Climate Change and Soil Dynamics: A Crop Modelling Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Data Collection
2.3. Climate Data
2.4. Crop Model Parameterization
3. Results
3.1. Climate Data Analysis
3.2. Paddy Yield Simulation Results
3.3. Plant Nutrition Related Parameters
3.4. Soil Water Related Parameters
3.4.1. Extractable Soil Water Relative to Permanent Wilting Point (ESW)/Total Available Water
3.4.2. Infiltration
3.5. Soil Temperature
3.6. Soil Nitrogen Related Parameters
3.7. Soil Carbon Related Parameters
4. Discussion
5. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Valkama, E.; Kunypiyaeva, G.; Zhapayev, R.; Karabayev, M.; Zhusupbekov, E.; Perego, A.; Schillaci, C.; Sacco, D.; Moretti, B.; Grignani, C.; et al. Can Conservation Agriculture Increase Soil Carbon Sequestration? A Modelling Approach. Geoderma 2020, 369, 114298. [Google Scholar] [CrossRef]
- Bouman, B.A.M.; van Laar, H.H. Description and Evaluation of the Rice Growth Model ORYZA2000 under Nitrogen-Limited Conditions. Agric. Syst. 2006, 87, 249–273. [Google Scholar] [CrossRef]
- Gaydon, D.S.; Probert, M.E.; Buresh, R.J.; Meinke, H.; Suriadi, A.; Dobermann, A.; Bouman, B.; Timsina, J. Rice in Cropping Systems—Modelling Transitions between Flooded and Non-Flooded Soil Environments. Eur. J. Agron. 2012, 39, 9–24. [Google Scholar] [CrossRef]
- Lee, H.; Romero, J. (Eds.) IPCC Summary for Policymakers. In Climate Change 2023: Synthesis Report. A Report of the Intergovernmental Panel on Climate Change. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2023; p. 36. [Google Scholar]
- Lee, J.Y.; Marotzke, J.; Bala, G.; Cao, L.; Corti, S.; Dunne, J.P.; Engelbrecht, F.; Fischer, E.; Fyfe, J.C.; Jones, C.; et al. Future Global Climate: Scenario-Based Projections and Near-Term Information. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 553–672. [Google Scholar]
- Anh, D.L.T.; Anh, N.T.; Chandio, A.A. Climate Change and Its Impacts on Vietnam Agriculture: A Macroeconomic Perspective. Ecol. Inform. 2023, 74, 101960. [Google Scholar] [CrossRef]
- Anik, A.H.; Sultan, M.B.; Alam, M.; Parvin, F.; Ali, M.M.; Tareq, S.M. The Impact of Climate Change on Water Resources and Associated Health Risks in Bangladesh: A Review. Water Secur. 2023, 18, 100133. [Google Scholar] [CrossRef]
- Koetse, M.J.; Rietveld, P. The Impact of Climate Change and Weather on Transport: An Overview of Empirical Findings. Transp. Res. Part D Transp. Environ. 2009, 14, 205–221. [Google Scholar] [CrossRef]
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- Nikolaou, G.; Neocleous, D.; Christou, A.; Kitta, E.; Katsoulas, N. Implementing Sustainable Irrigation in Water-Scarce Regions under the Impact of Climate Change. Agronomy 2020, 10, 1120. [Google Scholar] [CrossRef]
- Perera, A.T.D.; Nik, V.M.; Chen, D.; Scartezzini, J.-L.; Hong, T. Quantifying the Impacts of Climate Change and Extreme Climate Events on Energy Systems. Nat. Energy 2020, 5, 150–159. [Google Scholar] [CrossRef]
- Gelybó, G.; Tóth, E.; Farkas, C.; Horel, Á.; Kása, I.; Bakacsi, Z. Potential Impacts of Climate Change on Soil Properties. Agrokémia És Talajt. 2018, 67, 121–141. [Google Scholar] [CrossRef]
- Hamidov, A.; Helming, K.; Bellocchi, G.; Bojar, W.; Dalgaard, T.; Ghaley, B.B.; Hoffmann, C.; Holman, I.; Holzkämper, A.; Krzeminska, D.; et al. Impacts of Climate Change Adaptation Options on Soil Functions: A Review of European Case-studies. Land. Degrad. Dev. 2018, 29, 2378–2389. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S. Impact of Climate Change on Soil Fertility. In Climate Change and the Microbiome: Sustenance of the Ecosphere; Choudhary, D.K., Mishra, A., Varma, A., Eds.; Soil Biology; Springer International Publishing: Cham, Switzerland, 2021; pp. 551–569. ISBN 978-3-030-76863-8. [Google Scholar]
- Jansson, J.K.; Hofmockel, K.S. Soil Microbiomes and Climate Change. Nat. Rev. Microbiol. 2020, 18, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Leal Filho, W.; Nagy, G.J.; Setti, A.F.F.; Sharifi, A.; Donkor, F.K.; Batista, K.; Djekic, I. Handling the Impacts of Climate Change on Soil Biodiversity. Sci. Total Environ. 2023, 869, 161671. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.; McConnell, C.; Coleman, K.; Cox, P.; Falloon, P.; Jenkinson, D.; Powlson, D. Global Climate Change and Soil Carbon Stocks; Predictions from Two Contrasting Models for the Turnover of Organic Carbon in Soil. Glob. Change Biol. 2005, 11, 154–166. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Panagos, P.; Lugato, E.; Yang, J.E.; Alewell, C.; Wuepper, D.; Montanarella, L.; Ballabio, C. Land Use and Climate Change Impacts on Global Soil Erosion by Water (2015–2070). Proc. Natl. Acad. Sci. USA 2020, 117, 21994–22001. [Google Scholar] [CrossRef] [PubMed]
- Brevik, E.C. The Potential Impact of Climate Change on Soil Properties and Processes and Corresponding Influence on Food Security. Agriculture 2013, 3, 398–417. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, X.; Li, J.; Hua, T. Identifying the Effect of Climate Change on Desertification in Northern China via Trend Analysis of Potential Evapotranspiration and Precipitation. Ecol. Indic. 2020, 112, 106141. [Google Scholar] [CrossRef]
- Jat, M.L.; Stirling, C.M.; Jat, H.S.; Tetarwal, J.P.; Jat, R.K.; Singh, R.; Lopez-Ridaura, S.; Shirsath, P.B. Chapter Four—Soil Processes and Wheat Cropping Under Emerging Climate Change Scenarios in South Asia. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2018; Volume 148, pp. 111–171. [Google Scholar]
- Emmett, B.A.; Beier, C.; Estiarte, M.; Tietema, A.; Kristensen, H.L.; Williams, D.; Peñuelas, J.; Schmidt, I.; Sowerby, A. The Response of Soil Processes to Climate Change: Results from Manipulation Studies of Shrublands Across an Environmental Gradient. Ecosystems 2004, 7, 625–637. [Google Scholar] [CrossRef]
- Wan, Y.; Lin, E.; Xiong, W.; Li, Y.; Guo, L. Modeling the Impact of Climate Change on Soil Organic Carbon Stock in Upland Soils in the 21st Century in China. Agriculture. Ecosyst. Environ. 2011, 141, 23–31. [Google Scholar] [CrossRef]
- Asseng, S.; Zhu, Y.; Basso, B.; Wilson, T.; Cammarano, D. Simulation Modeling: Applications in Cropping Systems. In Encyclopedia of Agriculture and Food Systems; Van Alfen, N.K., Ed.; Academic Press: Oxford, UK, 2014; pp. 102–112. ISBN 978-0-08-093139-5. [Google Scholar]
- Holzworth, D.P.; Huth, N.I.; de Voil, P.G.; Zurcher, E.J.; Herrmann, N.I.; McLean, G.; Chenu, K.; van Oosterom, E.J.; Snow, V.; Murphy, C.; et al. APSIM—Evolution towards a New Generation of Agricultural Systems Simulation. Environ. Model. Softw. 2014, 62, 327–350. [Google Scholar] [CrossRef]
- Jones, J.W.; Antle, J.M.; Basso, B.; Boote, K.J.; Conant, R.T.; Foster, I.; Godfray, H.C.J.; Herrero, M.; Howitt, R.E.; Janssen, S.; et al. Brief History of Agricultural Systems Modeling. Agric. Syst. 2017, 155, 240–254. [Google Scholar] [CrossRef] [PubMed]
- Wimalasiri, E.M.; Jahanshiri, E.; Chimonyo, V.; Azam-Ali, S.N.; Gregory, P.J. Crop Model Ideotyping for Agricultural Diversification. MethodsX 2021, 8, 101420. [Google Scholar] [CrossRef] [PubMed]
- Wimalasiri, E.M.; Ariyachandra, S.; Jayawardhana, A.; Dharmasekara, T.; Jahanshiri, E.; Muttil, N.; Rathnayake, U. Process-Based Crop Models in Soil Research: A Bibliometric Analysis. Soil. Syst. 2023, 7, 43. [Google Scholar] [CrossRef]
- Punyawardena, B.V.R. Precipitation of Sri Lanka and Agro-Ecological Regions; Agriculture Press: Peradeniya, Sri Lanka, 2008. [Google Scholar]
- Mapa, R.B. Soil Research and Soil Mapping History. In The Soils of Sri Lanka; Mapa, R.B., Ed.; World Soils Book Series; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–11. ISBN 978-3-030-44144-9. [Google Scholar]
- Mapa, R.B.; Somasiri, S.; Magarajah, S. Soils of the Wet Zone of Sri Lanka: Morphology, Characterization and Classification; Special Publication No. 1; Soil Science Society of Sri Lanka, Sarvodaya Wishva Lekha: Colombo, Sri Lanka, 1999. [Google Scholar]
- Mapa, R.B.; Dassanayake, A.R.; Nayakekorale, H.B. Soils of the Intermediate Zone of Sri Lanka: Morphology, Characterization and Classification; Special Publication No. 4; Soil Science Society of Sri Lanka, Sarvodaya Wishva Lekha: Colombo, Sri Lanka, 2005. [Google Scholar]
- Mapa, R.B.; Somasiri, S.; Dassanayake, A.R. Soils of the Dry Zone of Sri Lanka: Morphology, Characterization and Classification; Special Publication No. 7; Soil Science Society of Sri Lanka, Sarvodaya Wishva Lekha: Colombo, Sri Lanka, 2010. [Google Scholar]
- Mapa, R.B. Characterization of Soils in the Northern Region of Sri Lanka to Develop a Soil Data Base for Land Use Planning and Environmental Applications; National Research Council of Sri Lanka: Colombo, Sri Lanka, 2016. [Google Scholar]
- Wimalasiri, E.M.; Jahanshiri, E.; Suhairi, T.A.S.T.M.; Udayangani, H.; Mapa, R.B.; Karunaratne, A.S.; Vidhanarachchi, L.P.; Azam-Ali, S.N. Basic Soil Data Requirements for Process-Based Crop Models as a Basis for Crop Diversification. Sustainability 2020, 12, 7781. [Google Scholar] [CrossRef]
- Copernicus Climate Change Service CORDEX Regional Climate Model Data on Single Levels. Copernicus Climate Change Service (C3S) Climate Data Store (CDS) 2019. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.bc91edc3?tab=overview (accessed on 26 May 2023).
- Zubair, L.; Nissanka, S.P.; Weerakoon, W.M.W.; Herath, D.I.; Karunaratne, A.S.; Prabodha, A.S.M.; Agalawatte, M.B.; Herath, R.M.; Yahiya, S.Z.; Punyawardhene, B.V.R. Climate Change Impacts on Rice Farming Systems in Northwestern Sri Lanka. In Series on Climate Change Impacts, Adaptation, and Mitigation; Imperial College Press: London, UK, 2015; Volume 4, pp. 315–352. ISBN 978-1-78326-563-3. [Google Scholar]
- van Ittersum, M.; Brouwer, F. Introduction. In Environmental and Agricultural Modelling: Integrated Approaches for Policy Impact Assessment; Brouwer, F.M., Ittersum, M.K., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 1–7. ISBN 978-90-481-3619-3. [Google Scholar]
- Wimalasiri, E.M.; Ashfold, M.J.; Jahanshiri, E.; Walker, S.; Azam-Ali, S.N.; Karunaratne, A.S. Agro-Climatic Sensitivity Analysis for Sustainable Crop Diversification; the Case of Proso Millet (Panicum Miliaceum L.). PLoS ONE 2023, 18, e0283298. [Google Scholar] [CrossRef] [PubMed]
- Selvarajah, H.; Koike, T.; Rasmy, M.; Tamakawa, K.; Yamamoto, A.; Kitsuregawa, M.; Zhou, L. Development of an Integrated Approach for the Assessment of Climate Change Impacts on the Hydro-Meteorological Characteristics of the Mahaweli River Basin, Sri Lanka. Water 2021, 13, 1218. [Google Scholar] [CrossRef]
- Chathuranika, I.M.; Gunathilake, M.B.; Azamathulla, H.M.; Rathnayake, U. Evaluation of Future Streamflow in the Upper Part of the Nilwala River Basin (Sri Lanka) under Climate Change. Hydrology 2022, 9, 48. [Google Scholar] [CrossRef]
- Razzaghi, F.; Obour, P.B.; Arthur, E. Does Biochar Improve Soil Water Retention? A Systematic Review and Meta-Analysis. Geoderma 2020, 361, 114055. [Google Scholar] [CrossRef]
- Priestley, C.H.B.; Taylor, R.J. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Mon. Weather. Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Gan, G.; Liu, Y.; Pan, X.; Zhao, X.; Li, M.; Wang, S. Seasonal and Diurnal Variations in the Priestley–Taylor Coefficient for a Large Ephemeral Lake. Water 2020, 12, 849. [Google Scholar] [CrossRef]
- APSIM Soil Modules Documentation. Available online: https://www.apsim.info/documentation/model-documentation/soil-modules-documentation/ (accessed on 2 June 2023).
- Onwuka, B. Effects of Soil Temperature on Some Soil Properties and Plant Growth. APAR 2018, 8, 34–37. [Google Scholar] [CrossRef]
- Göbel, L.; Coners, H.; Hertel, D.; Willinghöfer, S.; Leuschner, C. The Role of Low Soil Temperature for Photosynthesis and Stomatal Conductance of Three Graminoids From Different Elevations. Front. Plant Sci. 2019, 10, 330. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.; Kuzyakov, Y.; Liu, X.; Zhang, X.; Xu, Q.; Guo, J.; Guo, S.; Shen, Q.; Yang, Y.; Ling, N. Elevated Temperature and CO2 Strongly Affect the Growth Strategies of Soil Bacteria. Nat. Commun. 2023, 14, 391. [Google Scholar] [CrossRef] [PubMed]
- Sünnemann, M.; Siebert, J.; Reitz, T.; Schädler, M.; Yin, R.; Eisenhauer, N. Combined Effects of Land-Use Type and Climate Change on Soil Microbial Activity and Invertebrate Decomposer Activity. Agric. Ecosyst. Environ. 2021, 318, 107490. [Google Scholar] [CrossRef]
- Bardgett, R.D.; Freeman, C.; Ostle, N.J. Microbial Contributions to Climate Change through Carbon Cycle Feedbacks. ISME J. 2008, 2, 805–814. [Google Scholar] [CrossRef]
- Lal, R. Soil Carbon Sequestration to Mitigate Climate Change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Probert, M.E.; Dimes, J.P.; Keating, B.A.; Dalal, R.C.; Strong, W.M. APSIM’s Water and Nitrogen Modules and Simulation of the Dynamics of Water and Nitrogen in Fallow Systems. Agric. Syst. 1998, 56, 1–28. [Google Scholar] [CrossRef]
- Verburg, K.; Bond, W.J. Use of APSIM to Simulate Water Balances of Dryland Farming Systems in South Eastern Australia; CSIRO Land and Water: Canberra, Australia, 2003. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wimalasiri, E.M.; Sirishantha, D.; Karunadhipathi, U.L.; Ampitiyawatta, A.D.; Muttil, N.; Rathnayake, U. Climate Change and Soil Dynamics: A Crop Modelling Approach. Soil Syst. 2023, 7, 82. https://doi.org/10.3390/soilsystems7040082
Wimalasiri EM, Sirishantha D, Karunadhipathi UL, Ampitiyawatta AD, Muttil N, Rathnayake U. Climate Change and Soil Dynamics: A Crop Modelling Approach. Soil Systems. 2023; 7(4):82. https://doi.org/10.3390/soilsystems7040082
Chicago/Turabian StyleWimalasiri, Eranga M., Deshani Sirishantha, U. L. Karunadhipathi, Asanga D. Ampitiyawatta, Nitin Muttil, and Upaka Rathnayake. 2023. "Climate Change and Soil Dynamics: A Crop Modelling Approach" Soil Systems 7, no. 4: 82. https://doi.org/10.3390/soilsystems7040082
APA StyleWimalasiri, E. M., Sirishantha, D., Karunadhipathi, U. L., Ampitiyawatta, A. D., Muttil, N., & Rathnayake, U. (2023). Climate Change and Soil Dynamics: A Crop Modelling Approach. Soil Systems, 7(4), 82. https://doi.org/10.3390/soilsystems7040082