.; Svoray, T.; Eshel, G. Soil health assessment: A critical review of current methodologies and a proposed new approach. Sci. Total. Environ. 2019, 648, 1484–1491. [Google Scholar] [CrossRef]
- Wade, J.; Culman, S.W.; Gasch, C.K.; Lazcano, C.; Maltais-Landry, G.; Margenot, A.J.; Martin, T.K.; Potter, T.S.; Roper, W.R.; Ruark, M.D.; et al. Rigorous, empirical, and quantitative: A proposed pipeline for soil health assessments. Soil Biol. Biochem. 2022, 170, 108710. [Google Scholar] [CrossRef]
- Stott, D.E.; Andrews, S.S.; Liebig, M.A.; Wienhold, B.J.; Karlen, D.L. Evaluation of β-Glucosidase Activity as a Soil Quality Indicator for the Soil Management Assessment Framework. Soil Sci. Soc. Am. J. 2010, 74, 107–119. [Google Scholar] [CrossRef] [Green Version]
- Veum, K.S.; Goyne, K.W.; Kremer, R.J.; Miles, R.J.; Sudduth, K.A. Biological indicators of soil quality and soil organic matter characteristics in an agricultural management continuum. Biogeochemistry 2014, 117, 81–99. [Google Scholar] [CrossRef]
- Pérez-Guzmán, L.; Phillips, L.A.; Acevedo, M.A.; Acosta-Martínez, V. Comparing biological methods for soil health assessments: EL-FAME, enzyme activities, and qPCR. Soil Sci. Soc. Am. J. 2021, 85, 636–653. [Google Scholar] [CrossRef]
- Bandick, A.K.; Dick, R.P. Field management effects on soil enzyme activities. Soil Biol. Biochem. 1999, 31, 1471–1479. [Google Scholar] [CrossRef]
- Cotton, J.; Acosta-Martínez, V.; Moore-Kucera, J.; Burow, G. Early changes due to sorghum biofuel cropping systems in soil microbial communities and metabolic functioning. Biol. Fertil. Soils 2013, 49, 403–413. [Google Scholar] [CrossRef]
- Cotton, J.; Acosta-Martínez, V. Intensive Tillage Converting Grassland to Cropland Immediately Reduces Soil Microbial Community Size and Organic Carbon. Agric. Environ. Lett. 2018, 3, 180047. [Google Scholar] [CrossRef]
- Stewart, R.D.; Jian, J.; Gyawali, A.J.; Thomason, W.E.; Badgley, B.D.; Reiter, M.S.; Strickland, M.S. What We Talk about When We Talk about Soil Health. Agric. Environ. Lett. 2018, 3, 180033. [Google Scholar] [CrossRef] [Green Version]
- Frankenberger, W.T., Jr.; Dick, W.A. Relationships Between Enzyme Activities and Microbial Growth and Activity Indices in Soil. Soil Sci. Soc. Am. J. 1983, 47, 945–951. [Google Scholar] [CrossRef]
- Ladoni, M.; Basir, A.; Robertson, P.G.; Kravchenko, A.N. Scaling-up: Cover crops differentially influence soil carbon in agricultural fields with diverse topography. Agric. Ecosyst. Environ. 2016, 225, 93–103. [Google Scholar] [CrossRef] [Green Version]
Tillage and Water Management | Cropping History | Soil Properties (Determined in 2019) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Field Size (ha) | Year No-Till Began | Soil Series | Sand | Silt | Clay | EC 1 | Total C | |||||||
Site | Irrigation | 2019 | 2020 | 2021 | 2022 | --------(%)------- | pH | (mS cm−3) | g kg−1 Soil | |||||
1 | 109.6 | 2017 | Dryland | Ct (Wt) | Ct (Wt) | Ct (Wt) | Ct (Wt) | Acuff | 71.3 | 14.7 | 14.0 | 7.7 | 227 | 3.5 |
2 | 12.4 | Ct (Wt) | Ct (Wt) | Ct (Wt) | Ct (Wt) | Amarillo | 62.3 | 20.0 | 17.7 | 7.4 | 256 | 4.8 | ||
3 | 16.5 | Ct (Wt) | Ct (Wt) | Ct (Wt) | Ct (Wt) | Olton | 62.3 | 19.3 | 18.3 | 7.3 | 246 | 4.8 | ||
4 | 13.8 | Ct (Wt) | -- | -- | -- | Estacado | 47.0 | 26.0 | 27.0 | 7.1 | 285 | 8.4 | ||
5 | 24.9 | Ct(Wt) | -- | -- | -- | Olton | 53.7 | 22.0 | 24.3 | 7.9 | 581 | 8.9 | ||
6 | 49.1 | Ct (Wt) | Ct (Wt) | Ct (Wt) | Ct (Wt) | Acuff | 69.0 | 15.3 | 15.7 | 7.4 | 169 | 4.6 | ||
7 | 9.6 | Ct (Wt) | Ct (Wt) | Ct (Wt) | Ct (Wt) | Estacado | 61.0 | 18.0 | 21.0 | 7.2 | 159 | 4.7 | ||
8 | 50.3 | 2017 | Center Pivot | Ct (Wt) | Ct (Wt) | Ct (Wt) | Ct (Wt) | Amarillo | 61.7 | 19.3 | 19.0 | 7.8 | 675 | 6.5 |
9 | 50.3 | Ct (Wt) | -- | -- | -- | Olton | 57.7 | 19.3 | 23.0 | 7.4 | 432 | 6.3 | ||
10 | 22.8 | Ct (Wt) | Ct (Wt) | Ct (Wt) | Ct (Wt) | Olton | 61.0 | 18.7 | 20.3 | 7.9 | 487 | 6.9 | ||
11 | 28.6 | 2017 | Subsurface Drip | Ct (Wt) | Ct (Wt) | Ct (Wt) | Ct (Wt) | Estacado | 53.7 | 21.3 | 25.0 | 7.3 | 453 | 8.2 |
12 | 21.8 | Ct (Wt) | Ct (Wt) | Ct (Wt) | Ct (Wt) | Estacado | 45.0 | 21.3 | 33.7 | 7.0 | 523 | 10.4 | ||
13 | 61.1 | 2019 | Dryland | Conv. Ct | Ct (Wt) | Ct (Wt) | Ct (Wt) | Acuff | 64.3 | 18.0 | 17.7 | 7.9 | 211 | 3.6 |
14 | 25.4 | Conv. Ct | Ct (Wt) | Ct (Wt) | Ct (Wt) | Estacado | 49.0 | 21.3 | 29.7 | 8.0 | 391 | 6.5 | ||
15 | 23.9 | Conv. Till | Dryland | Conv. Ct | Conv. Ct | Conv. Ct | Conv. Ct | Estacado | 55.3 | 22.0 | 22.7 | 7.5 | 214 | 4.8 |
16 | 9.3 | Grassland | Dryland | CRP | CRP | CRP | CRP | Estacado | 69.0 | 16.0 | 15.0 | 7.7 | 443 | 12.0 |
17 | 14.4 | Grassland | Dryland | CRP | CRP | -- | -- | Amarillo | 62.0 | 18.0 | 20.0 | 7.4 | 313 | 8.2 |
18 | 65.2 | Grassland | Dryland | CRP | CRP | -- | -- | Olton | 45.7 | 28.0 | 26.3 | 7.4 | 368 | 14.9 |
Cotton Agroecosystems | |||||
---|---|---|---|---|---|
Tilled | No-Till and Winter Wheat Cover Crop | CRP | |||
Soil Property | Dryland | Dryland | Center Pivot | Drip | Grassland |
(mg kg−1 soil) | |||||
Microbial Biomass C | 39.6 (9.5) | 42.0 (7.0) | 41.2 (8.8) | 29.4 (7.7) | 37.6 (8.7) |
Microbial Biomass N | 1.97 (0.24) b | 2.41 (0.26) b | 2.88 (0.26) ab | 2.37 (0.37) b | 3.69 (0.46) a |
POXC | 35.7 (1.4) | 39.0 (1.6) | 41.3 (1.2) | 42.9 (1.5) | 39.8 (1.3) |
(mg p-nitrophenol kg−1 soil h−1) | |||||
CNPS Activity | 16.6 (3.4) | 28.5 (3.1) | 24.2 (2.5) | 23.5 (3.8) | 23.4 (4.9) |
FAME | (nmol g−1 soil) | ||||
Total | 14.8 (0.6) c | 21.9 (0.6) b | 22.2 (2.2) ab | 23.6 (1.0) ab | 28.6 (4.6) a |
Bacterial Sum | 6.8 (0.3) b | 10.1 (0.4) a | 10.6 (1.0) a | 10.3 (0.4) a | 10.8 (1.6) a |
Saprophytic Fungi (18:2ω6c) | 0.70 (0.08) b | 1.35 (0.10) a | 1.21 (0.18) a | 1.37 (0.12) a | 1.01 (0.25) ab |
AMF (16:1ω5c) | 0.36 (0.04) b | 0.44 (0.03) b | 0.54 (0.11) b | 0.45 (0.05) b | 5.09 (1.37) a |
Soil Property | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|
Year 1 | Year 2 | Year 3 | ||
POXC | (mg kg−1 soil) | |||
Value | 172 (46) | 178 (48) | 170 (35) | 222 (17) |
% Change | - | 3 | −1 | 29 |
CNPS Activity | (mg p-nitrophenol kg−1 soil h−1) | |||
Value | 74 (6) | 65 (14) | 108 (16) | 119 (17) |
% Change | - | −12 | 46 | 61 |
FAME Total | (nmol g−1 soil) | |||
Value | 71 (19) | 55 (12) | 114 (20) | 115 (40) |
% Change | - | −23 | 61 | 62 |
Bacterial Sum | ||||
Value | 32.7 (10.0) | 26.5 (6.3) | 56.7 (11.1) | 56.2 (21.3) |
% Change | - | −19 | 73 | 72 |
Saprophytic Fungi (18:2ω6c) | ||||
Value | 3.75 (1.76) | 2.12 (0.44) | 5.72 (0.41) | 5.98 (2.75) |
% Change | - | −43 | 53 | 59 |
AMF (16:1ω5c) | ||||
Value | 1.68 (0.17) | 1.28 (0.15) | 3.61 (0.11) | 3.33 (0.42) |
% Change | - | −24 | 115 ** | 98 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acosta-Martinez, V.; Cotton, J.; Slaughter, L.C.; Ghimire, R.; Roper, W. Soil Health Assessment to Evaluate Conservation Practices in SemiArid Cotton Systems at Producer Site Scale. Soil Syst. 2023, 7, 72. https://doi.org/10.3390/soilsystems7030072
Acosta-Martinez V, Cotton J, Slaughter LC, Ghimire R, Roper W. Soil Health Assessment to Evaluate Conservation Practices in SemiArid Cotton Systems at Producer Site Scale. Soil Systems. 2023; 7(3):72. https://doi.org/10.3390/soilsystems7030072
Chicago/Turabian StyleAcosta-Martinez, Veronica, Jon Cotton, Lindsey C. Slaughter, Rajan Ghimire, and Wayne Roper. 2023. "Soil Health Assessment to Evaluate Conservation Practices in SemiArid Cotton Systems at Producer Site Scale" Soil Systems 7, no. 3: 72. https://doi.org/10.3390/soilsystems7030072
APA StyleAcosta-Martinez, V., Cotton, J., Slaughter, L. C., Ghimire, R., & Roper, W. (2023). Soil Health Assessment to Evaluate Conservation Practices in SemiArid Cotton Systems at Producer Site Scale. Soil Systems, 7(3), 72. https://doi.org/10.3390/soilsystems7030072