Screening of As-Resistant Bacterial Strains from the Bulk Soil and the Rhizosphere of Mycorrhizal Pteris vittata Cultivated in an Industrial Multi-Polluted Site
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling
2.2. Isolation and Extraction of Culturable Bacteria
2.3. Identification of Bacterial Strains
2.4. Exploring Plant-Beneficial Physiological Traits and Temperature Test
2.5. Assessment of Arsenate and Arsenite Effect by Minimal Inhibitory Concentration
2.6. Arsenate Reductase and Arsenate Respiratory Reductase Gene PCR Amplifications
3. Results
3.1. Quantification of Culturable Bacteria
3.2. Identification of Bacterial Strains
3.3. Characterization of Physiological Traits and Temperature Test
3.4. Minimal Inhibitory Concentration of Arsenate and Arsenite
3.5. Arsenate Reductase and Arsenate Respiratory Pathways
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adriano, D.C. Trace Elements in the Terrestrial Environment; Springer: Berlin/Heidelberg, Germany, 1986; pp. 46–72. [Google Scholar]
- Yan-Chu, H. Arsenic distribution in soils. In Arsenic in the Environment, Part 1: Cycling and Characterization; Nriagu, J.O., Ed.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 1994; pp. 17–49. [Google Scholar]
- Masuda, H. Arsenic cycling in the Earth’s crust and hydrosphere: Interaction between naturally occurring arsenic and human activities. Prog. Earth Planet. Sci. 2018, 5, 68. [Google Scholar] [CrossRef]
- Zhao, F.J.; McGrath, S.P.; Meharg, A.A. Arsenic as a food chain contaminant: Mechanisms of plant uptake and metabolism and mitigation strategies. Ann. Rev. Plant Biol. 2010, 61, 535–559. [Google Scholar] [CrossRef] [PubMed]
- da Silva, E.B.; Lessl, J.T.; Wilkie, A.C.; Liu, X.; Liu, Y.; Ma, L.Q. Arsenic removal by As-hyperaccumulator Pteris vittata from two contaminated soils: A 5-year study. Chemosphere 2018, 206, 736–741. [Google Scholar] [CrossRef]
- Missimer, T.M.; Teaf, C.M.; Beeson, W.T.; Maliva, R.G.; Woolschlager, J.; Covert, D.J. Natural background and anthropogenic arsenic enrichment in Florida soils, surface water, and groundwater: A Review with a Discussion on Public Health Risk. Int. J. Environ. Res. Public Health 2018, 15, 2278. [Google Scholar] [CrossRef]
- Abbas, G.; Murtaza, B.; Bibi, I.; Shahid, M.; Niazi, N.K.; Khan, M.I.; Amjad, M.; Hussain, M.; Natasha. Arsenic Uptake, Toxicity, Detoxification, and Speciation in Plants: Physiological, Biochemical, and Molecular Aspects. Int. J. Environ. Res. Public Health 2018, 15, 59. [Google Scholar] [CrossRef]
- Hering, J.G.; Katsoyiannis, I.A.; Ahumada Theoduloz, G.; Berg, M.; Hug, S.J. Arsenic removal from drinking water: Experiences with technologies and constraints in practice. J. Environ. Engin. 2017, 143, 03117002. [Google Scholar] [CrossRef]
- Patel, K.S.; Pandey, P.K.; Martín-Ramos, P.; Corns, W.T.; Varol, S.; Bhattacharya, P.; Zhu, Y. A review on arsenic in the environment: Contamination, mobility, sources, and exposure. RSC Adv. 2023, 13, 8803–8821. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roy, M.; Giri, A.K.; Dutta, S.; Mukherjee, P. Integrated phytobial remediation for sustainable management of arsenic in soil and water. Environ. Int. 2015, 75, 180–198. [Google Scholar] [CrossRef] [PubMed]
- Satyapal, G.K.; Rani, S.; Kumar, M.; Kumar, N. Potential role of arsenic resistant bacteria in bioremediation: Current status and future prospects. J. Microb. Biochem. Technol. 2016, 8, 256–258. [Google Scholar] [CrossRef]
- Souri, Z.; Karimi, N.; Sandalio, L.M. Arsenic Hyperaccumulation Strategies: An Overview. Front. Cell Dev. Biol. 2017, 5, 67. [Google Scholar] [CrossRef]
- Gadd, G.M. Arsenic Toxicity: An Arsenic-Hyperaccumulating Fern Uses a Bacterial-like Tolerance Mechanism. Curr. Biol. 2019, 29, R580–R582. [Google Scholar] [CrossRef]
- Ma, L.Q.; Komar, K.M.; Tu, C.; Zhang, W.H.; Cai, Y.; Kennelley, E.D. A fern that hyperaccumulates arsenic—A hardy, versatile, fast-growing plant helps to remove arsenic from contaminated soils. Nature 2001, 409, 579. [Google Scholar] [CrossRef]
- Chen, T.; Yan, X.; Liao, X.; Xiao, X.; Huang, Z.; Xie, H.; Zhai, L. Subcellular distribution and compartmentalization of arsenic in Pteris vittata L. Chin. Sci. Bull. 2005, 50, 2843–2849. [Google Scholar] [CrossRef]
- Mathews, S.; Ma, L.Q.; Rathinasabapathi, B.; Natarajan, S.; Saha, U.K. Arsenic transformation in the growth media and biomass of hyperaccumulator Pteris vittata L. Bioresour. Technol. 2010, 101, 8024–8030. [Google Scholar] [CrossRef]
- Wan, X.M.; Lei, M.; Zhou, X.Y.; Yang, J.; Chen, T.; Zhou, G.D. Characterization of arsenic uptake in living Pteris vittata L. Instr. Sci. Technol. 2014, 42, 667–677. [Google Scholar] [CrossRef]
- Bona, E.; Cattaneo, C.; Cesaro, P.; Marsano, F.; Lingua, G.; Cavaletto, M.; Berta, G. Proteomic analysis of Pteris vittata fronds: Two arbuscular mycorrhizal fungi differentially modulate protein expression under arsenic contamination. Proteomics 2010, 10, 3811–3834. [Google Scholar] [CrossRef]
- Cesaro, P.; Cattaneo, C.; Bona, E.; Berta, G.; Cavaletto, M. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases. Sci. Rep. 2015, 5, 14525. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Y.G.; Chen, B.D.; Christie, P.; Li, X.L. Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fern Pteris vittata L. Mycorrhiza 2005, 15, 187–192. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.B.; Wong, M.H.; Ye, Z.H. The role of arsenate reductase and superoxide dismutase in As accumulation in four Pteris species. Environ. Int. 2009, 35, 491–495. [Google Scholar] [CrossRef]
- Leung, H.M.; Ye, Z.H.; Wong, M.H. Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils. Environ. Pollut. 2006, 139, 1–8. [Google Scholar] [CrossRef]
- Leung, H.M.; Wu, F.Y.; Cheung, K.C.; Ye, Z.H.; Wong, M.H. The Effect of Arbuscular Mycorrhizal Fungi and Phosphate Amendement on Arsenic Uptake, Accumulation and Growth of Pteris vittata in As-Contaminated Soil. Inter. J. Phytorem. 2010, 12, 384–403. [Google Scholar] [CrossRef]
- Cantamessa, S.; Massa, N.; Gamalero, E.; Berta, G. Phytoremediation of a Highly Arsenic Polluted Site, Using Pteris vittata L. and Arbuscular Mycorrhizal Fungi. Plants 2020, 9, 1211. [Google Scholar] [CrossRef]
- Huang, A.; Teplitski, M.; Rathinasabapathi, B.; Ma, L. Characterization of arsenic-resistant bacteria from the rhizosphere of arsenic hyperaccumulator Pteris vittata. Can. J. Microbiol. 2010, 56, 236–246. [Google Scholar] [CrossRef]
- Zhu, L.J.; Guan, D.X.; Luo, J.; Rathinasabapathi, B.; Ma, L.Q. Characterization of arsenic-resistant endophytic bacteria from hyperaccumulators Pteris vittata and Pteris multifida. Chemosphere 2014, 113, 9–16. [Google Scholar] [CrossRef]
- Han, Y.H.; Jia, M.R.; Liu, X.; Zhu, Y.; Cao, Y.; Chen, D.L.; Chen, Y.; Ma, L.Q. Bacteria from the rhizosphere and tissues of As-hyperaccumulator Pteris vittata and their role in arsenic transformation. Chemosphere 2017, 186, 599–606. [Google Scholar] [CrossRef]
- Tiwari, S.; Sarangi, B.K.; Thul, S.T. Identification of arsenic resistant endophytic bacteria from Pteris vittata roots and characterization for arsenic remediation application. J. Environ. Manag. 2016, 180, 359–365. [Google Scholar] [CrossRef]
- Gu, Y.; Wang, Y.; Sun, Y.; Zhao, K.; Xiang, Q.; Yu, X.; Zhang, X.; Chen, Q. Genetic diversity and characterization of arsenic-resistant endophytic bacteria isolated from Pteris vittata, an arsenic hyperaccumulator. BMC Microbiol. 2018, 18, 42. [Google Scholar] [CrossRef]
- Sun, X.; Kong, T.; Huang, D.; Chen, Z.; Kolton, M.; Yang, J.; Huang, Y.; Cao, Y.; Gao, P.; Yang, N.; et al. Arsenic (As) oxidation by core endosphere microbiome mediates As speciation in Pteris vittata roots. J. Hazard Mater. 2023, 454, 131458. [Google Scholar] [CrossRef]
- Lampis, S.; Santi, C.; Ciurli, A.; Andreolli, M.; Vallini, G. Promotion of arsenic phytoextraction efficiency in the fern Pteris vittata by the inoculation of As-resistant bacteria: A soil bioremediation perspective. Front. Plant Sci. 2015, 16, 80. [Google Scholar] [CrossRef]
- Abou-Shanab, R.A.I.; Santelli, C.M.; Sadowsky, M.J. Bioaugmentation with As-transforming bacteria improves arsenic availability and uptake by the hyperaccumulator plant Pteris vittata (L). Int. J. Phytorem. 2022, 24, 420–428. [Google Scholar] [CrossRef]
- Yang, C.; Ho, Y.N.; Inoue, C.; Chien, M.F. Long-term effectiveness of microbe-assisted arsenic phytoremediation by Pteris vittata in field trials. Sci. Total Environ. 2020, 740, 140137. [Google Scholar] [CrossRef] [PubMed]
- Antenozio, M.L.; Giannelli, G.; Marabottini, R.; Brunetti, P.; Allevato, E.; Marzi, D.; Capobianco, G.; Bonifazi, G.; Serranti, S.; Visioli, G.; et al. Phytoextraction efficiency of Pteris vittata grown on a naturally As-rich soil and characterization of As-resistant rhizosphere bacteria. Sci. Rep. 2021, 11, 6794. [Google Scholar] [CrossRef]
- Trouvelot, A.; Kough, J.; Gianinazzi-Pearson, V. Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle. In Physiological and Genetical Aspects of Mycorrhizae, Proceedings of the 1st European Symposium on Mycorrhizae, Dijon, France, 1–5 July 1985; INRA: Paris, France, 1986; Volume 1, pp. 217–221. [Google Scholar]
- Novello, G.; Bona, E.; Toumatia, O.; Vuolo, F.; Bouras, N.; Titouah, H.; Zitouni, A.; Gorrasi, S.; Massa, N.; Cesaro, P.; et al. Rhizosphere Bacterial Isolation from Indigenous Plants in Arid and Semi-Arid Algerian Soils: Implications for Plant Growth Enhancement. Processes 2023, 11, 2907. [Google Scholar] [CrossRef]
- de Brito, A.M.; Gagne, S.; Antoun, H. Effect of compost on rhizosphere microflora of the tomato and on the incidence of plant growth-promoting rhizobacteria. Appl. Environ. Microbiol. 1995, 61, 194–199. [Google Scholar] [CrossRef]
- Schwyn, B.; Neilands, J.B. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 1987, 160, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Escudero, L.V.; Casamayor, E.O.; Chong, G.; Pedrós-Alió, C.; Demergasso, C. Distribution of Microbial Arsenic Reduction, Oxidation and Extrusion Genes along a Wide Range of Environmental Arsenic Concentrations. PLoS ONE 2013, 8, e78890. [Google Scholar] [CrossRef]
- Tu, C.; Ma, L.Q. Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator ladder brake. J. Environ. Qual. 2002, 31, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Chen, T.; An, Z.; Lei, M.; Huang, Z.; Liao, X.; Liu, Y. Potential of Pteris vittata L. for phytoremediation of sites co-contaminated with cadmium and arsenic: The tolerance and accumulation. J. Environ. Sci. 2008, 20, 62–67. [Google Scholar] [CrossRef]
- Cui, S.; Xiao, H.; Miao, D.; Yang, W. Metal uptake and translocation by Chinese brake fern (Pteris vittata) and diversity of rhizosphere microbial communities under single and combined arsenic and cadmium stress. Environ. Sci. Pollut. Res. 2023, 30, 85198–85209. [Google Scholar] [CrossRef]
- Hiltner, L. Über Neuere Erfahrungen und Probleme auf Dem Gebiete der Bodenbakteriologie unter Besonderer Berücksichtigung der Gründüngung und Brache; Gesellschaft: Berlin, Germany, 1904; pp. 69–78. (In German) [Google Scholar]
- Philippot, L.; Raaijmakers, J.M.; Lemanceau, P.; Van Der Putten, W.H. Going back to the roots: The microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 2013, 11, 789–799. [Google Scholar]
- Trotta, A.; Falaschi, P.; Cornara, L.; Minganti, V.; Fusconi, A.; Drava, G.; Berta, G. Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L. Chemosphere 2006, 65, 74–81. [Google Scholar] [CrossRef]
- Jackson, C.R.; Harrison, K.G.; Dugas, S.L. Enumeration and characterization of culturable arsenate resistant bacteria in a large estuary. Syst. Appl. Microbiol. 2005, 28, 727–734. [Google Scholar] [CrossRef]
- Magar, L.B.; Rayamajhee, B.; Khadka, S.; Karki, G.; Thapa, A.; Yasir, M.; Thapa, S.; Panta, O.P.; Sharma, S.; Poudel, P. Detection of Bacillus Species with Arsenic Resistance and Plant Growth-Promoting Efficacy from Agricultural Soils of Nepal. Scientifica 2022, 19, 9675041. [Google Scholar] [CrossRef]
- Román-Ponce, B.; Ramos-Garza, J.; Arroyo-Herrera, I.; Maldonado-Hernández, J.; Bahena-Osorio, Y.; Vásquez-Murrieta, M.S.; Wang, E.T. Mechanism of arsenic resistance in endophytic bacteria isolated from endemic plant of mine tailings and their arsenophore production. Arch. Microbiol. 2018, 200, 883–895. [Google Scholar] [CrossRef]
- Xu, L.; Shi, W.; Zeng, X.C.; Yang, Y.; Zhou, L.; Mu, Y.; Liu, Y. Draft genome sequence of Arthrobacter sp. strain B6 isolated from the high-arsenic sediments in Datong Basin, China. Stand. Genom. Sci. 2017, 12, 11. [Google Scholar] [CrossRef]
- Achour, A.R.; Bauda, P.; Billard, P. Diversity of arsenite transporter genes from arsenic-resistant soil bacteria. Res. Microbiol. 2007, 158, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Sarkar, S.; Gorai, S.; Kabiraj, A.; Bandopadhyay, R. High arsenic tolerance in Brevundimonas aurantiaca PFAB1 from an arsenic-rich Indian hot spring. Electron. J. Biotechnol. 2021, 53, 1–7. [Google Scholar] [CrossRef]
- Soto, J.; Charles, T.C.; Lynch, M.D.J.; Larama, G.; Herrera, H.; Arriagada, C. Genome Sequence of Brevundimonas sp., an Arsenic Resistant Soil Bacterium. Diversity 2021, 13, 344. [Google Scholar] [CrossRef]
- Singh, N.; Marwa, N.; Mishra, S.K.; Mishra, J.; Verma, P.C.; Rathaur, S.; Singh, N. Brevundimonas diminuta mediated alleviation of arsenic toxicity and plant growth promotion in Oryza sativa L. Ecotoxicol. Environ. Saf. 2016, 125, 25–34. [Google Scholar] [CrossRef]
- Gamalero, E.; Glick, B.R. Bacterial Modulation of Plant Ethylene Levels. Plant Physiol. 2015, 169, 13–22. [Google Scholar] [CrossRef]
- Rajkumar, M.; Ae, N.; Prasad, M.N.; Freitas, H. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol. 2010, 28, 142–149. [Google Scholar] [CrossRef]
- Liu, X.; Yang, G.M.; Guan, D.X.; Ghosh, P.; Ma, L.Q. Catecholate-siderophore produced by As-resistant bacterium effectively dissolved FeAsO4 and promoted Pteris vittata growth. Environ. Pollut. 2015, 206, 376–381. [Google Scholar] [CrossRef]
- Suhadolnik, M.L.; Salgado, A.P.; Scholte, L.L.; Bleicher, L.; Costa, P.S.; Reis, M.P.; Dias, M.F.; Ávila, M.P.; Barbosa, F.A.; Chartone-Souza, E. Novel arsenic-transforming bacteria and the diversity of their arsenic-related genes and enzymes arising from arsenic-polluted freshwater sediment. Sci. Rep. 2017, 7, 11231. [Google Scholar] [CrossRef]
- Zhu, Y.G.; Yoshinaga, M.; Zhao, F.J.; Rosen, B.P. Earth abides arsenic biotransformations. Annu. Rev. Earth Planet Sci. 2014, 42, 443–467. [Google Scholar] [CrossRef]
- Sevak, P.; Pushkar, B. Bacterial responses towards arsenic toxicity and in-depth analysis of molecular mechanism along with possible on-field application. J. Environ. Chem. Engin. 2023, 11, 110187. [Google Scholar] [CrossRef]
- Silver, S.; Phung, L.T. A bacterial view of the periodic table: Genes and proteins for toxic inorganic ions. J. Ind. Microbiol. Biotechnol. 2005, 32, 587–605. [Google Scholar] [CrossRef]
- William, V.U.; Magpantay, H.D. Arsenic and Microorganisms: Genes, Molecular Mechanisms, and Recent Advances in Microbial Arsenic Bioremediation. Microorganisms 2024, 12, 74. [Google Scholar] [CrossRef]
- Saltikov, C.W.; Wildman, R.A.; Newman, D.K. Expression dynamics of arsenic respiration and detoxification in Shewanella sp. strain ANA-3. J. Bacteriol. 2005, 187, 7390–7396. [Google Scholar] [CrossRef]
- Wu, F.Y.; Leung, H.M.; Wu, S.C.; Ye, Z.H.; Wong, M.H. Variation in arsenic, lead and zinc tolerance and accumulation in six populations of Pteris vittata L. from China. Environ Pollut. 2009, 157, 2394–2404. [Google Scholar] [CrossRef]
Primer Set | Primer Name | Primer Sequence (5′–3′) | |
---|---|---|---|
arsC-Grx-Sun | amlt-42-F | TCG CGT AAT ACG CTG GAG AT | |
amlt-376-R | ACT TTC TCG CCG TCT TCC TT | ||
smrc-42-F | TCA CGC AAT ACC CTT GAA ATG ATC | ||
smrc-376-R | ACC TTT TCA CCG TCC TCT TTC GT | ||
arsC-Grx-Saltikov | Q-arsC-F1 | GAT TTA CCA TAA TCC GGC CTG T | |
Q-arsC-R1 | GGC GTC TCA AGG TAG AGG ATA A | ||
Arsenate reductase | arsC-Trx-Villegas | arsCGP-Fw | TGC TG ATTT AGT TGT TAC GC |
arsCGP-Rv | TTC CTT CAA CCT ATT CCC TA | ||
arsC-Trx1a | arsC 4F | TCH TGY CGH AGY CAA ATG GCH GAA G | |
arsC 4R | GCN GGA TCV TCR AAW CCC CAR TG | ||
arsC-Trx1b | arsC 5F | GGH AAY TCH TGY CGN AGY CAA ATG GC | |
arsC 5R | GCN GGA TCV TCR AAW CCC CAR NWC | ||
arsC-Trx2 | arsC 6F | CAC VTG CMG RAA DGC RAR RVV DTG GCTCG | |
arsC 6R2 | TTR WAS CCN ACG WTA ACA KKH YYK YC | ||
arrA1 | arrA F | AAG GTG TAT GGA ATA AAG CGT TTG TBG GHG AYT T | |
arrA R | CCT GTG ATT TCA GGT GCC CAY TY V GGN GT | ||
arrA2 | AS1 F | CGA AGT TCG TCC CGA THA CNT GG | |
Arsenate respiratory reductase | AS1 R | GGG GTG CGG TCY TTN ARY TC | |
AS2 F | GTC CCN ATB ASN TGG GAN RAR GCN MT | ||
arrA3 | HAArrA-D1F | CCG CTA CTA CAC CGA GGG CWW YTG GGR NTA | |
HAArrA-G2R | CGT GCG GTC CTT GAG CTC NWD RTT CCA CC |
ArsC 4F/ArsC 4R | ArsC 5F/ArsC 5R | ArsC 6F/ArsC 6R2 | ArsCGP-Fw/ArsCGP-Rv | Q-arsC-F1/Q-arsC-R |
---|---|---|---|---|
95 °C 5′ | 95 °C 5′ | 95 °C 5′ | 95 °C 5′ | 95 °C 5′ |
95 °C 1′ | 95 °C 1′ | 95 °C 1′ | 95 °C 1′ | 95 °C 1′ |
46.7 °C 1′ 40 cycles | 60 °C 1′ 40 cycles | 54.5 °C 1′ 40 cycles | 48 °C 1′ 40 cycles | 60 °C 1′ 40 cycles |
72 °C 50″ | 72 °C 50″ | 72 °C 50″ | 72 °C 50″ | 72 °C 50″ |
72 °C 10′ | 72 °C 10′ | 72 °C 10′ | 72 °C 10′ | 72 °C 10′ |
NESTED-PCR n1 AS1 F/AS1 R | NESTED-PCR n2 AS2 F/AS1 R | HAArrA-D1 F/HAArrA-G2 R | arrA F/arrA R | amlt-42-F/amlt-376-R/smrc-42-F/smrc-376-R mix |
95 °C 5′ | 95 °C 5′ | 95 °C 5′ | 95 °C 5′ | 95 °C 5′ |
95 °C 1′ | 95 °C 1′ | 95 °C 1′ | 95 °C 1′ | 95 °C 1′ |
50 °C 1′ 35 cycles | 55 °C 1′ 30 cycles | 53.5 °C 1′ 40 cycles | 50 °C 1′ 40 cycles | 60 °C 1′ 40 cycles |
72 °C 1′ | 72 °C 1′ | 72 °C 1′ | 72 °C 30″ | 72 °C 50″ |
72 °C 10′ | 72 °C 10′ | 72 °C 10′ | 72 °C 10′ | 72 °C 10′ |
Strain | Taxonomy Identification | Growth 4 °C | Growth 28 °C | Growth 37 °C | Growth 42 °C | CAS * | DCP/TCP # | IAA @ |
---|---|---|---|---|---|---|---|---|
BS1 | Arthrobacter sp. | + | + | + | - | 2.8 | 0 | 0 |
BS3 | Arthrobacter sp. | + | + | + | + | 0 | 0 | 0 |
BS5 | Bacillus sp. | + | + | + | - | 0 | 0 | 0 |
BS6 | Bacillus sp. | + | + | + | ± | 0 | 0 | 1 |
BS7 | Pseudomonas sp. | + | + | - | - | 2.4 | 0 | 0 |
BS8 | Pseudoarthrobacter oxydans | + | + | + | - | 0 | 0 | 0 |
BS9 | Pseudomonas sp. | + | + | - | - | 2.8 | 0 | 0 |
BS10 | Pseudomonas marginalis | + | + | + | + | 2.5 | 0 | 2 |
BS11 | Janibacter sp. | + | + | + | - | 0 | 0 | 1 |
BS12 | Arthrobacter sp. | + | + | + | - | 0 | 0 | 0 |
BS15 | Bacillus sp. | + | + | - | - | 0 | 0 | 0 |
BS16 | Bacillus sp. | + | + | + | -- | 0 | 0 | 0 |
BS18 | Pseudomonas brassicacearum | + | + | - | - | 1.9 | 0 | 0 |
BS19 | Pseudomonas thivervalensis | + | + | - | - | 3.4 | 0 | 2 |
BS20 | Pseudomonas sp. | + | + | + | - | 3.1 | 0 | 0 |
BS-As2 | Arthrobacter sp. | + | + | + | - | 0 | 0 | 2 |
BS-As3 | Pseudomonas sp. | + | + | + | + | 2.3 | 0 | 0 |
BS-As6 | Pseudomonas sp. | - | + | + | - | 0 | 0 | 0 |
BS-As7 | Pseudomonas marginalis | + | + | - | - | 0 | 0 | 0 |
BS-As11 | Bacillus sp. | + | + | + | + | 0 | 0 | 1 |
BS-As12 | Brevundimonas diminuta | + | + | + | ± | 0 | 0 | 0 |
BS-As13 | Pseudomonas sp. | - | + | + | - | 1.8 | 0 | 0 |
BS-As14 | Oerskovia sp. | + | + | - | - | 1.4 | 0 | 0 |
BS-As19 | Pseudomonas marginalis | + | + | + | - | 2.7 | 0 | 2 |
BS-As22 | Pseudomonas marginalis | + | + | + | -- | 0 | 0 | 0 |
PTV7 | Janibacter sp. | - | + | + | + | 0 | 0 | 0 |
PTV9 | Microbacterium sp. | + | + | + | + | 0 | 0 | 0 |
PTV15 | Bacillus megaterium | ± § | + | + | + | 1.1 | 0 | 3 |
PTV18 | Pedobacter sp. | + | + | + | ± | 0 | 0 | 0 |
PTV20 | Brevundimonas diminuta | + | + | + | ± | 0 | 0 | 0 |
PTV21 | Bacillus sp. | + | + | + | + | 1.4 | 0 | 0 |
PTV22 | Bacillus cereus | -- | + | + | + | 0 | 0 | 0 |
PTV23 | Bacillus pumilus | - | + | + | + | 1.2 | 0 | 0 |
PTV25 | Janibacter sp. | + | + | + | + | 0 | 0 | 0 |
PTV28 | Brevundimonas diminuta | - | + | + | + | 0 | 0 | 0 |
PTV30 | Bacillus thuringensis | - | + | + | + | 0 | 0 | 0 |
PTV-As3 | Micrococcus sp. | - | + | + | -- | 0 | 0 | 0 |
PTV-As5 | Brevundimonas diminuta | - | + | + | - | 0 | 0 | 1 |
PTV-As7 | Brevundimonas diminuta | - | + | + | - | 0 | 0 | 2 |
PTV-As8 | Bacillus sp. | - | + | + | - | 3.3 | 0 | 2 |
PTV-As9 | Janibacter sp. | + | + | + | + | 2.3 | 0 | 0 |
PTV-As15 | Bacillus sp. | - | + | + | + | 0 | 0 | 0 |
PTV-As23 | Bacillus pumilus | + | + | + | ± | 2.9 | 0 | 1 |
PTV-As26 | Bacillus sp. | + | + | + | - | 0 | 0 | 0 |
PTV-As29 | Pseudomonas marginalis | + | + | + | ± | 2.5 | 0 | 0 |
Strain | Arsenate mM | Arsenite mM | |
---|---|---|---|
Arthrobacter sp. | BS1 | >600 | >4 |
Arthrobacter sp. | BS3 | 600 | >4 |
Bacillus sp. | BS5 | 300 | >4 |
Bacillus sp. | BS6 | 300 | >4 |
Pseudomonas sp. | BS7 | 300 | >4 |
Pseudoarthrobacter oxydans | BS8 | 300 | >4 |
Pseudomonas sp. | BS9 | 300 | >4 |
Pseudomonas marginalis | BS10 | 150 | >4 |
Janibacter sp. | BS11 | 300 | >4 |
Arthrobacter sp. | BS12 | 300 | >4 |
Bacillus sp. | BS15 | 150 | >4 |
Bacillus sp. | BS16 | 300 | >4 |
Pseudomonas brassicacearum | BS18 | 150 | >4 |
Pseudomonas thivervalensis | BS19 | 150 | >4 |
Pseudomonas sp. | BS20 | 150 | >4 |
Arthrobacter sp. | BS-As2 | 600 | >4 |
Pseudomonas sp. | BS-As3 | 600 | >4 |
Pseudomonas sp. | BS-As6 | 150 | >4 |
Pseudomonas marginalis | BS-As7 | 300 | >4 |
Bacillus sp. | BS-As11 | 300 | >4 |
Brevundimonas diminuta | BS-As12 | 600 | >4 |
Pseudomonas sp. | BS-As13 | 150 | >4 |
Oerskovia sp. | BS-As14 | 600 | >4 |
Pseudomonas marginalis | BS-As19 | 75 | >4 |
Pseudomonas marginalis | BS-As22 | 150 | >4 |
Janibacter sp. | PTV7 | 600 | >4 |
Microbacterium sp. | PTV9 | ND * | >4 |
Bacillus megaterium | PTV15 | 75 | >4 |
Pedobacter sp. | PTV18 | 75 | >4 |
Brevundimonas diminuta | PTV20 | 600 | >4 |
Bacillus sp. | PTV21 | 150 | >4 |
Bacillus cereus | PTV22 | 150 | >4 |
Bacillus pumilus | PTV23 | 600 | >4 |
Janibacter sp. | PTV25 | 300 | >4 |
Brevundimonas diminuta | PTV28 | 600 | >4 |
Bacillus thuringensis | PTV30 | 300 | >4 |
Micrococcus sp. | PTV-As3 | 600 | >4 |
Brevundimonas diminuta | PTV-As5 | 600 | >4 |
Brevundimonas diminuta | PTV-As7 | 600 | >4 |
Bacillus sp. | PTV-As8 | 600 | >4 |
Janibacter sp. | PTV-As9 | 600 | >4 |
Bacillus sp. | PTV-As15 | 300 | >4 |
Bacillus pumilus | PTV-As23 | 600 | >4 |
Bacillus sp. | PTV-As26 | 300 | >4 |
Pseudomonas marginalis | PTV-As29 | 300 | >4 |
Strain | ArsC-Trx1a | ArsC-Trx1b | ArsC-Trx2 | ArsC-Trx Villegas | arrA1 Ars-Respiratory | arrA2 Ars-Respiratory | arrA3 Ars-Respiratory | |
---|---|---|---|---|---|---|---|---|
Arsenate Reductase | Arsenate Respiratory Reductase | |||||||
Arthrobacter sp. | BS1 | + | - | - | - | - | - | - |
Arthrobacter sp. | BS3 | + | - | - | - | - | - | - |
Bacillus sp. | BS5 | + | - | - | - | + | - | - |
Bacillus sp. | BS6 | + | - | - | - | + | + | - |
Pseudomonas sp. | BS7 | - | - | + | - | + | - | - |
Pseudoarthrobacter oxydans | BS8 | + | - | - | - | - | - | - |
Pseudomonas sp. | BS9 | + | - | + | - | + | - | - |
Pseudomonas marginalis | BS10 | - | - | + | + | + | + | - |
Janibacter sp. | BS11 | + | - | - | - | - | - | - |
Arthrobacter sp. | BS12 | + | - | - | - | - | - | - |
Bacillus sp. | BS15 | + | - | - | - | - | - | - |
Bacillus sp. | BS16 | + | - | - | - | - | - | - |
Pseudomonas brassicacearum | BS18 | - | - | + | - | + | + | - |
Pseudomonas thivervalensis | BS19 | - | - | + | - | + | - | - |
Pseudomonas sp. | BS20 | + | - | + | - | + | - | - |
Arthrobacter sp. | BS-As2 | + | - | - | - | - | + | - |
Pseudomonas sp. | BS-As3 | + | - | + | - | - | + | - |
Pseudomonas sp. | BS-As6 | + | - | - | - | - | + | - |
Pseudomonas marginalis | BS-As7 | - | - | + | - | + | - | - |
Bacillus sp. | BS-As11 | + | - | + | - | - | - | - |
Brevundimonas diminuta | BS-As12 | + | - | - | - | - | - | - |
Pseudomonas sp. | BS-As13 | + | - | + | - | - | + | - |
Oerskovia sp. | BS-As14 | - | - | + | - | + | - | - |
Pseudomonas marginalis | BS-As19 | - | + | + | - | + | - | - |
Pseudomonas marginalis | BS-As22 | - | + | + | - | + | + | - |
Janibacter sp. | PTV7 | + | - | - | - | - | - | - |
Microbacterium sp. | PTV9 | + | - | - | - | - | - | - |
Bacillus megaterium | PTV15 | + | + | - | - | - | - | - |
Pedobacter sp. | PTV18 | + | + | - | - | - | - | - |
Brevundimonas diminuta | PTV20 | + | - | + | - | - | + | - |
Bacillus sp. | PTV21 | + | - | - | - | - | + | - |
Bacillus cereus | PTV22 | + | - | - | - | - | + | - |
Bacillus pumilus | PTV23 | + | - | - | - | - | + | - |
Janibacter sp. | PTV25 | + | - | - | - | - | - | - |
Brevundimonas diminuta | PTV28 | + | - | - | - | - | - | - |
Bacillus thuringensis | PTV30 | + | + | - | - | - | - | - |
Micrococcus sp. | PTV-As4 | + | - | + | + | - | + | - |
Brevundimonas diminuta | PTV-As5 | + | - | + | - | - | + | - |
Brevundimonas diminuta | PTV-As7 | + | - | + | - | - | + | - |
Bacillus sp. | PTV-As8 | + | - | - | - | - | + | - |
Janibacter sp. | PTV-As9 | + | - | - | + | - | + | - |
Bacillus sp. | PTV-As15 | + | - | - | - | - | + | - |
Bacillus pumilus | PTV-As23 | + | + | - | - | + | + | - |
Bacillus sp. | PTV-As26 | + | - | - | - | - | + | - |
Pseudomonas marginalis | PTV-As29 | - | - | + | + | + | + | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novello, G.; Gamalero, E.; Cesaro, P.; Campana, D.; Cantamessa, S.; Massa, N.; Berta, G.; Lingua, G.; Bona, E. Screening of As-Resistant Bacterial Strains from the Bulk Soil and the Rhizosphere of Mycorrhizal Pteris vittata Cultivated in an Industrial Multi-Polluted Site. Soil Syst. 2024, 8, 87. https://doi.org/10.3390/soilsystems8030087
Novello G, Gamalero E, Cesaro P, Campana D, Cantamessa S, Massa N, Berta G, Lingua G, Bona E. Screening of As-Resistant Bacterial Strains from the Bulk Soil and the Rhizosphere of Mycorrhizal Pteris vittata Cultivated in an Industrial Multi-Polluted Site. Soil Systems. 2024; 8(3):87. https://doi.org/10.3390/soilsystems8030087
Chicago/Turabian StyleNovello, Giorgia, Elisa Gamalero, Patrizia Cesaro, Daniela Campana, Simone Cantamessa, Nadia Massa, Graziella Berta, Guido Lingua, and Elisa Bona. 2024. "Screening of As-Resistant Bacterial Strains from the Bulk Soil and the Rhizosphere of Mycorrhizal Pteris vittata Cultivated in an Industrial Multi-Polluted Site" Soil Systems 8, no. 3: 87. https://doi.org/10.3390/soilsystems8030087
APA StyleNovello, G., Gamalero, E., Cesaro, P., Campana, D., Cantamessa, S., Massa, N., Berta, G., Lingua, G., & Bona, E. (2024). Screening of As-Resistant Bacterial Strains from the Bulk Soil and the Rhizosphere of Mycorrhizal Pteris vittata Cultivated in an Industrial Multi-Polluted Site. Soil Systems, 8(3), 87. https://doi.org/10.3390/soilsystems8030087