Mixed Grazing Increases Abundance of Arbuscular Mycorrhizal Fungi in Upland Welsh Grasslands
Abstract
:1. Introduction
1.1. The Role of Mycorrhizal Fungi within Healthy Grassland Soils
1.2. Impact of Livestock and Agricultural Management on Grasslands
1.3. Agricultural Management
2. Materials and Methods
2.1. Site and Field Selection
2.2. Plant Diversity
2.3. Soil Samples
2.3.1. Collection and Storage
2.3.2. Staining
2.3.3. Identification of Mycorrhizal Structures
2.4. Data Analysis
3. Results
3.1. Livestock Type
3.2. Active Grazing
3.3. Application of Lime
3.4. Plant Diversity
3.5. Farm Differences
4. Discussion
4.1. The Effect of Mixing Livestock
4.2. Active Grazing Impacts
4.3. The Effects of Applying Lime
4.4. Plant Diversity
4.5. Implications and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blair, J.; Nippert, J.; Briggs, J. Grassland Ecology. In Ecology and the Environment; Springer: Berlin/Heidelberg, Germany, 2014; pp. 389–423. [Google Scholar] [CrossRef]
- Roberts, A.M. Tamed: Ten Species That Changed Our World; Windmill Books: London, UK, 2018. [Google Scholar]
- Bengtsson, J.; Bullock, J.M.; Egoh, B.; Everson, C.; Everson, T.; O’Connor, T.; O’Farrell, P.J.; Smith, H.G.; Lindborg, R. Grasslands-more important for ecosystem services than you might think. Ecosphere 2019, 10, e02582. [Google Scholar] [CrossRef]
- Bardgett, R.D.; Bullock, J.M.; Lavorel, S.; Manning, P.; Schaffner, U.; Ostle, N.; Chomel, M.; Durigan, G.; Fry, E.L.; Johnson, D.; et al. Combatting global grassland degradation. Nat. Rev. Earth Environ. 2021, 2, 720–735. [Google Scholar] [CrossRef]
- Petermann, J.S.; Buzhdygan, O.Y. Grassland biodiversity. Curr. Biol. 2021, 31, R1195–R1201. [Google Scholar] [CrossRef]
- Scurlock, J.M.O.; Hall, D.O. The global carbon sink: A grassland perspective. Glob. Change Biol. 1998, 4, 229–233. [Google Scholar] [CrossRef]
- Jones, M.B.; Donnelly, A. Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO2. New Phytol. 2004, 164, 423–439. [Google Scholar] [CrossRef]
- Xu, S.; Eisenhauer, N.; Ferlian, O.; Zhang, J.; Zhou, G.; Lu, X.; Liu, C.; Zhang, D. Species richness promotes ecosystem carbon storage: Evidence from biodiversity-ecosystem functioning experiments. Proc. R. Soc. B Biol. Sci. 2020, 287, 20202063. [Google Scholar] [CrossRef]
- Lemaire, G.; Hodgson, J.; Chabbi, A. Grassland Productivity and Ecosystem Services; CABI: Wallingford, UK, 2011. [Google Scholar]
- O’Mara, F.P. The role of grasslands in food security and climate change. Ann. Bot. 2012, 110, 1263–1270. [Google Scholar] [CrossRef] [PubMed]
- Eldridge, D.J.; Poore, A.G.B.; Ruiz-Colmenero, M.; Letnic, M.; Soliveres, S. Ecosystem structure, function, and composition in rangelands are negatively affected by livestock grazing. Ecol. Appl. 2016, 26, 1273–1283. [Google Scholar] [CrossRef]
- Nordborg, M. Holistic Management—A Critical Review of Allan Savory’s Grazing Method; Roos, E., Ed.; Centre for Organic Food & Farming: Umeå, Sweden, 2016. [Google Scholar]
- Sirimarco, X.; Barral, M.P.; Villarino, S.H.; Laterra, P. Water regulation by grasslands: A global meta-analysis. Ecohydrology 2018, 11, e1934. [Google Scholar] [CrossRef]
- Lai, L.; Kumar, S. A global meta-analysis of livestock grazing impacts on soil properties. PLoS ONE 2020, 15, e0236638. [Google Scholar] [CrossRef]
- Kemp, D.R.; Michalk, D.L. Towards sustainable grassland and livestock management. J. Agric. Sci. 2007, 145, 543–564. [Google Scholar] [CrossRef]
- Flack, S. The Art and Science of Grazing: How Grass Farmers Can Create Sustainable Systems for Healthy Animals and Farm Ecosystems; Chelsea Green Publishing: Chelsea, VT, USA, 2016. [Google Scholar]
- Kapás, R.E.; Plue, J.; Kimberley, A.; Cousins, S.A.O. Grazing livestock increases both vegetation and seed bank diversity in remnant and restored grasslands. J. Veg. Sci. 2020, 31, 1053–1065. [Google Scholar] [CrossRef]
- Voisin, R.; Horwitz, P.; Godrich, S.; Sambell, R.; Cullerton, K.; Devine, A. What goes in and what comes out: A scoping review of regenerative agricultural practices. Agroecol. Sustain. Food Syst. 2024, 48, 124–158. [Google Scholar] [CrossRef]
- Lyons, K.G.; Török, P.; Hermann, J.-M.; Kiehl, K.; Kirmer, A.; Kollmann, J.; Overbeck, G.E.; Tischew, S.; Allen, E.B.; Bakker, J.D.; et al. Challenges and opportunities for grassland restoration: A global perspective of best practices in the era of climate change. Glob. Ecol. Conserv. 2023, 46, e02612. [Google Scholar] [CrossRef]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 2nd ed.; Academic Press, Inc.: New York, NY, USA, 1997. [Google Scholar]
- Lewis, J.D. Mycorrhizal Fungi, Evolution and Diversification of. Encycl. Evol. Biol. 2016, 3, 94–99. [Google Scholar] [CrossRef]
- Malloch, D.W.; Pirozynski, K.A.; Raven, P.H. Ecological and evolutionary significance of mycorrhizal symbioses in vascular plants (A Review). Proc. Natl. Acad. Sci. USA 1980, 77, 2113–2118. [Google Scholar] [CrossRef]
- Abbott, L.; Josland, S.; Lotinga, A.; Kruger, A.; Griffiths, L. (Eds.) Encyclopedia of Organic Gardening—The Complete Guide to Natural & Chemical-Free Gardening; Original Work Published 2001; The Henry Doubleday Research Association: London, UK, 2005; pp. 304–310. [Google Scholar]
- Willis, A.; Rodrigues, B.F.; Harris, P.J.C. The Ecology of Arbuscular Mycorrhizal Fungi. Crit. Rev. Plant Sci. 2013, 32, 1–20. [Google Scholar] [CrossRef]
- Chen, M.; Arato, M.; Borghi, L.; Nouri, E.; Reinhardt, D. Beneficial Services of Arbuscular Mycorrhizal Fungi—From Ecology to Application. Front. Plant Sci. 2018, 9, 408113. [Google Scholar] [CrossRef]
- Bennett, A.E.; Groten, K. The Costs and Benefits of Plant–Arbuscular Mycorrhizal Fungal Interactions. Annu. Rev. Plant Biol. 2022, 73, 649–672. [Google Scholar] [CrossRef]
- Tang, B.; Man, J.; Lehmann, A.; Rillig, M.C. Arbuscular mycorrhizal fungi benefit plants in response to major global change factors. Ecol. Lett. 2023, 26, 2087–2097. [Google Scholar] [CrossRef]
- Bonfante, P.; Genre, A. Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat. Commun. 2010, 1, 48. [Google Scholar] [CrossRef] [PubMed]
- Goss, M.J.; Carvalho, M.; Brito, I. Chapter 3—The Roles of Arbuscular Mycorrhiza and Current Constraints to Their Intentional Use in Agriculture; Goss, M.J., Carvalho, M., Brito, I., Eds.; ScienceDirect; Academic Press: New York, NY, USA, 2017. [Google Scholar]
- Faghihinia, M.; Jansa, J.; Halverson, L.J.; Staddon, P.L. Hyphosphere microbiome of arbuscular mycorrhizal fungi: A realm of unknowns. Biol. Fertil. Soils 2022, 59, 17–34. [Google Scholar] [CrossRef]
- Marschner, P. Rhizosphere Biology. In Marschner’s Mineral Nutrition of Higher Plants; Academic Press: New York, NY, USA, 2012; pp. 369–388. [Google Scholar] [CrossRef]
- Hart, M.; Klironomos, J. Colonization of roots by arbuscular mycorrhizal fungi using different sources of inoculum. Mycorrhiza 2002, 12, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Sullia, S.B. Use of Vesicular-Arbuscular Mycorrhiza (VAM) as Biofertilizer for Horticultural Plants in Developing Countries. In Horticulture—New Technologies and Applications; Springer: Berlin/Heidelberg, Germany, 1991; pp. 49–53. [Google Scholar] [CrossRef]
- Duffy, E.M.; Cassells, A.C. Root Development|Mycorrhizae. In Encyclopedia of Applied Plant Sciences; Elsevier: Amsterdam, The Netherlands, 2003; pp. 1107–1115. [Google Scholar] [CrossRef]
- Gilbert, M.; Nicolas, G.; Cinardi, G.; Van Boeckel, T.P.; Vanwambeke, S.O.; Wint, G.R.W.; Robinson, T.P. Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010. Sci. Data 2018, 5, 180227. [Google Scholar] [CrossRef]
- van Zanten, H.H.E.; Meerburg, B.G.; Bikker, P.; Herrero, M.; de Boer, I.J.M. Opinion paper: The role of livestock in a sustainable diet: A land-use perspective. Animal 2015, 10, 547–549. [Google Scholar] [CrossRef]
- Török, P.; Penksza, K.; Tóth, E.; Kelemen, A.; Sonkoly, J.; Tóthmérész, B. Vegetation type and grazing intensity jointly shape grazing effects on grassland biodiversity. Ecol. Evol. 2018, 8, 10326–10335. [Google Scholar] [CrossRef]
- Wilsey, B.J. The Biology of Grasslands; Oxford University Press: London, UK, 2018. [Google Scholar]
- Gang, C.; Zhou, W.; Chen, Y.; Wang, Z.; Sun, Z.; Li, J.; Qi, J.; Odeh, I. Quantitative assessment of the contributions of climate change and human activities on global grassland degradation. Environ. Earth Sci. 2014, 72, 4273–4282. [Google Scholar] [CrossRef]
- Faghihinia, M.; Zou, Y.; Chen, Z.; Bai, Y.; Li, W.; Marrs, R.; Staddon, P.L. Environmental drivers of grazing effects on arbuscular mycorrhizal fungi in grasslands. Appl. Soil Ecol. 2020, 153, 103591. [Google Scholar] [CrossRef]
- Faghihinia, M.; Zou, Y.; Chen, Z.; Bai, Y.; Li, W.; Marrs, R.; Staddon, P.L. The response of grassland mycorrhizal fungal abundance to a range of long-term grazing intensities. Rhizosphere 2020, 13, 100178. [Google Scholar] [CrossRef]
- Lugo, M.A.; Maza, M.E.G.; Cabello, M.N. Arbuscular Mycorrhizal Fungi in a Mountain Grassland II: Seasonal Variation of Colonization Studied, along with Its Relation to Grazing and Metabolic Host Type. Mycologia 2003, 95, 407. [Google Scholar] [CrossRef]
- Yang, X.; Shen, Y.; Liu, N.; Wilson, G.W.T.; Cobb, A.B.; Zhang, Y. Defoliation and arbuscular mycorrhizal fungi shape plant communities in overgrazed semiarid grasslands. Ecology 2018, 99, 1847–1856. [Google Scholar] [CrossRef] [PubMed]
- Faghihinia, M.; Zou, Y.; Bai, Y.; Dudáš, M.; Marrs, R.; Staddon, P.L. Grazing Intensity Rather than Host Plant’s Palatability Shapes the Community of Arbuscular Mycorrhizal Fungi in a Steppe Grassland. Microb. Ecol. 2021, 84, 1062–1071. [Google Scholar] [CrossRef] [PubMed]
- AHDB. Nutrient Management Guide (RB209) Section 1 Principles of Nutrient Management and Fertiliser Use 2. In AHDB; RB209 Section 1 Principles of Nutrient Management and Fertiliser Use; AHDB: New York, NY, USA, 2023. [Google Scholar]
- Mandal, A.; Sarkar, B.; Mandal, S.; Vithanage, M.; Patra, A.K.; Manna, M.C. Impact of agrochemicals on soil health. In Agrochemicals Detection, Treatment and Remediation; Academic Press: New York, NY, USA, 2020; pp. 161–187. [Google Scholar] [CrossRef]
- National Statistics. Welsh Agricultural Statistics. In Welsh Government; National Statistics: Wales, UK, 2018. [Google Scholar]
- Statistics for Wales. Farming Facts and Figures, Wales 2022. In Llywodraeth Cymru-Welsh Government; Statistics for Wales: Wales, UK, 2022. [Google Scholar]
- DEFRA. An Official Statistics Publication: Defra Official Statistics Are Produced to the High Professional Standards Set Out in the Code of Practice for Official Statistics. Grazing and Cattle Housing (Section 1); DEFRA: London, UK, 2019. [Google Scholar]
- Rollett, A.; Williams, J. Assessment of Welsh Soil Issues in Context-Soil Policy Evidence Programme 2018–2019; Soil Policy & Agricultural Land Use Planning Unit: UK, 2019. [Google Scholar]
- Ashman, M.R.; Puri, G. Essential Soil Science: A Clear and Concise Introduction to Soil Science; Blackwell Science: Hoboken, NJ, USA, 2002. [Google Scholar]
- Porter, W.M.; Robson, A.D.; Abbott, L.K. Field Survey of the Distribution of Vesicular-Arbuscular Mycorrhizal Fungi in Relation to Soil pH. J. Appl. Ecol. 1987, 24, 659–662. [Google Scholar] [CrossRef]
- Davison, J.; Moora, M.; Semchenko, M.; Adenan, S.B.; Ahmed, T.; Akhmetzhanova, A.A.; Alatalo, J.M.; Al-Quraishy, S.; Andriyanova, E.; Anslan, S.; et al. Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. New Phytol. 2021, 231, 763–776. [Google Scholar] [CrossRef] [PubMed]
- Schaub, S.; Finger, R.; Leiber, F.; Probst, S.; Kreuzer, M.; Weigelt, A.; Buchmann, N.; Scherer-Lorenzen, M. Plant diversity effects on forage quality, yield and revenues of semi-natural grasslands. Nat. Commun. 2020, 11, 768. [Google Scholar] [CrossRef]
- AHDB. Recommended Grass and Clover Lists for England and Wales 2023/24 Handbook; AHDB: New York, NY, USA, 2023; Available online: https://projectblue.blob.core.windows.net/media/Default/Beef%20&%20Lamb/RGCL/RGCL%20Handbook%202023%20WEB.pdf (accessed on 17 August 2024).
- Stiles, W. Can Increasing Plant Species Richness in Grassland Maintain Yield and Improve Soil Carbon Storage? Farming Connect, 23 January 2017. [Google Scholar]
- Sinker, C. A Lateral Key to Common Grasses; Shropshire Conservation Trust: Shrewsbury, MA, USA, 1975. [Google Scholar]
- Spohn, M.; Spohn, R. Wild Flowers of Britain and Europe; A. & C. Black: London, UK, 2008. [Google Scholar]
- Emberson, C. Wildlife Trusts. In Bloomsbury Concise Wild Flower Guide; Bloomsbury Wildlife: London, UK, 2014. [Google Scholar]
- Wu, Q.S.; Cao, M.Q.; Zou, Y.N. A Simple and Nontoxic Ink and Acetic Acid Staining Technique for Arbuscular Mycorrhizal Structures. Adv. Mater. Res. 2012, 518–523, 679–682. [Google Scholar] [CrossRef]
- Penn State. Staining of Mycorrhizal Fungi (AMF) Colonized Roots. Plone Site. 2022. Available online: https://plantscience.psu.edu/research/labs/roots/methods/methods-info/staining-of-mycorrhizal-fungi (accessed on 17 August 2024).
- Vierheilig, H.; Coughlan, A.P.; Wyss, U.; Piché, Y. Ink and Vinegar, a Simple Staining Technique for Arbuscular-Mycorrhizal Fungi. Appl. Environ. Microbiol. 1998, 64, 5004–5007. [Google Scholar] [CrossRef]
- Dixon, A.P.; Faber-Langendoen, D.; Josse, C.; Morrison, J.; Loucks, C.J. Distribution mapping of world grassland types. J. Biogeogr. 2014, 41, 2003–2019. [Google Scholar] [CrossRef]
- Walker, C.; Harper, C.J.; Brundrett, M.C.; Krings, M. Looking for Arbuscular Mycorrhizal Fungi in the Fossil Record. In Transformative Paleobotany; Academic Press: New York, NY, USA, 2018; pp. 481–517. [Google Scholar] [CrossRef]
- Su, J.; Xu, F.; Zhang, Y. Grassland biodiversity and ecosystem functions benefit more from cattle than sheep in mixed grazing: A meta-analysis. J. Environ. Manag. 2023, 337, 117769. [Google Scholar] [CrossRef]
- Abaye, A.O.; Allen, V.G.; Fontenot, J.P. Grazing Sheep and Cattle Together or Separately: Effect on Soils and Plants. Agron. J. 1997, 89, 380–386. [Google Scholar] [CrossRef]
- Animut, G.; Goetsch, A.L. Co-grazing of sheep and goats: Benefits and constraints. Small Rumin. Res. 2008, 77, 127–145. [Google Scholar] [CrossRef]
- Cuchillo Hilario, M.; Isselstein, J. Intake choices of cattle and sheep grazing alone or together on grass swards differing in plant species diversity. Grassl. A Change World 2010, 15, 922–1082. [Google Scholar]
- Cuchillo Hilario, M.; Wrage-Mönnig, N.; Isselstein, J. Behavioral patterns of (co-)grazing cattle and sheep on swards differing in plant diversity. Appl. Anim. Behav. Sci. 2017, 191, 17–23. [Google Scholar] [CrossRef]
- Cuchillo-Hilario, M.; Wrage-Mönnig, N.; Isselstein, J. Forage selectivity by cattle and sheep co-grazing swards differing in plant species diversity. Grass Forage Sci. 2017, 73, 320–329. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Liu, P.; Wang, C. Mixed cattle and sheep grazing reduces the root lifespan of the community in a desert steppe. Ecol. Indic. 2022, 143, 109422. [Google Scholar] [CrossRef]
- Cowlishaw, S.J.; Alder, F.E. The grazing preferences of cattle and sheep. J. Agric. Sci. 1960, 54, 257–265. [Google Scholar] [CrossRef]
- Forbes, T.D.A.; Hodgson, J. The reaction of grazing sheep and cattle to the presence of dung from the same or the other species. Grass Forage Sci. 1985, 40, 177–182. [Google Scholar] [CrossRef]
- Heyde, M.; van der Bennett, J.A.; Pither, J.; Hart, M. Longterm effects of grazing on arbuscular mycorrhizal fungi. Agric. Ecosyst. Environ. 2017, 243, 27–33. [Google Scholar] [CrossRef]
- Ren, H.; Gui, W.; Bai, Y.; Stein, C.; Rodrigues, J.L.M.; Wilson, G.W.T.; Cobb, A.B.; Zhang, Y.; Yang, G. Long-term effects of grazing and topography on extra-radical hyphae of arbuscular mycorrhizal fungi in semi-arid grasslands. Mycorrhiza 2017, 28, 117–127. [Google Scholar] [CrossRef]
- Faghihinia, M.; Zou, Y.; Bai, Y.; Pourbakhtiar, A.; Marrs, R.; Staddon, P.L. Long-Term Grazing Intensity Impacts Belowground Carbon Allocation and Mycorrhizas Revealed by 13CO2 Pulse Labeling. Rangel. Ecol. Manag. 2023, 86, 64–72. [Google Scholar] [CrossRef]
- Song, L.; Gong, J.; Zhang, Z.; Zhang, W.; Zhang, S.; Dong, J.; Dong, X.; Hu, Y.; Liu, Y. Changes in plant phosphorus demand and supply relationships in response to different grazing intensities affect the soil organic carbon stock of a temperate steppe. Sci. Total Environ. 2023, 876, 163225. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, J.O.; Hubbell, D.H.; Mahmud, A.W. Effect of liming on spore germination, germ tube growth and root colonization by vesicular-arbuscular mycorrhizal fungi. Plant Soil 1984, 76, 115–124. [Google Scholar] [CrossRef]
- Yin, C.; Schlatter, D.C.; Kroese, D.R.; Paulitz, T.C.; Hagerty, C.H. Responses of Soil Fungal Communities to Lime Application in Wheat Fields in the Pacific Northwest. Front. Microbiol. 2021, 12, 576763. [Google Scholar] [CrossRef] [PubMed]
- Olsson, P.A.; Hammer, E.C.; Pallon, J.; van Aarle, I.M.; Wallander, H. Elemental composition in vesicles of an arbuscular mycorrhizal fungus, as revealed by PIXE analysis. Fungal Biol. 2011, 115, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Bever, J.D.; Schultz, P.A.; Pringle, A.; Morton, J.B. Arbuscular Mycorrhizal Fungi: More Diverse than Meets the Eye, and the Ecological Tale of Why. BioScience 2001, 51, 923. [Google Scholar] [CrossRef]
- Horn, S.S.; Hempel, S.; Verbruggen, E.; Rillig, M.C.; Caruso, T. Linking the community structure of arbuscular mycorrhizal fungi and plants: A story of interdependence? Int. Soc. Microb. Ecol. 2017, 11, 1400–1411. [Google Scholar] [CrossRef]
- Tilman, D.; Lehman, C.L.; Thomson, K.T. Plant diversity and ecosystem productivity: Theoretical considerations. Proc. Natl. Acad. Sci. USA 1997, 94, 1857–1861. [Google Scholar] [CrossRef]
Field Code | Livestock Type | Lime | Plant Diversity |
---|---|---|---|
A.1 | Cattle | No lime | Medium |
A.2 | Sheep and Cattle | No lime | Medium |
B.1 | Sheep and Cattle | No lime | Medium |
B.2 | Sheep and Cattle | No lime | Medium |
C.1 | Cattle | Lime | High |
C.2 | Cattle | Lime | High |
D.1 | Sheep | Lime | Medium |
D.2 | Sheep | Lime | Low |
E.1 | Sheep | No lime | High |
E.2 | Sheep | No lime | High |
F.1 | Sheep and Cattle | No lime | High |
F.2 | Sheep and Cattle | No lime | High |
G.1 | Sheep and Cattle | Lime | Medium |
G.2 | Sheep and Cattle | Lime | Medium |
H.1 | Sheep and Cattle | Lime | Low |
H.2 | Sheep and Cattle | Lime | Low |
J.1 | Sheep and Cattle | Lime | Low |
J.2 | Sheep and Cattle | Lime | Low |
K.1 | Sheep | No lime | Medium |
K.2 | Sheep | No lime | Medium |
M.1 | Sheep | Lime | Low |
M.2 | Sheep | Lime | Low |
Field Code | Early Spring | Late Spring | Summer |
---|---|---|---|
A.1 | No grazing | Active grazing | No grazing |
A.2 | Active grazing | No grazing | Active grazing |
B.1 | No grazing | No grazing | No grazing |
B.2 | No grazing | No grazing | No grazing |
C.1 | No grazing | No grazing | No grazing |
C.2 | No grazing | No grazing | No grazing |
D.1 | No grazing | No grazing | No grazing |
D.2 | No grazing | No grazing | No grazing |
E.1 | No grazing | No grazing | No grazing |
E.2 | No grazing | No grazing | No grazing |
F.1 | No grazing | Active grazing | No grazing |
F.2 | Active grazing | Active grazing | No grazing |
G.1 | No grazing | Active grazing | No grazing |
G.2 | No grazing | No grazing | No grazing |
H.1 | No grazing | No grazing | Active grazing |
H.2 | No grazing | No grazing | Active grazing |
J.1 | No grazing | Active grazing | Active grazing |
J.2 | Active grazing | No grazing | No grazing |
K.1 | No grazing | No grazing | No grazing |
K.2 | No grazing | Active grazing | No grazing |
M.1 | No grazing | Active grazing | No grazing |
M.2 | No grazing | No grazing | No grazing |
Overall Mycorrhizal Occurrence (by Farm) | Cattle and Sheep (Per Field) | Lime Applied (Per Farm) | Plant Diversity Ranked High (Per Field) | Actively Grazed (/Field/Temporal Period) |
---|---|---|---|---|
B | ++ | + | − | ++++++ |
A | + | + | − | +++ |
F | ++ | + | ++ | +++ |
J | ++ | − | − | +++ |
G | ++ | − | − | +++++ |
H | ++ | − | − | ++++ |
M | − | − | − | +++++ |
C | − | − | ++ | ++++++ |
K | − | + | − | +++++ |
E | − | + | ++ | ++++++ |
D | − | − | − | +++++ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buckle, A.L.; Crotty, F.V.; Staddon, P.L. Mixed Grazing Increases Abundance of Arbuscular Mycorrhizal Fungi in Upland Welsh Grasslands. Soil Syst. 2024, 8, 94. https://doi.org/10.3390/soilsystems8030094
Buckle AL, Crotty FV, Staddon PL. Mixed Grazing Increases Abundance of Arbuscular Mycorrhizal Fungi in Upland Welsh Grasslands. Soil Systems. 2024; 8(3):94. https://doi.org/10.3390/soilsystems8030094
Chicago/Turabian StyleBuckle, Annie Lesley, Felicity Victoria Crotty, and Philip L. Staddon. 2024. "Mixed Grazing Increases Abundance of Arbuscular Mycorrhizal Fungi in Upland Welsh Grasslands" Soil Systems 8, no. 3: 94. https://doi.org/10.3390/soilsystems8030094
APA StyleBuckle, A. L., Crotty, F. V., & Staddon, P. L. (2024). Mixed Grazing Increases Abundance of Arbuscular Mycorrhizal Fungi in Upland Welsh Grasslands. Soil Systems, 8(3), 94. https://doi.org/10.3390/soilsystems8030094