Combined Application of Multiple Global Change Factors Negatively Influences Key Soil Processes across an Urban Gradient in Berlin, Germany
Abstract
:1. Introduction
2. Material and Methods
2.1. Site Selection
2.2. Experimental Design and GCF Selection
2.3. Soil Collection
2.4. Experimental Setup
2.5. Analysis of Soil Parameters
2.6. Statistical Analysis and Graphics
3. Results
3.1. Site-Specific Resistance to Global Change Factors
3.2. Support for General Susceptibility Hypothesis in Regards to Litter Decomposition Rate
3.3. Support for Low-Urbanity Hypotheses in Regards to Water Repellency
3.4. Support for High-Urbanity Hypotheses in Regards to Water-Stable Aggregates
4. Discussion
4.1. Site-Specific Resistance to Global Change Factors
4.2. Support for General Susceptibility Hypothesis in Regards to Litter Decomposition
4.3. Low- and High-Urbanity Resistance to Global Change Factors
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gu, C. Urbanization: Processes and driving forces. Sci. China Earth Sci. 2019, 62, 1351–1360. [Google Scholar] [CrossRef]
- Moll, R.J.; Cepek, J.D.; Lorch, P.D.; Dennis, P.M.; Tans, E.; Robison, T.; Millspaugh, J.J.; Montgomery, R.A. What does urbanization mean? A framework for urban metrics in wildlife research. J. Appl. Ecol. 2019, 56, 1289–1300. [Google Scholar] [CrossRef]
- Robins, K.; McCann, C.M.; Zhou, X.-Y.; Su, J.-Q.; Cooke, M.; Knapp, C.W.; Graham, D.W. Bioavailability of potentially toxic elements influences antibiotic resistance gene and mobile genetic element abundances in urban and rural soils. Sci. Total Environ. 2022, 847, 157512. [Google Scholar] [CrossRef] [PubMed]
- Nannoni, F.; Protano, G. Chemical and biological methods to evaluate the availability of heavy metals in soils of the Siena urban area (Italy). Sci. Total Environ. 2016, 568, 1–10. [Google Scholar] [CrossRef]
- Napoletano, P.; Guezgouz, N.; Benradia, I.; Benredjem, S.; Parisi, C.; Guerriero, G.; De Marco, A. Non-Lethal Assessment of Land Use Change Effects in Water and Soil of Algerian Riparian Areas along the Medjerda River through the Biosentinel Bufo spinosus Daudin. Water 2024, 16, 538. [Google Scholar] [CrossRef]
- Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. A J. R. Meteorol. Soc. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Deilami, K.; Kamruzzaman, M.; Liu, Y. Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 30–42. [Google Scholar] [CrossRef]
- Jia, W.Q.; Ren, G.Y.; Suonan, K.Z.; Zhang, P.F.; Wen, K.M.; Ren, Y.J. Urban heat island effect and its contribution to observed temperature increase at Wuhan Station, Central China. J. Trop. Meteorol. 2019, 25, 102–113. [Google Scholar]
- Equiza, M.; Calvo-Polanco, M.; Cirelli, D.; Señorans, J.; Wartenbe, M.; Saunders, C.; Zwiazek, J. Long-term impact of road salt (NaCl) on soil and urban trees in Edmonton, Canada. Urban For. Urban Green. 2017, 21, 16–28. [Google Scholar]
- Gavrichkova, O.; Brykova, R.A.; Brugnoli, E.; Calfapietra, C.; Cheng, Z.; Kuzyakov, Y.; Liberati, D.; Moscatelli, M.C.; Pallozzi, E.; Vasenev, V.I. Secondary soil salinization in urban lawns: Microbial functioning, vegetation state, and implications for carbon balance. Land Degrad. Dev. 2020, 31, 2591–2604. [Google Scholar] [CrossRef]
- Napoletano, P.; Colombo, C.; Di Iorio, E.; Memoli, V.; Panico, S.C.; Ruggiero, A.G.; Santorufo, L.; Maisto, G.; De Marco, A. Integrated approach for quality assessment of technosols in experimental mesocosms. Sustainability 2021, 13, 9101. [Google Scholar] [CrossRef]
- Jahandari, A. Microplastics in the urban atmosphere: Sources, occurrences, distribution, and potential health implications. J. Hazard. Mater. Adv. 2023, 12, 100346. [Google Scholar] [CrossRef]
- Fenoglio, M.S.; Rossetti, M.R.; Videla, M. Negative effects of urbanization on terrestrial arthropod communities: A meta-analysis. Glob. Ecol. Biogeogr. 2020, 29, 1412–1429. [Google Scholar] [CrossRef]
- Gao, J.; Huang, Y.; Zhi, Y.; Yao, J.; Wang, F.; Yang, W.; Han, L.; Lin, D.; He, Q.; Wei, B.; et al. Assessing the impacts of urbanization on stream ecosystem functioning through investigating litter decomposition and nutrient uptake in a forest and a hyper-eutrophic urban stream. Ecol. Indic. 2022, 138, 108859. [Google Scholar] [CrossRef]
- Valeo, C.; He, J.; Kasiviswanathan, K.S. Urbanization under a Changing Climate–Impacts on Hydrology. Water 2021, 13, 393. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, X.; Zhong, T. Pollution and health risk assessment of heavy metals in urban soil in China. Hum. Ecol. Risk Assess. Int. J. 2016, 22, 424–434. [Google Scholar] [CrossRef]
- Schifman, L.A.; Shuster, W.D. Comparison of measured and simulated urban soil hydrologic properties. J. Hydrol. Eng. 2019, 24, 04018056. [Google Scholar] [CrossRef]
- Schittko, C.; Onandia, G.; Bernard-Verdier, M.; Heger, T.; Jeschke, J.M.; Kowarik, I.; Maaß, S.; Joshi, J. Biodiversity maintains soil multifunctionality and soil organic carbon in novel urban ecosystems. J. Ecol. 2022, 110, 916–934. [Google Scholar] [CrossRef]
- Zhang, D.Q.; Tan, S.K.; Gersberg, R.M. Municipal solid waste management in China: Status, problems and challenges. J. Environ. Manag. 2010, 91, 1623–1633. [Google Scholar] [CrossRef]
- Pereira, P.; Bogunovic, I.; Muñoz-Rojas, M.; Brevik, E.C. Soil ecosystem services, sustainability, valuation and management. Curr. Opin. Environ. Sci. Health 2018, 5, 7–13. [Google Scholar] [CrossRef]
- Ajmone-Marsan, F.; Biasioli, M. Trace elements in soils of urban areas. Water Air Soil Pollut. 2010, 213, 121–143. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Maestre, F.T.; Reich, P.B.; Trivedi, P.; Osanai, Y.; Liu, Y.; Hamonts, K.; Jeffries, T.C.; Singh, B.K. Carbon content and climate variability drive global soil bacterial diversity patterns. Ecol. Monogr. 2016, 86, 373–390. [Google Scholar] [CrossRef]
- Lauber, C.L.; Ramirez, K.S.; Aanderud, Z.; Lennon, J.; Fierer, N. Temporal variability in soil microbial communities across land-use types. ISME J. 2013, 7, 1641–1650. [Google Scholar] [CrossRef] [PubMed]
- Serna-Chavez, H.M.; Fierer, N.; van Bodegom, P.M. Global drivers and patterns of microbial abundance in soil. Glob. Ecol. Biogeogr. 2013, 22, 1162–1172. [Google Scholar] [CrossRef]
- Rillig, M.C.; Ryo, M.; Lehmann, A.; Aguilar-Trigueros, C.A.; Buchert, S.; Wulf, A.; Iwasaki, A.; Roy, J.; Yang, G. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 2019, 366, 886–890. [Google Scholar] [CrossRef]
- Varney, R.M.; Chadburn, S.E.; Friedlingstein, P.; Burke, E.J.; Koven, C.D.; Hugelius, G.; Cox, P.M. A spatial emergent constraint on the sensitivity of soil carbon turnover to global warming. Nat. Commun. 2020, 11, 5544. [Google Scholar] [CrossRef]
- Yang, Y.; Li, T.; Wang, Y.; Cheng, H.; Chang, S.X.; Liang, C.; An, S. Negative effects of multiple global change factors on soil microbial diversity. Soil Biol. Biochem. 2021, 156, 108229. [Google Scholar] [CrossRef]
- Balogh, S.; Novák, T.J. Trends and hotspots in landscape transformation based on anthropogenic impacts on soil in Hungary, 1990–2018. Hung. Geogr. Bull. 2020, 69, 349–361. [Google Scholar] [CrossRef]
- Whitehead, J.; Hempel, S.; Hiller, A.; von der Lippe, M.; Rillig, M.C. Soil physico-chemical properties change across an urbanity gradient in Berlin. Front. Environ. Sci. 2021, 9, 765696. [Google Scholar] [CrossRef]
- Whitehead, J.; Roy, J.; Hempel, S.; Rillig, M.C. Soil microbial communities shift along an urban gradient in Berlin, Germany. Front. Microbiol. 2022, 13, 972052. [Google Scholar] [CrossRef]
- Xie, T.; Wang, M.; Chen, W.; Uwizeyimana, H. Impacts of urbanization and landscape patterns on the accumulation of heavy metals in soils in residential areas in Beijing. J. Soils Sediments 2019, 19, 148–158. [Google Scholar] [CrossRef]
- Ning, D.; Yuan, M.; Wu, L.; Zhang, Y.; Guo, X.; Zhou, X.; Yang, Y.; Arkin, A.P.; Firestone, M.K.; Zhou, J. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nat. Commun. 2020, 11, 4717. [Google Scholar] [CrossRef] [PubMed]
- Philippot, L.; Griffiths, B.S.; Langenheder, S. Microbial community resilience across ecosystems and multiple disturbances. Microbiol. Mol. Biol. Rev. 2021, 85, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, P.; Batista, B.D.; Bazany, K.E.; Singh, B.K. Plant–microbiome interactions under a changing world: Responses, consequences and perspectives. New Phytol. 2022, 234, 1951–1959. [Google Scholar] [CrossRef]
- von Der Lippe, M.; Buchholz, S.; Hiller, A.; Seitz, B.; Kowarik, I. CityScapeLab Berlin: A research platform for untangling urbanization effects on biodiversity. Sustainability 2020, 12, 2565. [Google Scholar] [CrossRef]
- Yang, G.; Ryo, M.; Roy, J.; Lammel, D.R.; Ballhausen, M.-B.; Jing, X.; Zhu, X.; Rillig, M.C. Multiple anthropogenic pressures eliminate the effects of soil microbial diversity on ecosystem functions in experimental microcosms. Nat. Commun. 2022, 13, 4260. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef]
- Jonathan, A.P.; Kovats, R.S. Hotspots in climate change and human health. Health. Bmj 2002, 325, 1094–1098. [Google Scholar]
- Kemper, W.D.; Rosenau, R.C. Aggregate stability and size distribution. Methods Soil Anal. Part 1 Phys. Mineral. Methods 1986, 5, 425–442. [Google Scholar]
- Hallett. An introduction to soil water repellency. In Proceedings of the Eighth International Symposium on Adjuvants for Agrochemicals (ISAA), Atlanta, GA, USA, 6–9 August 2007; Gaskin, R.E., Ed.; International Society for Agrochemical Adjuvants: Columbus, OH, USA, 2007. [Google Scholar]
- Wilkinson, L. ggplot2: Elegant graphics for data analysis by WICKHAM, H. Biometric 2011, 67, 678–679. [Google Scholar] [CrossRef]
- Husson, O. Redox potential [Eh] and pH as drivers of soil/plant/microorganism systems: A transdisciplinary overview pointing to integrative opportunities for agronomy. Plant Soil 2013, 362, 389–417. [Google Scholar] [CrossRef]
- Vos, C.; Jaconi, A.; Jacobs, A.; Don, A. Hot regions of labile and stable soil organic carbon in Germany–Spatial variability and driving factors. Soil 2018, 4, 153–167. [Google Scholar] [CrossRef]
- Vos, C.; Jaconi, A.; Jacobs, A.; Don, A. Environmental risks and toxicity of surfactants: Overview of analysis, assessment, and remediation techniques. Environ. Sci. Pollut. Res. 2021, 28, 62085–62104. [Google Scholar]
- Rillig, M.C.; Kim, S.W.; Schäffer, A.; Sigmund, G.; Groh, K.J.; Wang, Z. About “controls” in pollution-ecology experiments in the Anthropocene. Environ. Sci. Technol. 2022, 56, 11928–11930. [Google Scholar] [CrossRef]
- Six, J.; Frey, S.D.; Thiet, R.K.; Batten, K.M. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci. Soc. Am. J. 2006, 70, 555–569. [Google Scholar] [CrossRef]
- Yang, J.-L.; Zhang, G.-L. Water repellency in Urban Soils and its Effects on the Quantity and Quality of Runoff. J. Soils Sediments 2011, 11, 751–761. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, C.; Luo, Y. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat. Commun. 2020, 11, 3072. [Google Scholar] [CrossRef]
- Pavao-Zuckerman, M.A.; Coleman, D.C. Decomposition of chestnut oak [Quercus prinus] leaves and nitrogen mineralization in an urban environment. Biol. Fertil. Soils 2005, 41, 343–349. [Google Scholar] [CrossRef]
- Pouyat, R.V.; McDonnell, M.J.; Pickett, S.T.A. Litter decomposition and nitrogen mineralization in oak stands along an urban-rural land use gradient. Urban Ecosyst. 1997, 1, 117–131. [Google Scholar] [CrossRef]
- Seaton, F.M.; Jones, D.L.; Creer, S.; George, P.B.; Smart, S.M.; Lebron, I.; Barrett, G.; Emmett, B.A.; Robinson, D.A. Plant and soil communities are associated with the response of soil water repellency to environmental stress. Sci. Total Environ. 2019, 687, 929–938. [Google Scholar] [CrossRef]
- Bekier, J.; Jamroz, E.; Walenczak-Bekier, K.; Uściła, M. Soil organic matter composition in urban soils: A study of Wrocław agglomeration, SW Poland. Sustainability 2023, 15, 2277. [Google Scholar] [CrossRef]
- Goldman, M.B.; Groffman, P.M.; Pouyat, R.V.; McDonnell, M.J.; Pickett, S.T. CH4 uptake and N availability in forest soils along an urban to rural gradient. Soil Biol. Biochem. 1995, 27, 281–286. [Google Scholar] [CrossRef]
- Yang, Y.; Campbell, C.; Clark, L.; Cameron, C.; Paterson, E. Microbial indicators of heavy metal contamination in urban and rural soils. Chemosphere 2006, 63, 1942–1952. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Chen, L.; Zhao, F.; Tang, J.; Bu, Q.; Wang, X.; Yang, L. Effects of Urban–Rural Environmental Gradient on Soil Microbial Community in Rapidly Urbanizing Area. Ecosyst. Health Sustain. 2023, 9, 0118. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meidl, P.; Lammel, D.R.; Nikolic, V.; Decker, M.; Bi, M.; Hampl, L.; Rillig, M.C. Combined Application of Multiple Global Change Factors Negatively Influences Key Soil Processes across an Urban Gradient in Berlin, Germany. Soil Syst. 2024, 8, 96. https://doi.org/10.3390/soilsystems8030096
Meidl P, Lammel DR, Nikolic V, Decker M, Bi M, Hampl L, Rillig MC. Combined Application of Multiple Global Change Factors Negatively Influences Key Soil Processes across an Urban Gradient in Berlin, Germany. Soil Systems. 2024; 8(3):96. https://doi.org/10.3390/soilsystems8030096
Chicago/Turabian StyleMeidl, Peter, Daniel R. Lammel, Vladan Nikolic, Marie Decker, Mohan Bi, Leo Hampl, and Matthias C. Rillig. 2024. "Combined Application of Multiple Global Change Factors Negatively Influences Key Soil Processes across an Urban Gradient in Berlin, Germany" Soil Systems 8, no. 3: 96. https://doi.org/10.3390/soilsystems8030096
APA StyleMeidl, P., Lammel, D. R., Nikolic, V., Decker, M., Bi, M., Hampl, L., & Rillig, M. C. (2024). Combined Application of Multiple Global Change Factors Negatively Influences Key Soil Processes across an Urban Gradient in Berlin, Germany. Soil Systems, 8(3), 96. https://doi.org/10.3390/soilsystems8030096