Assessment of Mixed Amendments of CaCO3/Na2SO4 Ratio on the pH Buffer Capacity and Exchangeable Sodium Percentage of Soils with Contrasting Properties
Abstract
:Highlights
- The pH buffering capacity was higher in volcanic than non-volcanic soils.
- The sodium concentration increased exponentially in volcanic soils.
- The sulfate input increased the sulfur mineralization in soils.
Abstract
1. Introduction
2. Materials and Methods
2.1. Incubation Experiment
2.2. Statistical Analysis
3. Results
3.1. Effects of the Addition of Different Proportions of CaCO3/Na2SO4 on the Evaluated Soils
3.2. Effect of Applied Rates on Na Saturation
4. Discussion
4.1. Effect of the Treatments on the Evaluated Soils
4.2. Increased Na Saturation in Soils
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; Urban Development Series; World Bank: Washington, DC, USA, 2018; p. 272. [Google Scholar] [CrossRef]
- Lindholm-Lehto, P.; Knuutinen, J.; Ahkola, H.; Herve, S. Refractory organic pollutants and toxicity in pulp and paper mill wastewaters. Environ. Sci. Pollut. Res. R 2015, 22, 6473–6499. [Google Scholar] [CrossRef] [PubMed]
- INFOR; Forestry Institute. The Chilean Forestry Sector 2019, Issue 2019; INFOR: Santiago, Chile, 2019; 52p. [Google Scholar] [CrossRef]
- Álvarez, V.; Poblete, P.; Soto, D.; Gysling, J.; Kahler, C.; Pardo, E.; Bañados, J.; Baeza, D. Anuario Forestal 2022. Instituto Forestal, Chile. Boletín Estadístico INFOR N°187. Chile, Chile, 2022; p. 280. Available online: https://wef.infor.cl/index.php/publicaciones (accessed on 15 December 2023).
- Chauhan, S.; Lal Meena, B. Introduction to Pulp and paper industry: Global scenario. Phys. Sci. Rev. 2021, 6, 81–109. [Google Scholar] [CrossRef]
- Kumar, P.; Abhinaya, R.; Lashmi, K.; Arthi, V.; Pavithra, R.; Sathyaselvabala, V.; Kirupha, S.; Sivanesan, S. Adsorption of methylene blue dye from aqueous solution by agricultural waste: Equilibrium, thermodynamics, kinetics, mechanism and process design. J. Colloid Sci. 2011, 73, 651–661. [Google Scholar] [CrossRef]
- Gupta, G.; Shukla, P. Insights into the resources generation from pulp and paper industry wastes: Challenges, perspectives and innovations. Bioresour. Technol. 2020, 297, 122496. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.; Sandberg, M.; Venkatesh, G.; Eskandari, S.; Dalgaard, T.; Joseph, S.; Granström, K. Environmental performance of end-of-life handling alternatives for paper-and-pulp-mill sludge: Using digestate as a source of energy or for biochar production. Energy 2019, 182, 594–605. [Google Scholar] [CrossRef]
- Scoma, A.; Rebecchi, S.; Bertin, L.; Fava, F. High impact biowastes from South European agro-industries as feedstock for second-generation biorefineries. Crit. Rev. Biotechnol. 2016, 36, 175–189. [Google Scholar] [CrossRef] [PubMed]
- Cabral, F.; Ribeiro, H.; Hilário, L.; Machado, L.; Vasconcelos, E. Use of pulp mill inorganic wastes as alternative liming materials. Bioresour. Technol. 2008, 99, 8294–8298. [Google Scholar] [CrossRef] [PubMed]
- Rezende, A.; De Matos, A.; Silva, C.; Neves, J. Irrigation of eucalyptus plantation using treated bleached Kraft pulp mill effluent. Water Sci. Technol. 2010, 62, 2150–2156. [Google Scholar] [CrossRef] [PubMed]
- Sonkar, M.; Kumar, M.; Dutt, D.; Kumar, V. Treatment of pulp and paper mil effluent by a novel bacterium Bacillus sp. IITRDVM-5 through a sequential batch process. Biocatal. Agric. Biotechnol. 2019, 20, 1012–1032. [Google Scholar] [CrossRef]
- Kinnarinen, T.; Golmaei, M.; Jernström, E.; Häkkinen, A. Separation, treatment and utilization of inorganic residues of chemical pulp mills. J. Clean. Prod. 2016, 133, 953–964. [Google Scholar] [CrossRef]
- Sretenovic, I.; Farkhondehkavaki, M.; Kortschot, M.; Tran, H. Factors affecting the electrical resistivity of kraft recovery boiler precipitator ash. TAPPI J. 2014, 13, 31–39. [Google Scholar] [CrossRef]
- Monte, M.; Fuente, E.; Blanco, A.; Negro, C. Waste management from pulp and paper production in the European Union. Waste Manag. 2009, 29, 293–308. [Google Scholar] [CrossRef] [PubMed]
- Balkissoon, S.; Andrew, J.; Sithole, B. Dissolving wood pulp production: A review. Biomass Convers. Biorefinery 2023, 13, 16607–16642. [Google Scholar] [CrossRef]
- Royer-Tardif, S.; Whalen, J.; Rivest, D. Can alkaline residuals from the pulp and paper industry neutralize acidity in forest soils without increasing greenhouse gas emissions? Sci. Total Environ. 2019, 663, 537–547. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.; Lu, H.; Liu, H.; Lou, L.; Zhang, P.; Song, G.; Zhou, H.; Ma, H. Sulfate application decreases translocation of arsenic and cadmium within wheat (Triticum aestivum L.) plant. Sci. Total Environ. 2020, 713, 136665. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Li, M.; Lin, Q.; Li, G.; Zhao, X. Soil Na+ concentration controls salt-affected soil organic matter components in Hetao region China. J. Soils Sediments 2019, 19, 1120–1129. [Google Scholar] [CrossRef]
- Taghizadehghasab, A.; Safadoust, A.; Mosaddeghi, M. Effects of salinity and sodicity of water on friability of two texturally-different soils at different matric potentials. Soil Tillage Res. 2021, 209, 104950. [Google Scholar] [CrossRef]
- CIREN. Estudio Agrológico X Región; Publicación CIREN N°123; Natural Resources Information Center CIREN: Santiago, Chile, 2003; 379p. [Google Scholar]
- Pinochet, D.; Ramírez, F.; Suárez, D. Evaluación de la calidad agrícola de cuatro enmiendas calcáreas en un suelo ácido derivado de cenizas volcánicas. Agro. Sur. 2005, 33, 29–35. [Google Scholar] [CrossRef]
- Campillo, R.; Sadzawka, A. Encalado de los suelos. Caracterización y manejo de enmiendas calcáreas. Manejo de los Recursos Naturales en un Sistema de Incentivos para la Recuperación de Suelos Degradados de La Araucanía. Ser. Actas 2010, 38, 61–85. [Google Scholar]
- AOAC. Association of Official Agricultural Chemists. Official methods of Analysis. 17th ed. Vol 1. Agricutural Chemicals; Contaminants; Drugs. Rockville, USA. 2000. Available online: https://www.abebooks.co.uk/Official-Methods-Analysis-Aoac-International-Agricultural/22770365389/bd (accessed on 20 April 2024).
- Sadzawka, N.; Carrasco, M.; Grez, R.; Mora, M.; Flores, H.; Neaman, A. Métodos de Análisis Recomendados para los Suelos de Chile; Revisión 2006; Serie Actas INIA N°34; Instituto de Investigaciones Agropecurarias: Santiago, Chile, 2006. [Google Scholar]
- Posit Team. RStudio: Integrated Development Environment for R. Posit Software, PBC, Boston, MA (URL). 2023. Available online: http://www.posit.co/ (accessed on 1 December 2023).
- Goulding, K. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use Manag. 2016, 32, 390–399. [Google Scholar] [CrossRef]
- Holland, J.; Bennett, A.; Newton, A.; White, P.; McKenzie, B.; George, T.; Pakeman, R.; Bailey, J.; Fornara, D.; Hayes, R. Liming impacts on soils, crops and biodiversity in the UK: A review. Sci. Total Environ. 2018, 610, 316–332. [Google Scholar] [CrossRef] [PubMed]
- IUSS Working Group. World Reference base for soil resources: International soil classification system for naming soils and creating legends for soil maps. World Soil Resour. Rep. 2014, 106, 12–21. [Google Scholar]
- Matus, F.; Rumpel, C.; Neculman, M.; Panichini, M.; Mora, M. Soil carbon storage and stabilisation in andic soils: A review. Catena 2014, 120, 102–110. [Google Scholar] [CrossRef]
- Curtin, D.; Trolove, S. Predicting pH buffering capacity of New Zealand soils from organic matter content and mineral characteristics. Soil Res. 2013, 51, 494–502. [Google Scholar] [CrossRef]
- Pinochet, D.; Ramírez, F.; Suárez, D. Variación de la capacidad tampón en suelos derivados de cenizas volcánicas. Agric. Técnica 2005, 65, 55–64. [Google Scholar] [CrossRef]
- Bohn, H.; McNeal, B.; O’Connor, G. Química del Suelo, 1st ed.; SIDALC: Limusa, México, 1993; p. 370. Available online: https://www.sidalc.net/search/Record/KOHA-OAI-AGRO:266/Description (accessed on 20 April 2024).
- Liang, X.; Rengasamy, P.; Smernik, R.; Mosley, L. Does the high potassium content in recycled winery wastewater used for irrigation pose risks to soil structural stability? Agric. Water Manag. 2021, 243, 106422. [Google Scholar] [CrossRef]
- CIREN. Descripciones de Suelos. Materiales y Símbolos. Estudio Agrológico VII Región; CIREN N°123; Natural Resources Information Center CIREN: Santiago, Chile, 1997. [Google Scholar]
- Sokolova, T.; Alekseeva, S. Adsorption of sulfate ions by soils (A Review). Eurasian Soil Sci. 2008, 41, 140–148. [Google Scholar] [CrossRef]
- Scherer, H. Sulfur in soils. J. Plant Nutr. Soil Sci. 2009, 172, 326–335. [Google Scholar] [CrossRef]
- Mace, J.; Amrhein, C.; Oster, J. Comparison of gypsum and sulfuric acid for sodic soil reclamation. Arid. Soil Res. Rehabil. 1999, 13, 171–188. [Google Scholar] [CrossRef]
- Suarez, D.; Wood, J.; Lesch, S. Effect of SAR on water infiltration under a sequential rain–irrigation management system. Agric. Water Manag. 2006, 86, 150–164. [Google Scholar] [CrossRef]
- Almeida, I.; Fernandes, R.; Neves, J.; Ruiz, H.; Lima, T.; Hoogmoed, W. Soil quality after six years of paper mill industrial wastewater application. Rev. Bras. Ciência Solo 2017, 41, e0160017. [Google Scholar] [CrossRef]
- Ng, J.; Ahmed, O.; Jalloh, M.; Omar, L.; Kwan, Y.; Musah, A.; Poong, K. Soil nutrient retention and pH buffering capacity are enhanced by calciprill and sodium silicate. Agronomy 2022, 12, 219. [Google Scholar] [CrossRef]
- Litalien, A.; Zeeb, B. Curing the earth: A review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation. Sci. Total Environ. 2020, 698, 134235. [Google Scholar] [CrossRef] [PubMed]
- Daliakopoulos, I.; Tsanis, I.; Koutroulis, A.; Kourgialas, N.; Varouchakis, A.; Karatzas, G.; Ritsema, C. The threat of soil salinity: A European scale review. Sci. Total Environ. 2016, 573, 727–739. [Google Scholar] [CrossRef]
- Rowley, M.C.; Grand, S.; Verrecchia, É.P. Calcium-mediated stabilisation of soil organic carbon. Biogeochemistry 2018, 137, 27–49. [Google Scholar] [CrossRef]
Soils | |||
---|---|---|---|
Parameter | Licantén | San José | |
pHw | (1:2.5) | 5.20 ± 0.07 | 5.38 ± 0.05 |
pHc | (1:2.5) | 4.17 ± 0.03 | 5.06 ± 0.03 |
Exchangeable Al | cmol kg−1 | 1.03 ± 0.02 | 0.24 ± 0.03 |
Organic C | g 100 g−1 | 1.94 ± 0.03 | 6.29 ± 0.05 |
SOM | g 100 g−1 | 3.35 ± 0.05 | 10.81 ± 0.08 |
Extractable Al | mg 1000 g−1 | 78.0 ± 1.9 | 773.3 ± 20.6 |
Sum of bases | cmol kg−1 | 4.27 ± 0.2 | 4.08 ± 0.1 |
CEC | cmol kg−1 | 5.30 | 4.32 |
SatNa | g 100 g−1 | 1.30 | 1.80 |
SatAl | g 100 g−1 | 19.40 | 5.70 |
70% WHC | g 100 g−1 | 32 | 80 |
Lime Materials | ||||
---|---|---|---|---|
OM1 | OM2 | OM3 | IANSA | |
Parameters | CaCO3 | |||
Humidity (%) | 26.7 | 0.1 | 0.4 | 20.8 |
CaCO3 eq (%) | 101.5 | 98.5 | 99.9 | 88.1 |
Relative efficiency (%) | 99.9 | 66.2 | 64.9 | 76.1 |
PRNT (%) | 101.4 | 65.2 | 64.8 | 67.1 |
Na2SO4 | ||||
Humidity (%) | 0.3 | 1.4 | 0.8 | - |
Relative efficiency (%) | 81.9 | 59.5 | 67.2 | - |
Water sodium (%) | 15.6 | 15.9 | 14.0 | - |
Acid sodium (%) | 23.5 | 23.9 | 22.5 | - |
Total S (%) | 17.9 | 14.4 | 18.4 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinochet, D.; Romero, C.; Ramírez, F.; Clunes, J. Assessment of Mixed Amendments of CaCO3/Na2SO4 Ratio on the pH Buffer Capacity and Exchangeable Sodium Percentage of Soils with Contrasting Properties. Soil Syst. 2024, 8, 68. https://doi.org/10.3390/soilsystems8030068
Pinochet D, Romero C, Ramírez F, Clunes J. Assessment of Mixed Amendments of CaCO3/Na2SO4 Ratio on the pH Buffer Capacity and Exchangeable Sodium Percentage of Soils with Contrasting Properties. Soil Systems. 2024; 8(3):68. https://doi.org/10.3390/soilsystems8030068
Chicago/Turabian StylePinochet, Dante, Carolina Romero, Fernando Ramírez, and John Clunes. 2024. "Assessment of Mixed Amendments of CaCO3/Na2SO4 Ratio on the pH Buffer Capacity and Exchangeable Sodium Percentage of Soils with Contrasting Properties" Soil Systems 8, no. 3: 68. https://doi.org/10.3390/soilsystems8030068
APA StylePinochet, D., Romero, C., Ramírez, F., & Clunes, J. (2024). Assessment of Mixed Amendments of CaCO3/Na2SO4 Ratio on the pH Buffer Capacity and Exchangeable Sodium Percentage of Soils with Contrasting Properties. Soil Systems, 8(3), 68. https://doi.org/10.3390/soilsystems8030068