Criteria for Assessing the Environmental Quality of Soils in a Mediterranean Region for Different Land Use
Abstract
:1. Introduction
“It was Chinese farmers and economists too who laid the foundations of pedology or the science of soils, for many different kinds of soils are described in the Yugong chapter Shujing, which can hardly be later than the early the 5th century B.C., and also in the Guanzi, which may be dated in the 4th B.C”.
2. Conceptual Framework
3. Quality and Multifunctionality of Soil
4. Assessing Soil Quality
4.1. Indicators of Soil Quality
- The conservation efforts made to preserve and improve the quality of the soil.
- An assessment of the suitability of the practices and techniques to handle and manage the soil.
- How soil quality is connected to the quality of other natural resources.
- The information needed to analyze and establish trends regarding changes in soil quality.
- What decisions soil managers should propose and adopt.
4.2. Organisation and Use of the Indicators
- (a)
- Measuring the indicators makes it possible to identify the state of the soil regarding the associated properties, which were previously selected as relevant for the case study. Measuring these indicators over time makes it possible to detect changes in these properties due to, for example, degradation processes (e.g., salinization). As an example, regularly measuring the electrical conductivity of soil from irrigated land in an arid or semi-arid area with low quality water due to dissolved salts will make it possible to detect the soil salinization process and its escalation due to the continuous provision of water.
- (b)
- If the rate of water extraction for irrigation (indicator of pressure) and the degree to which the use of that irrigation water is controlled by policies and programs is known, the trend of the escalation of the soil salinization process (and, as a result, the loss of quality) can be analyzed and assessed.
- (c)
- Periodically measuring the electrical conductivity (an environmental condition indicator) enables the monitoring of the previously identified trend. When soil managers are interested in assessing the environmental quality of soils, the soil water quality must be considered, as this will also affect the environmental quality of soils as a whole.
4.3. Scales for Assessing Soil Quality
5. Methodology Proposed for Assessing the Environmental Quality of Mediterranean Soils
- (1)
- Assigning figures (conventionally taking even numbers from two to 10) to the different classes of the reference systems, according to their meaning regarding the environmental quality of the soil (e.g., the class with a very high ecological value was assigned a 10).
- (2)
- Assigning weights or values of importance to the different attributes considered to define the environmental quality of the soil using the Delphi method [69] and a trial-and-error analysis with the test and diagnostic units selected for the region.
- (3)
- Aggregating the figures obtained from the soil following the classes of the reference system used to classify it and weighting them by the importance of each attribute. An additive algorithm was used for this aggregation.
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Añó, C.; Sánchez, J.; Antolín, C.; Goberna, M. Capacidad y vulnerabilidad de suelos de la Comunidad Valenciana. Investig. Geogr. 2002, 28, 105–123. [Google Scholar]
- Rubio, J.L.; Bochet, E. Desertification indicators as diagnosis criteria for desertification risk assessment in Europe. J. Arid Environ. 1998, 39, 113–120. [Google Scholar] [CrossRef]
- Needham, J. Science and Civilization in China; Cambridge University Press: London, UK; New York, NY, USA, 1986; pp. 77–103. [Google Scholar]
- Porta, J. El Sol, Recursos Geologics i Sol, Historial Natural deIs Paisos Catalans; Enciclopedia Catalana: Barcelona, Spain, 1990. [Google Scholar]
- Ortega, E.; Sierra, C.; Asensio, C.M.; Martínez, C. Degradación de Suelos en la Zona Oriental de Sierra Nevada. In Proceedings of the Conferencia Internacional Sobre Sierra Nevada; Conservación y Desarrollo Sostenible, Granada, Spain, April 1996; Chacón, J., Rosua, J.L., Eds.; Universidad de Granada: Granada, Spain, 1996; Volume 5, p. 228. [Google Scholar]
- Antolín, C. El Suelo Como Recurso Natural en la Comunidad Valenciana, 8th ed.; Generalitat Valenciana: Barcelona, Spain, 1998. [Google Scholar]
- Mataix Beneyto, J. Problemática ambiental de suelos mediterráneos. In Problemática Ambiental en Suelos Mediterráneos; Universidad Internacional Menéndez Pelayo: Alicante, Spain, 2000. [Google Scholar]
- Karlen, D.L.; Andrews, S.S.; Doran, J.W. Soil quality: Current concepts and applications. Adv. Agron. 2001, 74, 1–39. [Google Scholar]
- Doran, J.W.; Parkin, T.B. Defining and Assessing Soil Quality. In Defining Soil Quality for a Sustainable Environment; Doran, J.W., Ed.; SSSA Special Publications: Madison, WI, USA, 1994. [Google Scholar]
- Rodale Institute. Conference Report and Abstracts for International Conference on the Assessment and Monitoring of Soil Quality; 11-Rodale Press: Allentown, PA, USA, 1991. [Google Scholar]
- Hillel, D.J. Out of the Earth: Civilization and the Life of the Soil; The Free Press: New York, NY, USA, 1991. [Google Scholar]
- Hornick, S.B. Factors affecting the nutritional quality of crops. Am. J. Altern. Agric. 1992, 7, 63–68. [Google Scholar] [CrossRef]
- National Research Council of America. Soil and Water Quality: An Agend for Agriculture; National Academy Press: Washington, DC, USA; New York, NY, USA, 1993.
- SSSA. Glossary of Soil Science Terms; Soil Science Society of America: Madison, WI, USA, 1987. [Google Scholar]
- Sims, J.T.; Cunningham, S.D.; Sumner, M.E. Assessing soil quality for environmental purposes: Roles and challenges for soil scientist. J. Environ. Qual. 1997, 26, 20–25. [Google Scholar] [CrossRef]
- Sagan, C. To avert a common danger. Parade Magazine, 1 March 1992; pp. 10–14. [Google Scholar]
- Gore, A. Earth in the Balance: Ecology and the Human Spirit; Houghton Mifflin Co.: New York, NY, USA, 1993. [Google Scholar]
- SSSA. SSSA. SSSA Statement on soil quality. In Agronomy News; June Soil Science Society of America: Madison, WI, USA, 1995. [Google Scholar]
- McBratney, A.B.; Mendonça, S.; Minasny, B. On digital soil mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Dominati, E.; Patterson, M.; MacKay, A. A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecol. Econ. 2010, 69, 1858–1868. [Google Scholar] [CrossRef]
- Cowie, A.L.; Orr, B.J.; Castillo Sanchez, V.M.; Chasek, P.; Crossman, N.D.; Erlewein, A.; Louwagie, G.; Maron, M.; Metternicht, G.; Minelli, S.; et al. Land in balance: The scientific conceptual framework for Land Degradation Neutrality. Environ. Sci. Policy 2018, 79, 25–35. [Google Scholar] [CrossRef]
- Henry, B.; Murphy, B.; Cowie, A. Sustainable Land Management for Environmental Benefits and Food Security A synthesis report for the GEF. In Global Environmental Facility; United Nations Environmental Program: Washington, DC, USA, 2018. [Google Scholar]
- Mcbratney, A.; Field, D.J.; Koch, A. The dimensions of soil security. Geoderma 2014, 213, 203–213. [Google Scholar] [CrossRef]
- Blum, W.E.H. The challenge of soil protection in Europe. Environ. Conserv. 1990, 17, 72–74. [Google Scholar] [CrossRef]
- Rubio, J.L. La Amenaza de la Desertificación y las Formas de Evitarla, Ciclo Agricultura y Ecología; Fundació Bancaixa: Valencia, Spain, 1997. [Google Scholar]
- German Advisory Council on Global Change. World in Transition: The Threat to Soils, Annual Report; Economica Verlag: Bonn, Germany, 1994. [Google Scholar]
- Acton, D.F.; Padbury, G.A. A conceptual framework for soil quality assessment and monitoring. In A Program to Assess and Monitor Soil Quality in Canada. Soil Quality Evaluation Program Summary; Acton, D.F., Ed.; Contribution N 93-Research Branch; Center for Land and Biological Resources Research Agriculture: Ottawa, ON, Canada, 1993. [Google Scholar]
- Arshad, M.A.; Martin, S. Identifying critical limits for soil quality indicators in agro-ecosystems. Agric. Ecosyst. Environ. 2002, 88, 153–160. [Google Scholar] [CrossRef]
- OCDE. OCDE Core Set of Indicators for Environmental Performance Reviews; OCDE: Paris, France, 1993. [Google Scholar]
- MMA. Indicadores Ambientales. Una Propuesta Para España; Dirección General de Calidad y Evaluación Ambiental, Ministerio de Medio Ambiente: Madrid, Spain, 1996. [Google Scholar]
- Bastida, F.; Zsolnay, A.; Hernández, T.; García, C. Past, present and future of soil quality indices: A biological perspective. Geoderma 2008, 147, 159–171. [Google Scholar] [CrossRef]
- NRCS-National Resources Conservation Service. Soil Quality Indicators: Aggregate Stability. Soil Quality Information Sheet; USDA: Washington, DC, USA; National Soil Tilth Laboratory, Agricultural Research Service: Washington, DC, USA, 1996. [Google Scholar]
- Griffith, R.W.; Goudey, C.; Poff, R. Current application of soil quality standards. In Proceedings of the Soil Quality Standards Symposium, San Antonio, TX, USA, 23 October 1992. [Google Scholar]
- Alexander, E.B.; McLaughlin, J.C. Soil porosity as an indication of forest and rangeland soil condition (compaction) and relative productivity. In Proceedings of the Soil Quality Standars Symposium, San Antonio, TX, USA, 23 October 1990. [Google Scholar]
- Arshad, M.A.; Coen, G.M. Characterization of soil quality: Physical and chemical criteria. Am. J. Altern. Agric. 1992, 7, 25–31. [Google Scholar] [CrossRef]
- Visser, S.; Parkinson, D. Soil biological criteria as indicators of soil quality: Soil microorganisms. Am. J. Altern. Agric. 1992, 7, 33–37. [Google Scholar] [CrossRef]
- Stork, N.E.; Eggleton, P. Invertebrates as determinants and indicators of soil quality. Am. J. Altern. Agric. 1992, 7, 38–47. [Google Scholar] [CrossRef]
- Trasar-Cepeda, C.; de la Peña, M.C.L.; García-Fernández, F.; Gil-Sotres, F. Propiedades bioquímicas de los suelos gallegos: Su utilización como indicadores de la calidad del suelo. In Investigación y Perspectivas de la Enzimología de Suelos en España; García, E.C., Hernández, M.T., Eds.; Centro de Biología Aplicada del Segura, (CSIC): Murcia, Spain, 2000. [Google Scholar]
- Bonmatí, M.; Jiménez, P.; Álvarez, H.; Calero, E.; Juliá, M.; Morillo, M.; Núñez, E. Evolución de actividades enzimáticas en el proceso restaurador de dos suelos procedentes de la explotación de canteras calcáreas de Cataluña utilizando altas dosis de lodos de depuradora. In Investigación y Perspectivas de la Enzimología de Suelos en España; Garcíay, E.C., Hernández, M.T., Eds.; Centro de Biología Aplicada del Segura, (CSIC): Murcia, Spain, 2000. [Google Scholar]
- Paz-Ferreiro, J.; Fu, S. Biological Indices for Soil Quality Evaluation: Perspectives and Limitations. Land Degrad. Dev. 2016, 27, 14–25. [Google Scholar] [CrossRef]
- Baldrian, P. Microbial enzyme-catalyzed processes in soils and their analysis. Plant Soil Environ. 2009, 55, 370–378. [Google Scholar] [CrossRef]
- García-Orenes, F.; Guerrero, C.; Roldán, A.; Mataix-Solera, J.; Cerdà, A.; Campoy, M.; Zornoza, R.; Bárcenas, G.; Caravaca, F. Soil microbial biomass and activity under different agricultural management systems in a semiarid Mediterranean agroecosystem. Soil Tillage Res. 2010, 109, 110–115. [Google Scholar] [CrossRef]
- O’Connor, J.C. Environmental performance monitoring indicators. In Monitoring Progress on Sustainable Development, A User-Oriented Workshop; World Bank: Washington, DC, USA, 1994. [Google Scholar]
- Pieri, C.; Dumanski, J.; Hamblin, A.; Young, A. Land Quality Indicators; World Bank: Washington, DC, USA, 1995. [Google Scholar]
- SCOPE. Environmental indicators: A systematic approach to measuring and reporting on the environrnent in the context of sustainable development. In Indicators of Sustainable Development for Decision-Making; Gouzee, N., Mazijay, B., Bharz, S.B., Eds.; Federal Planning Office: Brussels, Belgium, 1995. [Google Scholar]
- Dumanski, J.; Pieri, C. Application of the pressure-state-response framework for the land quality indicators (LQI) programme. In Proceedings of the Workshop Organized by the FAO Agriculture and Sustainable Development Departments, Rome, Italy, 25–26 January 1996. [Google Scholar]
- Benites, J.R.; Shaxson, F.; Vieira, M. Land condition change indicators for sustainable land resource management. In Proceedings of the Workshop Organized by the FAO Agriculture and Sustainable Development Departments, Rome, Italy, 25–26 January 1996. [Google Scholar]
- Tschirley, J.B. Considerations and constraints on the use of indicators in sustainable agriculture and rural development. In Proceedings of the Workshop Organized by the FAO Agriculture and Sustainable Development Departments, Rome, Italy, 25–26 January 1996. [Google Scholar]
- Blum, W.E.H. Soil quality indicators based on soil functions. European Society for Soil Conservation. In Proceedings of the III International Congress Man and Soil at the Third Millennium, Valencia, Spain, 28 March–1 April 2000; p. 157. [Google Scholar]
- Recatalá, L.; Fabbri, A.G.; Zinck, J.A.; Francés, E.; Sánchez, J. Environmental indicators for assessing and monitoring desertification and its influence on environmental quality in Mediterranean arid environments. European Society for Soil Conservation. In Proceedings of the III International Congress Man and Soil at the Third Millennium, Valencia, Spain, 28 March–1 April 2000. [Google Scholar]
- Añó, C. Metodología de Evaluación de Suelos para el Ámbito Mediterráneo; Servicio de Publicaciones de la Universitat de Valencia: Valencia, Spain, 1996; p. 200. [Google Scholar]
- Añó, C.; Sánchez, J.; Antolín, C. Land evaluation methodology for Mediterranean environments. Adv. Ecol. Sci. Ecosyst. Sustain. Dev. 1997, 1, 22. [Google Scholar]
- Añó, C.; Sánchez, J.; Antolín, C. Evaluación del potencial edáfico en el País Valenciano. Cuad. De Geogr. 1998, 63, 3–16. [Google Scholar]
- Añó, C.; Sánchez, J.; Antolín, C. Interpretación de la información edafológica en ámbito mediterráneo valenciano: Indicador de Capacidad e Indicador de Vulnerabilidad. Edafología 1998, 4, 117–130. [Google Scholar]
- Jordán, M.M.; Navarro-Pedreño, J.; García-Sánchez, E.; Mateu, J.; Juan, P. Spatial dynamics of soil salinity under arid and semi-arid conditions: Geological and environmental implications. Environ. Geol. 2004, 45, 448–456. [Google Scholar] [CrossRef]
- Juan, P.; Mateu, J.; Jordan, M.M.; Mataix-Solera, J.; Meléndez-Pastor, I.; Navarro-Pedreño, J. Geostatistical methods to identify and map spatial variations of soil salinity. J. Geochem. Explor. 2011, 108, 62–72. [Google Scholar] [CrossRef]
- Jordán, M.M.; García-Sánchez, E.; Almendro-Candel, M.B.; Pardo, F.; Vicente, A.B.; Sanfeliu, T.; Bech, J. Technosols designed for rehabilitation of mining activities using mine spoils and biosolids. Ion mobility and correlations using percolation columns. Catena 2017, 148, 74–80. [Google Scholar] [CrossRef]
- Jordán, M.M.; Montero, M.A.; García-Sánchez, E.; Martínez-Poveda, M.A. Metal contamination of agricultural soils amended with biosolids (sewage sludge) at a ceramic production area in NE Spain: A 10-year resampling period. Soil Use Manag. 2021, 37, 307–318. [Google Scholar] [CrossRef]
- Jordán, M.M.; Almendro-Candel, M.B.; Navarro-Pedreño, J.; Pardo, F.; García-Sánchez, E.; Bech, J. Bioavailability, mobility and leaching of phosphorus in a Mediterranean agricultural soil (NE Spain) amended with different doses of biosolids. Environ. Geochem. Health Vol. 2022, 44, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Recatalá, L.; Sánchez, J. Aplicación de la metodología de valoración de la calidad ambiental de los suelos en el ámbito mediterráneo valenciano. Ejemplos: Higueruelas y Sagunto (Valencia). In Problemática Geoambiental y Desarrollo; Ortiz Silla, R., Ed.; Sociedad Española de Geología Ambiental y Ordenación del Territorio: Murcia, Spain, 1993; pp. 533–542. [Google Scholar]
- Recatalá, L.; Sánchez, J. Propuesta metodológica de valoración de la calidad ambiental de suelos para evaluación de impacto ambiental en el ámbito mediterráneo valenciano. In Problemática Geoambiental y Desarrollo; Ortiz, R., Ed.; Sociedad Española de Geología Ambiental y Ordenación del Territorio: Murcia, Spain, 1993. [Google Scholar]
- Presidencia de la Generalitat Valenciana. Ley 2/1989, de 3 de Marzo, de la Generalitat Valenciana, de Impacto Ambiental; DOGV N 1021; Generalitat Valenciana: Valencia, Spain, 1989. [Google Scholar]
- Wischmeier, W.H.; Schmidt, D.D. Soil loss estimation as a tool in soil and water management planning. Int. Ass. Sci. Hidrol. Common Land Eros. Pub. 1962, 59, 148–159. [Google Scholar]
- Wischmeier, W.H.; Schmidt, D.D. Predicting Rainfall Erosion Losses from Cropland East of the Rocky Mountains; USDA Agricutural Handbook: Washington DC, USA, 1965.
- Recatalá, L. Propuesta Metodológica para Planificación de los Usos del Territorio y Evaluación de Impacto Ambiental en el Ámbito Mediterráneo Valenciano. Ph. D. Thesis, Universidad de Valencia, Valencia, Spain, 1995. [Google Scholar]
- FAO. Soil Map of the World. Revised Legend; World Soil Resources Report; Food and Agriculture Organization: Rome, Italy, 1988. [Google Scholar]
- Buol, S.W. Soil Fertility Capability Classification. In Evaluación de Suelos; Universidad Intemacional Menéndez Pelayo-UIMP: Valencia, Spain, 1992; pp. 1–20. [Google Scholar]
- Teller, A.; Kohsiek, L.; Van de Velde, R.; Comelese, A.; Willems, J.; Fraters, D.; Swartjes, F.; Van der Pow, B.; Boels, D.; De Vries, W.; et al. Soil. In Europe’s Environment; Stanners, D., Bourdeau, P., Eds.; The Dobris Assessment. European Environment Agency: Copenhagen, Denmark, 1995; p. 146. [Google Scholar]
- Dalker, N.; Helmer, O. An experimental application of the Delphi method to the use of experts. Manag. Sci. 1963, 9, 458–467. [Google Scholar] [CrossRef]
- Van Lynden, G.W.J. The European Soil Resource: Current Status of Soil Degradation in Europe: Causes, Impacts and Need for Action; ISRl C: Wageningen, The Netherlands; Council of Europe: Strabourg, France, 1994. [Google Scholar]
- Rodríguez-Espinosa, T.; Navarro-Pedreño, J.; Gómez-Lucas, I.; Jordán-Vidal, M.M.; Bech-Borras, J.; Zorpas, A.A. Urban areas, human health and technosols for the green deal. Environ. Geochem. Health 2021, 43, 5065–5086. [Google Scholar] [CrossRef]
- Wagenet, R.J.; Hutson, J.L. Soil Quality and its dependence on Dynamic Physical Processes. J. Environ. Qual. 1997, 26, 20–25. [Google Scholar] [CrossRef]
Type of Attribute | Parameter |
---|---|
Physical | Soil texture Bulk density and infiltration Aggregate stability Water holding capacity Humidity and temperature |
Chemical | pH Electrical conductivity Total organic carbon Labile carbon fractions Total and removable N, P and K content |
Biological and Biochemical | Microbial biomass carbon Soil respiration Microbial biomass C/total organic C (TOC) qCO2: Respiration/microbial biomass C ratio Enzyme activities |
Quality | Erodibility | Ecological Value | Natural Fertility |
---|---|---|---|
VERY HIGH | K < 0.15 t/ha | Soils with a mollic A horizon with a shortage of salic and fluvial properties. Soils developed on sandstones with an argillic B horizon. Soils with gleyic properties at 50 cm from the surface in natural conditions with a shortage of fluvial properties. | Soils with a loam texture up to 50 cm of depth, unmodified. |
VERY LOW | K > 0.45 t/ha | Soils whose depth is limited by rocks and cemented horizons 30 cm from the surface, with no mollic A horizon. Soils to which human activities have caused major modifications from their natural conditions. | Soils with a lithic contact less than 20 cm from the surface. Saturated soils up to 60 cm from the surface for most of the year. Soils with an electrical conductivity of >0.4 S/m. Soils with an amount of exchangeable sodium. 15% higher than their cationic exchange capacity. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jordán Vidal, M.M. Criteria for Assessing the Environmental Quality of Soils in a Mediterranean Region for Different Land Use. Soil Syst. 2023, 7, 75. https://doi.org/10.3390/soilsystems7030075
Jordán Vidal MM. Criteria for Assessing the Environmental Quality of Soils in a Mediterranean Region for Different Land Use. Soil Systems. 2023; 7(3):75. https://doi.org/10.3390/soilsystems7030075
Chicago/Turabian StyleJordán Vidal, Manuel Miguel. 2023. "Criteria for Assessing the Environmental Quality of Soils in a Mediterranean Region for Different Land Use" Soil Systems 7, no. 3: 75. https://doi.org/10.3390/soilsystems7030075
APA StyleJordán Vidal, M. M. (2023). Criteria for Assessing the Environmental Quality of Soils in a Mediterranean Region for Different Land Use. Soil Systems, 7(3), 75. https://doi.org/10.3390/soilsystems7030075