Saturated Hydraulic Conductivity of a Sandy Loam under No-Till and Intensive Tillage in a Corn–Soybean Rotation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Field Operations
2.2. Saturated Hydraulic Conductivity (Ks) Measurement
2.3. Statistical Data Analyses
3. Results and Discussion
3.1. Frequency Distribution of Ks Measurements
3.2. Effect of Tillage on Soil Ks
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lal, R.; Shukla, M.K. Principle of Soil Physicsl; Marcel Dekker, Inc.: New York, NY, USA, 2004. [Google Scholar]
- Hillel, D. Introduction to Soil Physics; Academic Press, Inc.: San Diego, CA, USA, 1982. [Google Scholar]
- Reynolds, W.D.; Elrick, D.E. Pressure infiltrometer. In Methods of Soil Analysis: Part 4. Physical Methods; Dane, J.H., Topp, G.C., Eds.; Soil Science Society of America: Madison, WI, USA, 2002; pp. 826–836. [Google Scholar]
- Jabro, J.D.; Stevens, W.B.; Iversen, W.M.; Sainju, U.M.; Allen, B.L. Soil cone index and bulk density of a sandy loam under no-till and conventional tillage in a corn-soybean rotation. Soil Tillage Res. 2021, 206, 104842. [Google Scholar] [CrossRef]
- Klute, A.; Dirksen, C. Hydraulic conductivity and diffusivity: Laboratory methods. In Methods of Soil Analysis, Part 1. Agronomy No. 9; Klute, A., Ed.; American Society of Agronomy: Madison, WI, USA, 1986; pp. 687–734. [Google Scholar]
- Alletto, L.; Coquet, Y. Temporal variability and spatial variability of soil bulk density and near-saturated hydraulic conductivity under two contrasted tillage management systems. Geoderma 2009, 152, 85–94. [Google Scholar] [CrossRef]
- Jabro, J.D.; Stevens, W.B.; Evans, R.G.; Iversen, W.M. Spatial variability and correlation of selected soil properties in the A-horizon of the CRP grassland. Appl. Eng. Agric. 2010, 26, 419–428. [Google Scholar] [CrossRef]
- Jabro, J.D.; Iversen, W.M.; Stevens, W.B.; Evans, R.G.; Mikha, M.M.; Allen, B.L. Physical and hydraulic properties of a sandy loam soil under zero, shallow and deep tillage practices. Soil Tillage Res. 2016, 159, 67–72. [Google Scholar] [CrossRef]
- Awal, R.; Safeeq, M.; Abbas, F.; Fares, F.; Deb, S.K.; Ahmad, A.; Faris, A. Soil physical properties spatial variability under long-term no-tillage corn. Agronomy 2019, 9, 750. [Google Scholar] [CrossRef]
- Schluter, S.; Albrecht, L.; Schwarzel, K.; Kreiselmeier, J. Long-term effects of conventional tillage and no-tillage on saturated and near-saturated hydraulic conductivity- Can their prediction be improved by pore metrics obtained with X-ray CT? Geoderma 2020, 3619, 114082. [Google Scholar] [CrossRef]
- Kargas, G.; Londra, P.A.; Sotirakoglou, K. Saturated hydraulic conductivity measurements in a loam soil covered by native vegetation: Spatial and temporal variability in the upper soil layer. Geosciences 2021, 11, 105. [Google Scholar] [CrossRef]
- Benjamin, J.G. Tillage effects on near-surface soil hydraulic properties. Soil Tillage Res. 1993, 26, 277–288. [Google Scholar] [CrossRef]
- Azooz, R.H.; Arshad, M.A. Soil infiltration and hydraulic conductivity under long-term no-tillage and conventional tillage systems. Can. J. Soil Sci. 1996, 76, 143–152. [Google Scholar] [CrossRef]
- Osunbitan, J.A.; Oyedele, D.J.; Adekalu, K.O. Tillage effects on bulk density, hydraulic conductivity and strength of a loamy sand soil in southwestern Nigeria. Soil Tillage Res. 2005, 82, 57–64. [Google Scholar] [CrossRef]
- Vogeler, I.; Rogasik, J.; Funder, U.; Panten, K.; Schnug, E. Effect of tillage systems and P-fertilization on soil physical and chemical properties, crop yield and nutrient uptake. Soil Tillage Res. 2009, 103, 137–143. [Google Scholar] [CrossRef]
- Soane, B.D.; Ball, B.C.; Arvidsson, J.; Basch, G.; Moreno, F.; Roger-Estrade, J. No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil Tillage Res. 2012, 118, 66–87. [Google Scholar] [CrossRef]
- Chichongue, O.; van Tol, J.; Cerronio, G.; Preez, C.D. Effects of tillage systems and cropping patterns on soil physical properties in Mozambique. Agriculture 2020, 10, 448. [Google Scholar] [CrossRef]
- Moret, D.; Arrue, J.L. Dynamics of soil hydraulic properties during fallow as affected by tillage. Soil Tillage Res. 2007, 96, 103–113. [Google Scholar] [CrossRef]
- Karuma, A.; Mtakwa, P.; Amuri, N.; Gachene, C.K.; Gicheru, P. Tillage effects on selected soil physical properties in a maize-bean intercropping system in Mwala district, Kenya. Int. Sch. Res. Not. 2014, 2014, 497205. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Canqui, H.; Wiehold, B.J.; Jin, V.L.; Schmer, M.R.; Kibet, L.C. Long-term tillage impact on soil hydraulic properties. Soil Tillage Res. 2017, 170, 38–42. [Google Scholar] [CrossRef]
- Nouri, A.; Lee, J.; Yin, X.; Tyler, D.D.; Jagadamma, S.; Arelli, P. Soil physical properties and soybean yield as influenced by long-term tillage systems and cover cropping in the Midsouth USA. Sustainability 2018, 10, 4696. [Google Scholar] [CrossRef]
- Castellini, M.; Fornaro, F.; Garofalo, P.; Giglio, L.; Rinaldi, M.; Ventrella, D.; Vitti, C.; Vonella, A.V. Effects of no-tillage and conventional tillage on physical and hydraulic properties of fine textured soils under winter wheat. Water 2019, 11, 484. [Google Scholar] [CrossRef]
- Ordoñez-Morales, K.D.; Cadena-Zapata, M.; Zermeño-González, A.; Campos-Magaña, S. Effect of tillage systems on physical properties of a clay loam soil under oats. Agriculture 2019, 9, 62. [Google Scholar] [CrossRef]
- Sadiq, M.; Li, G.; Rahman, N.; Tahir, M.M. Sustainable conservation tillage technique for improving soil health by enhancing soil physiochemical quality indicators under wheat mon-cropping system conditions. Sustainability 2021, 13, 8177. [Google Scholar] [CrossRef]
- Carter, M.R.; Kunelius, H.T. Comparison of tillage and direct drilling for Italian ryegrass on the properties of a fine sandy loam soil. Can. J. Soil Sci. 1986, 66, 197–207. [Google Scholar] [CrossRef]
- Heard, J.R.; Kladivko, E.J.; Mannering, J.V. Soil macoporosity, hydraulic conductivity and air permeability of silty soil under long-term conservation tillage in Indiana. Soil Tillage Res. 1988, 11, 1–18. [Google Scholar] [CrossRef]
- Radcliffe, D.E.; Tollner, E.W.; Hargrove, W.L.; Clark, R.L.; Golabi, M.H. Effect of tillage practices on infiltration and soil strength of Typic Hapladult soil after 10 years. Soil Sci. Soc. Am. J. 1988, 52, 798–804. [Google Scholar] [CrossRef]
- Horne, D.; Ross, C.; Hughes, K. Ten years of a maize/oats rotation under three tillage systems on a silt loam in New Zealand. 1. A comparison of some soil properties. Soil Tillage Res. 1992, 22, 131–143. [Google Scholar] [CrossRef]
- Celik, I. Effects of tillage methods on penetration resistance, bulk density and saturated hydraulic conductivity in a clayey soil conditions. J. Agric. Sci. 2011, 17, 143–156. [Google Scholar] [CrossRef]
- Haruna, S.I.; Anderson, S.H.; Nsalambi, V.N.; Zaibon, S. Soil hydraulic properties: Influence of tillage and cover crops. Pedosphere 2018, 28, 430–442. [Google Scholar] [CrossRef]
- Blake, G.R.; Hartge, K.H. Bulk Density. In Methods of Soil Analysis. Part I-Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; ASA-SSSA: Madison, WI, USA, 1986; pp. 363–375. [Google Scholar]
- Jabro, J.D.; Iversen, W.M.; Stevens, W.B.; Sainju, U.M.; Allen, B.L. Tillage effects on drainage fluxes and nitrate leaching through unsaturated zone under irrigated corn-soybean rotation. Appl. Eng. Agric. 2019, 35, 293–300. [Google Scholar] [CrossRef]
- Jabro, J.D.; Stevens, W.B. Soil-water characteristic curves and their estimated hydraulic parameters in no-tilled and conventionally tilled soils. Soil Tillage Res. 2022, 219, 105342. [Google Scholar] [CrossRef]
- Jabro, J.D.; Stevens, W.B.; Evans, R.G.; Iversen, W.M. Tillage effects on physical properties in two soils of the Northern Great Plains. Appl. Eng. Agric. 2009, 25, 377–382. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Elrick, D.E.; Clothier, B.E. The constant head well permeameter: Effect of unsaturated flow. Soil Sci. Soil Sci. 1985, 139, 172–180. [Google Scholar] [CrossRef]
- Salverda, A.P.; Dane, J.H. An examination of the Guelph permeameter for measuring the soil’s hydraulic properties. Geoderma 1993, 57, 405–421. [Google Scholar] [CrossRef]
- Reynolds, W.D. Saturated hydraulic conductivity: Field measurement. In Soil Sampling and Methods of Analysis; Carter, M.R., Ed.; Canadian Society of Soil Science Lewis Publishers: Ann Arbor, MI, USA, 1993; pp. 599–613. [Google Scholar]
- SAS Institute. SAS for Windows, Version 9.1; SAS Institute: Cary, NC, USA, 2003.
- Dahiya, I.S.; Richter, J.; Malik, R.S. Soil Spatial Variability: A review. Int. J. Trop. Agric. 1984, 2, 1–102. [Google Scholar]
- Rothschild, V.; Logothetis, N. Probability Distributions; John Wiley and Sons Inc.: New York, NY, USA, 1986. [Google Scholar]
- Morbidelli, R.; Saltalippi, C.; Falmmini, A.; Cifrodelli, M.; Picciafuoco, T.; Corradini, C.; Govindaraju, R.S. In situ measurements of saturated hydraulic conductivity: Assessment of reliability through rainfall-runoff experiments. Hydrol. Process. 2017, 31, 3084–3094. [Google Scholar] [CrossRef]
- Liao, K.; Feng, J.; Lai, X.; Qing Zhu, Q. Effects of environmental factors on the influence of tillage conversion on soil saturated hydraulic conductivity obtained with different methodologies: A global meta-analysis. Soil 2022, 8, 309–317. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Ruis, S.J. No-tillage and soil physical environment. Geoderma 2018, 326, 164–200. [Google Scholar] [CrossRef]
- Vasu, D.; Singh, S.K.; Tiwary, P.; Chandran, P.; Ray, S.K. Pedogenic processes and soil-landform relationships for identification of yield-limiting soil properties. Soil Res. 2016, 55, 273–284. [Google Scholar] [CrossRef]
Crop | Tillage | Depth (cm) | Bulk Density § g/cm3 | Total Porosity cm3/cm3 | Volumetric Moisture Content § cm3/cm3 |
---|---|---|---|---|---|
Corn | NT | 0–15 | 1.655 (4) §§ | 0.376 | 0.189 (14) |
15–30 | 1.640 (4) | 0.381 | 0.185 (16) | ||
CT | 0–15 | 1.566 (4) | 0.409 | 0.178 (15) | |
15–30 | 1.601 (4) | 0.396 | 0.174 (11) | ||
Soybean | |||||
NT | 0–15 | 1.667 (4) | 0.371 | 0.193 (14) | |
15–30 | 1.634 (4) | 0.383 | 0.176 (19) | ||
CT | 0–15 | 1.602 (6) | 0.396 | 0.194 (12) | |
15–30 | 1.592 (7) | 0.399 | 0.175 (15) |
Effect | p > F | |
---|---|---|
Log Ks § | ||
0–15 cm | 15–30 cm | |
Year, Y | 0.0024 | 0.2783 |
Tillage, T | 0.1772 | 0.0528 |
Crop, C | 0.0339 | 0.2801 |
Y × T | 0.2289 | 0.5098 |
Y × C | 0.1654 | 0.3373 |
T × C | 0.1496 | 0.2156 |
Y × T × C | 0.7721 | 0.7527 |
Depth | Year | Tillage | Logarithmic Ks (mm/h) | |
---|---|---|---|---|
Corn | Soybean | |||
0–15 cm | ||||
2014 | NT | 4.868 | 4.551 b | |
CT | 5.376 | 5.041 a | ||
2015 | NT | 5.149 | 5.113 | |
CT | 5.265 | 5.490 | ||
2016 | NT | 4.717 | 3.031 | |
CT | 4.816 | 4.276 | ||
2017 | NT | 5.431 | 4.787 | |
CT | 5.312 | 5.266 | ||
2018 | NT | 5.656 b | 4.733 | |
CT | 4.950 a | 4.633 | ||
Mean | NT | 5.165 | 4.439 | |
CT | 5.145 | 4.943 | ||
15–30 cm | ||||
2014 | NT | 1.269 | 1.980 | |
CT | 1.079 | 2.078 | ||
2015 | NT | 0.840 b | 1.798 | |
CT | 1.852 a | 1.886 | ||
2016 | NT | 0.659 | 1.275 | |
CT | 1.265 | 0.970 | ||
2017 | NT | 1.539 | 1.539 | |
CT | 2.429 | 2.078 | ||
2018 | NT | 1.507 | 1.551 | |
CT | 2.249 | 1.724 | ||
Mean | NT | 1.186 b | 1.633 | |
CT | 1.784 a | 1.770 |
Year | Depth, cm | Tillage | Coefficient of Variation, CV (%) § | |
---|---|---|---|---|
Corn | Soybean | |||
2014 | 0–15 | NT | 106 | 42 |
CT | 24 | 59 | ||
15–30 | NT | 102 | 129 | |
CT | 82 | 129 | ||
2015 | 0–15 | NT | 62 | 131 |
CT | 65 | 36 | ||
15–30 | NT | 134 | 135 | |
CT | 67 | 48 | ||
2016 | 0–15 | NT | 27 | 244 |
CT | 59 | 121 | ||
15–30 | NT | 72 | 101 | |
CT | 84 | 126 | ||
2017 | 0–15 | NT | 78 | 153 |
CT | 32 | 75 | ||
15–30 | NT | 137 | 89 | |
CT | 100 | 85 | ||
2018 | 0–15 | NT | 23 | 191 |
CT | 40 | 63 | ||
15–30 | NT | 158 | 186 | |
CT | 48 | 34 | ||
Mean | 0–15 | NT | 59 | 153 |
CT | 44 | 71 | ||
15–30 | NT | 121 | 128 | |
CT | 74 | 84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jabro, J.D.; Stevens, W.B.; Iversen, W.M.; Sainju, U.M.; Allen, B.L. Saturated Hydraulic Conductivity of a Sandy Loam under No-Till and Intensive Tillage in a Corn–Soybean Rotation. Soil Syst. 2023, 7, 79. https://doi.org/10.3390/soilsystems7030079
Jabro JD, Stevens WB, Iversen WM, Sainju UM, Allen BL. Saturated Hydraulic Conductivity of a Sandy Loam under No-Till and Intensive Tillage in a Corn–Soybean Rotation. Soil Systems. 2023; 7(3):79. https://doi.org/10.3390/soilsystems7030079
Chicago/Turabian StyleJabro, Jalal D., William B. Stevens, William M. Iversen, Upendra M. Sainju, and Brett L. Allen. 2023. "Saturated Hydraulic Conductivity of a Sandy Loam under No-Till and Intensive Tillage in a Corn–Soybean Rotation" Soil Systems 7, no. 3: 79. https://doi.org/10.3390/soilsystems7030079
APA StyleJabro, J. D., Stevens, W. B., Iversen, W. M., Sainju, U. M., & Allen, B. L. (2023). Saturated Hydraulic Conductivity of a Sandy Loam under No-Till and Intensive Tillage in a Corn–Soybean Rotation. Soil Systems, 7(3), 79. https://doi.org/10.3390/soilsystems7030079