Predicting Soil Salinity Based on Soil/Water Extracts in a Semi-Arid Region of Morocco
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sample Collection and Electrical Conductivity Analyses
2.3. Statistical Analysis of Data
3. Results and Discussions
3.1. Soil Texture Salinity Characterizations
3.2. Relationship Between the ECe and the EC in S:W Extracts
3.3. Soil EC Models Compared to Those Used for the Sehb ElMasjoune Area of Morocco
3.4. Model Performance Comparison and Assessment
3.4.1. Linear Models
3.4.2. Logarithmic Transformation Models
3.4.3. Polynomial Models
3.5. The Development of an Automation Conversion Tool of the EC Ratio Method to ECe
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hopmans, J.W.; Qureshi, A.S.; Kisekka, I.; Munns, R.; Grattan, S.R.; Rengasamy, P.; Ben-Gal, A.; Assouline, S.; Javaux, M.; Minhas, P.S.; et al. Chapter One—Critical knowledge gaps and research priorities in global soil salinity. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2021; Volume 169, pp. 1–191. [Google Scholar]
- Suleymanov, A.; Gabbasova, I.; Komissarov, M.; Suleymanov, R.; Garipov, T.; Tuktarova, I.; Belan, L. Random Forest Modeling of Soil Properties in Saline Semi-Arid Areas. Agriculture 2023, 13, 976. [Google Scholar] [CrossRef]
- FAO. Global Map of Salt-Affected Soils GSASmap v1.0. Available online: https://openknowledge.fao.org/items/be52a217-7c1c-41c9-8e7c-c21751f92874 (accessed on 30 December 2024).
- Elmeknassi, M.; Elghali, A.; de Carvalho, H.W.P.; Laamrani, A.; Benzaazoua, M. A review of organic and inorganic amendments to treat saline-sodic soils: Emphasis on waste valorization for a circular economy approach. Sci. Total Environ. 2024, 921, 171087. [Google Scholar] [CrossRef] [PubMed]
- Shokri, N.; Hassani, A.; Sahimi, M. Multi-Scale Soil Salinization Dynamics From Global to Pore Scale: A Review. Rev. Geophys. 2024, 62, e2023RG000804. [Google Scholar] [CrossRef]
- Ahmed, M.; Tóth, Z.; Decsi, K. The Impact of Salinity on Crop Yields and the Confrontational Behavior of Transcriptional Regulators, Nanoparticles, and Antioxidant Defensive Mechanisms under Stressful Conditions: A Review. Int. J. Mol. Sci. 2024, 25, 2654. [Google Scholar] [CrossRef]
- Rath, K.M.; Fierer, N.; Murphy, D.V.; Rousk, J. Linking bacterial community composition to soil salinity along environmental gradients. ISME J. 2019, 13, 836–846. [Google Scholar] [CrossRef]
- Wichern, J.; Wichern, F.; Joergensen, R.G. Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils. Geoderma 2006, 137, 100–108. [Google Scholar] [CrossRef]
- Liu, L.; Wu, Y.; Yin, M.; Ma, X.; Yu, X.; Guo, X.; Du, N.; Eller, F.; Guo, W. Soil salinity, not plant genotype or geographical distance, shapes soil microbial community of a reed wetland at a fine scale in the Yellow River Delta. Sci. Total Environ. 2023, 856, 159136. [Google Scholar] [CrossRef]
- Gharaibeh, M.A.; Albalasmeh, A.A.; El Hanandeh, A. Estimation of saturated paste electrical conductivity using three modelling approaches: Traditional dilution extracts; saturation percentage and artificial neural networks. Catena 2021, 200, 105141. [Google Scholar] [CrossRef]
- Spiteri, K.; Sacco, A.T. Estimating the electrical conductivity of a saturated soil paste extract (ECe) from 1:1(EC1:1), 1:2(EC1:2) and 1:5(EC1:5) soil:water suspension ratios, in calcareous soils from the Mediterranean Islands of Malta. Commun. Soil Sci. Plant Anal. 2024, 55, 1302–1312. [Google Scholar] [CrossRef]
- Ouzemou, J.; El Harti, A.; EL Moujahid, A.; Bouch, N.; El Ouazzani, R.; Lhissou, R.; Bachaoui, E.M. Mapping crop based on phenological characteristics using time-series NDVI of operational land imager data in Tadla irrigated perimeter, Morocco. In Proceedings of the Remote Sensing for Agriculture, Ecosystems, and Hydrology XVII, Toulouse, France, 22–24 September 2015; SPIE: Paris, France, 2015; Volume 9637, p. 96372G. [Google Scholar]
- Khaled, L.B.; Ouarraqi, E.M.; Zid, E. Impact du NaCl sur la croissance et la nutrition de la variété de blé dur Massa cultivée en milieu hydroponique. Acta Bot. Gall. 2007, 154, 101–116. [Google Scholar] [CrossRef]
- Qadir, M.; Quillérou, E.; Nangia, V.; Murtaza, G.; Singh, M.; Thomas, R.J.; Drechsel, P.; Noble, A.D. Economics of salt-induced land degradation and restoration. Nat. Resour. Forum. 2014, 38, 282–295. [Google Scholar] [CrossRef]
- Farissi, M.; Ghoulam, C.; Bouizgaren, A. Effet de la Salinité sur la Production et la Qualité Fourragère de Populations de Luzerne dans la Région de Marrakech (Maroc); AFPF: Paris, France, 2014; Volume 219. [Google Scholar]
- El hasini, S.; Halima, O.I.; El. Azzouzi, M.; Douaik, A.; Azim, K.; Zouahri, A. Organic and inorganic remediation of soils affected by salinity in the Sebkha of Sed El Mesjoune—Marrakech (Morocco). Soil Tillage Res. 2019, 193, 153–160. [Google Scholar] [CrossRef]
- El Hachimi, J.; El Harti, A.; Lhissou, R.; Ouzemou, J.E.; Chakouri, M.; Jellouli, A. Combination of Sentinel-2 Satellite Images and Meteorological Data for Crop Water Requirements Estimation in Intensive Agriculture. Agriculture 2022, 12, 1168. [Google Scholar] [CrossRef]
- Herrero, J.; Weindorf, D.C.; Castañeda, C. Two fixed ratio dilutions for soil salinity monitoring in hypersaline wetlands. PLoS ONE 2015, 10, e0126493. [Google Scholar] [CrossRef] [PubMed]
- Kargas, G.; Chatzigiakoumis, I.; Kollias, A.; Spiliotis, D.; Kerkides, P. An Investigation of the Relationship between the Electrical Conductivity of the Soil Saturated Paste Extract ECe with the Respective Values of the Mass Soil/Water Ratios 1:1 and 1:5 (EC1:1 and EC1:5). Proceedings 2018, 2, 661. [Google Scholar] [CrossRef]
- Hogg, T.J.; Henry, J.L. Comparison Of 1:1 and 1:2 Suspensions And Extracts With The Saturation Extract In Estimating Salinity In Saskatchewan Soils. Can. J. Soil Sci. 1984, 64, 699–704. [Google Scholar] [CrossRef]
- Klaustermeier, A.; Tomlinson, H.; Daigh, A.L.M.; Limb, R.; DeSutter, T.; Sedivec, K. Comparison of soil-to-water suspension ratios for determining electrical conductivity of oil-productionwater-contaminated soils. Can. J. Soil Sci. 2016, 96, 233–243. [Google Scholar] [CrossRef]
- Leksungnoen, N.; Andriyas, T.; Andriyas, S. ECe prediction from EC1:5 in inland salt-affected soils collected from Khorat and Sakhon Nakhon basins, Thailand. Commun. Soil Sci. Plant Anal. 2018, 49, 2627–2637. [Google Scholar] [CrossRef]
- Prokopyeva, K.O.; Konyushkova, M. V Harmonization of the Results of Soil Salinity Chemical Study. Arid Ecosyst. 2023, 13, 257–266. [Google Scholar] [CrossRef]
- Aboukila, E.F.; Norton, J.B. Estimation of saturated soil paste salinity from soil-water extracts. Soil Sci. 2017, 182, 107–113. [Google Scholar] [CrossRef]
- Khorsandi, F.; Yazdi, F.A. Estimation of saturated paste extracts’ electrical conductivity from 1:5 soil/water suspension and gypsum. Commun. Soil Sci. Plant Anal. 2011, 42, 315–321. [Google Scholar] [CrossRef]
- Sonmez, S.; Buyuktas, D.; Okturen, F.; Citak, S. Assessment of different soil to water ratios (1:1, 1:2.5, 1:5) in soil salinity studies. Geoderma 2008, 144, 361–369. [Google Scholar] [CrossRef]
- Zhang, H.; Schroder, J.L.; Pittman, J.J.; Wang, J.J.; Payton, M.E. Soil Salinity Using Saturated Paste and 1:1 Soil to Water Extracts. Soil Sci. Soc. Am. J. 2005, 69, 1146–1151. [Google Scholar] [CrossRef]
- Endo, T.; Abdalla, M.A.; Elkarim, A.K.H.A.; Toyoda, M.; Yamamoto, S.; Yamanaka, N. Simplified Evaluation of Salt Affected Soils Using 1:5 Soil–Water Extract. Commun. Soil Sci. Plant Anal. 2021, 52, 2533–2549. [Google Scholar] [CrossRef]
- El Mokhtar, M.; Fakir, Y.; El Mandour, A.; Benavente, J.; Meyer, H.; Stigter, T. Salinisation des eaux souterraines aux alentours des sebkhas de Sad Al Majnoun et Zima (plaine de la Bahira, Maroc). Sci. Chang. Planetaires—Secher. 2012, 23, 48–56. [Google Scholar] [CrossRef]
- Zine, H.; Hakkou, R.; Elmansour, A.; Elgadi, S.; Ouhammou, A.; Benzaazoua, M. Native plant diversity for ecological reclamation in Moroccan open-pit phosphate mines. Biodivers. Data J. 2023, 11, e104592. [Google Scholar] [CrossRef]
- El Hachimi, J.; El Harti, A.; Ouzemou, J.-E.; Lhissou, R.; Chakouri, M.; Jellouli, A. Assessment of the benefit of a single sentinel-2 satellite image to small crop parcels mapping. Geocarto Int. 2022, 37, 7398–7414. [Google Scholar] [CrossRef]
- El-Azhari, A.; Karaoui, I.; Ait Brahim, Y.; Azhar, M.; Chehbouni, A.; Bouchaou, L. Analyses of groundwater level in a data-scarce region based on assessed precipitation products and machine learning. Groundw. Sustain. Dev. 2024, 26, 101299. [Google Scholar] [CrossRef]
- Rhoades, J.D. Determining soil salinity from measurements of electrical conductivity. Commun. Soil Sci. Plant Anal. 1990, 21, 1887–1926. [Google Scholar] [CrossRef]
- Hossain, M.S.; Rahman, G.K.M.M.; Solaiman, A.R.M.; Alam, M.S.; Rahman, M.M.; Mia, M.A.B. Estimating Electrical Conductivity for Soil Salinity Monitoring Using Various Soil-Water Ratios Depending on Soil Texture. Commun. Soil Sci. Plant Anal. 2020, 51, 635–644. [Google Scholar] [CrossRef]
- FAO USDA Textural Classes of Soils. Available online: https://www.fao.org/fishery/docs/CDrom/FAO_Training/FAO_Training/General/x6706e/x6706e06.htm (accessed on 22 July 2024).
- Aboukila, E.; Abdelaty, E. Assessment of Saturated Soil Paste Salinity from 1:2.5 and 1:5 Soil-Water Extracts for Coarse Textured Soils. Alex. Sci. Exch. J. 2017, 38, 722–732. [Google Scholar] [CrossRef]
- He, Y.; De Sutter, T.; Hopkins, D.; Jia, X.; Wysocki, D.A. Predicting ECe of the saturated paste extract from value of EC1:5. Can. J. Soil Sci. 2013, 93, 585–594. [Google Scholar] [CrossRef]
- Slavich, P.G.; Petterson, G.H. Estimating the electrical conductivity of saturated paste extracts from 1:5 soil: Water suspensions and texture. Aust. J. Soil Res. 1993, 31, 73. [Google Scholar] [CrossRef]
- Ozcan, H.; Ekinci, H.; Yuksel, O. Comparison of four soil salinity extraction methods. In Proceedings of the 18th International Soil Meeting on Soil Sustaining Life on Earth, Managing Soil and Technology, Sanlıurfa, Turkey, 22–26 May 2006; pp. 697–703. [Google Scholar]
- Visconti, F.; Miguel De Paz, J. Prediction of the soil saturated paste extract salinity from extractable ions, cation exchange capacity, and anion exclusion. Soil Res. 2012, 50, 536–550. [Google Scholar] [CrossRef]
- Kargas, G.; Chatzigiakoumis, I.; Kollias, A.; Spiliotis, D.; Massas, I.; Kerkides, P. Soil salinity assessment using saturated paste and mass soil:water 1:1 and 1:5 ratios extracts. Water 2018, 10, 1589. [Google Scholar] [CrossRef]
- Chi, C.-M.; Wang, Z.-C. Characterizing Salt-Affected Soils of Songnen Plain Using Saturated Paste and 1:5 Soil-to-Water Extraction Methods. Arid Land Research and Management 2010, 24, 1–11. [Google Scholar] [CrossRef]
- Park, H.-J.; Yang, H.-I.; Park, S.-I.; Seo, B.; Lee, D.-H.; Kim, H.-Y.; Choi, W.-J. Assessment of Electrical Conductivity of Saturated Soil Paste from 1:5 Soil-Water Extracts for Reclaimed Tideland Soils in South-Western Coastal Area of Korea. J. Korean Soc. Environ. Agric. 2019, 38, 69–75. [Google Scholar] [CrossRef]
Split | S:W Ratio | No of Validation Samples |
---|---|---|
AllS | 1:1 | 22 |
1:2 | 22 | |
1:5 | 25 | |
STG | 1:1 | 21 |
1:2 | 21 | |
1:5 | 24 | |
ST | 1:1 | 18 |
1:2 | 18 | |
1:5 | 20 |
Soil Texture and Soil Texture Groups | ECe | EC1:1 | EC1:2 | EC1:5 | ||||
---|---|---|---|---|---|---|---|---|
NS * | % of NS | NS | % of NS | NS | % of NS | NS | % of NS | |
Clay (C) | 28 | 22 | 20 | 20 | 20 | 20 | 28 | 22 |
Clay Loam (CL) | 40 | 32 | 34 | 33 | 34 | 33 | 40 | 32 |
Loam (L) | 27 | 22 | 21 | 21 | 21 | 21 | 27 | 22 |
Sandy Clay Loam (SCL) | 4 | 3 | 2 | 2 | 2 | 2 | 4 | 3 |
Sandy Loam (SL) | 3 | 2 | 3 | 3 | 3 | 3 | 3 | 2 |
Silt Loam (ZL) | 19 | 15 | 17 | 17 | 17 | 17 | 19 | 15 |
Silty Clay Loam (ZCL) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
Finely Textured Soil (FTS) | 72 | 58 | 58 | 57 | 58 | 57 | 72 | 58 |
Medium-Textured Soil (MTS) | 50 | 40 | 40 | 40 | 40 | 40 | 50 | 40 |
Coarsely Textured Soil (CTS) | 3 | 2 | 3 | 3 | 3 | 3 | 3 | 2 |
* ECe (dS/m) | * EC1:1 (dS/m) | * EC1:2 (dS/m) | * EC1:5 (dS/m) | |
---|---|---|---|---|
Count | 125 | 101 | 101 | 125 |
Mean | 87 | 34 | 28 | 11 |
Std | 70 | 30 | 27 | 12 |
Min | 0.5 | 0.23 | 0.14 | 0.07 |
Q1 | 10 | 13 | 8 | 2 |
Median | 79 | 29 | 22 | 10 |
Q3 | 131 | 44 | 33 | 13 |
Max | 235 | 131 | 100 | 47 |
AllS 1 | STG 2 | ST 3 | ||||||
---|---|---|---|---|---|---|---|---|
FTS 4 | MTS 5 | Clay | Clay Loam | Loam | Silty Loam | |||
Linear (L) | EC1:5 | y = 5.2884 × EC1:5 + 24.891 R2 = 0.85 | y = 5.3486 × EC1:5 + 29.076 R2 = 0.78 | y = 5.2673 × EC1:5 + 18.513 R2 = 0.90 | y = 5.1491 × EC1:5 + 21.939 R2 = 0.82 | y = 8.7411 × EC1:5 + 7.5814 R2 = 0.92 | y = 9.2169 × EC1:5 + 2.7519 R2 = 0.90 | y = 4.5641 × EC1:5 + 38.128 R2 = 0.88 |
EC1:2 | y = 2.4634 × EC1:2 + 23.927 R2 = 0.88 | y = 2.5051 × EC1:2 + 29.348 R2 = 0.77 | y = 2.4543 × EC1:2 + 14.562 R2 = 0.95 | y = 2.5059 × EC1:2 + 18.827 R2 = 0.81 | y = 3.7228 × EC1:2 + 12.16 R2 = 0.85 | y = 4.1179 × EC1:2 + 2.2914 R2 = 0.93 | y = 2.0411 × EC1:2 + 45.074 R2 = 0.93 | |
EC1:1 | y = 2.2602 × EC1:1 + 17.012 R2 = 0.90 | y = 2.4286 × EC1:1 + 17.279 R2 = 0.83 | y = 2.2009 × EC1:1 + 10.576 R2 = 0.95 | y = 2.3942 × EC1:1 + 10.899 R2 = 0.87 | y = 2.8176 × EC1:1 + 12.006 R2 = 0.79 | y = 3.3068 × EC1:1 + 1.0312 R2 = 0.95 | y = 1.8792 × EC1:1 + 36.906 R2 = 0.88 | |
Log-Transformation (LT) | EC1:5 | y = 0.9439 × Log(EC1:5) + 0.960 R2 = 0.95 | y = 0.9104 × Log(EC1:5) + 1.0154 R2 = 0.96 | y = 0.9525 × Log(EC1:5) + 0.9116 R2 = 0.95 | y = 0.8606 × Log(EC1:5) + 1.0105 R2 = 0.95 | y = 0.9521 × Log(EC1:5) + 1.0296 R2 = 0.96 | y = 1.0142 × Log(EC1:5) + 0.9572 R2 = 0.93 | y = 1.1379 × Log(EC1:5) + 0.59 R2 = 0.88 |
EC1:2 | y = 0.9619 × Log(EC1:2) + 0.6113 R2 = 0.98 | y = 0.9718 × Log(EC1:2) + 0.609 R2 = 0.96 | y = 0.9504 × Log(EC1:2) + 0.6034 R2 = 0.99 | y = 0.8938 × Log(EC1:2) + 0.6514 R2 = 0.75 | y = 1.0269 × Log(EC1:2) + 0.5996 R2 = 0.98 | y = 1.0674 × Log(EC1:2) + 0.6342 R2 = 0.99 | y = 0.8053 × Log(EC1:2) + 0.8085 R2 = 0.93 | |
EC1:1 | y = 1.0118 × Log(EC1:1) + 0.441 R2 = 0.99 | y = 1.0272 × Log(EC1:1) + 0.4327 R2 = 0.97 | y = 0.9955 × Log(EC1:1) + 0.4346 R2 = 0.99 | y = 0.981 × Log(EC1:1) + 0.4615 R2 = 0.86 | y = 1.0558 × Log(EC1:1) + 0.4274 R2 = 0.98 | y = 1.09 × Log(EC1:1) + 0.4484 R2 = 0.99 | y = 0.9353 × Log(EC1:1) + 0.5066 R2 = 0.95 | |
Polynomial (P) | EC1:5 | y = −0.1227 × (EC1:5)2 + 10.36 × EC1:5 + 0.9916 R2 = 0.94 | y = −0.1278 × (EC1:5)2 + 10.246 × EC1:5 + 1.5043 R2 = 0.89 | y = −0.1348 × (EC1:5)2 + 11.014 × EC1:5 + 0.5157 R2 = 0.97 | y = −0.0736 × (EC1:5)2 + 8.052 × EC1:5 + 4.331 R2 = 0.85 | y = −0.2874 × (EC1:5)2 + 13.36 × EC1:5 − 1.4652 R2 = 0.95 | y = −0.6149 × (EC1:5)2 + 17.427 × EC1:5 − 2.8076 R2 = 0.97 | y = −0.1523 × (EC1:5)2 + 12.34 × EC1:5 − 23.396 R2 = 0.98 |
EC1:2 | y = −0.023 × (EC1:2)2 + 4.5092 × EC1:2 + 1.6773 R2 = 0.94 | y = −0.0257 × (EC1:2)2 + 4.6139 × EC1:2 + 0.1577 R2 = 0.84 | y = −0.0257 × (EC1:2)2 + 4.7934 × EC1:2 + 1.6606 R2 = 0.99 | y = −0.0369 × (EC1:2)2 + 6.0741 × EC1:2 − 43.427 R2 = 0.83 | y = −0.0761 × (EC1:2)2 + 6.6502 × EC1:2 − 4.677 R2 = 0.91 | y = −0.1299 × (EC1:2)2 + 7.7707 × EC1:2 − 1.7488 R2 = 0.99 | y = −0.0249 × (EC1:2)2 + 4.7535 × EC1:2 − 1.0267 R2 = 0.99 | |
EC1:1 | y = −0.0135 × (EC1:1)2 + 3.6088 × EC1:1 − 0.9008 R2 = 0.94 | y = −0.014 × (EC1:1)2 + 3.6093 × EC1:1 − 0.9266 R2 = 0.85 | y = −0.0145 × (EC1:1)2 + 3.7243 × EC1:1 − 1.0792 R2 = 0.99 | y = −0.0281 × (EC1:1)2 + 5.3768 × EC1:1 − 48.62 R2 = 0.91 | y = −0.0415 × (EC1:1)2 + 4.8592 × EC1:1 − 2.8368 R2 = 0.84 | y = −0.0579 × (EC1:1)2 + 5.2633 × EC1:1 − 1.8258 R2 = 0.98 | y = −0.0183 × (EC1:1)2 + 4.3581 × EC1:1 − 25.237 R2 = 0.97 |
Reference | Regression Equation | EC Range (dS/m) | Country/Region |
---|---|---|---|
Herrero and Pérez-Coveta, 2005 [18] | ECe = 7.63 × EC1:5 − 0.51 | 2.9–4.6 | Spain/Ebro basin |
Ozcan et al., 2006 [39] | ECe = 1.93 × EC1:1 − 0.57 ECe = 5.97 × EC1:5 − 1.17 | - | Turkey |
Sonmez et al. 2008 [26] | ECe = 8.22 × EC1:5 − 0.33 ECe = 7.58 × EC1:5 + 0.06 ECe = 7.36 × EC1:5 − 0.24 | 0.22–17.68 | Turkey/Antalya |
ECe = 3.68 × EC1:2.5 + 0.22 ECe = 3.84 × EC1:2.5 + 0.35 ECe = 4.34 × EC1:2.5 + 0.17 | |||
ECe = 2.03 × EC1:1 − 0.41 ECe = 2.15 × EC1:1 − 0.44 ECe = 2.72 × EC1:1 − 1.27 | |||
Visconti and Miguel De Paz, 2012 [40] | ECe = 5.7 × EC1:5 − 0.2 | 0.3–3.3 | Spain/Southeast |
Khorsandi and Yazdi 2011 [25] | ECe = 5.37 × EC1:5 + 0.57 ECe = 5.60 × EC1:5 − 4.37 | 0.48–171.3 | Iran/Yazd |
He et al., 2013 [37] | ECe = 2.86 × EC1:5 + 2.96 | 0.0–17.0 | USA/North Dakota |
Klaustermeier et al., 2016 [21] | LogECe = 1.2562 × Log(EC1:5) + 0.7659 | 0.4–126.0 | USA/North Dakota |
Aboukila and Norton, 2017 [24] | ECe = 5.04 × EC1:5 + 0.37 | 0.62–10.3 | Egypt/Beheira |
Aboukila and Abdelaty 2017 [36] | ECe = 7.46 × EC1:5 + 0.43 | 0.29–18.35 | Egypt/Beheira |
Leksungnoen et al., 2018 [22] | ECe = 5.99 × EC1:5 + 0.62 | 12.4–80.7 | Thailand/Khorat and Sakhon basins |
Kargas et al., 2018 [19] | ECe = 6.53 × EC1:5 − 0.108 ECe = 1.83 × EC1:1 + 0.117 | 0.47–37.5 | Greece/multiple locations |
Kargas et al., 2020 [41] | ECe = 6.58 × EC1:5 | 0.61–25.9 | Greece/three locations |
USDA (1954) [35] | ECe = 3 × EC1:1 | - | USA |
Hogg and Henry 1984 [20] | ECe = 1.56 × EC1:1 − 0.06 | 0.10–42.01 | Canada/Saskatoon |
Spiteri and Sacco in 2024 [11] | ECe = 100.972×Log (EC1:2)+0.515 ECe = 101.048×Log (EC1:2)+0.456 | 0.73–26.73 | Islands of Malta |
Zhang et al. 2005 [27] | ECe = 1.79 × EC1:1 + 1.46 | 0.165–108 | USA/Oklahoma and Texas |
Chi and Wang, 2010 [42] | ECe = 11.68 × EC1:5 − 5.77 ECe = 11.04 × EC1:5 − 2.41 ECe = 11.74 × EC1:5 − 6.15 | 1–227.0 | China/Songnen |
Park et al. 2019 [43] | ECe = 8.70 × EC1:5 | - | Republic of Korea/south-western |
Model | Reference | Equation | R2 | NSE | RMSE (dS/m) | Soil Propriety | EC Range (dS/m) |
---|---|---|---|---|---|---|---|
SPITERI-11:2 | Spiteri and Sacco (2024) [11] | ECe = 101.048×Log (EC1:2)+0.456 | 0.93 | 0.90 | 24.54 | Fine soil | 0.73–26.73 |
SPITERI-21:2 | Spiteri and Sacco (2024) [11] | ECe = 100.972×Log (EC1:2)+0.515 | 0.91 | 0.86 | 29.64 | All soil | |
Aboukila1:5 | Aboukila and Norton (2017) [24] | ECe = 5.04 × EC1:5 + 0.37 | 0.91 | 0.82 | 33.44 | Fine soil | 0.62–10.3 |
Kargas1:5 | Kargas et al. (2018) [41] | ECe = 6.53 × EC1:5 − 0.108 | 0.91 | 0.86 | 29.68 | Fine soil | 0.47–37.5 |
Khorsandi1:5 | Khorsandi and Yazdi (2011) [25] | ECe = 5.37 × EC1:5 − 0.57 | 0.91 | 0.86 | 29.94 | All soil | 0.48–171 |
Ozcan1:5 | Ozcan et al. (2006) [39] | ECe = 5.97 × EC1:5 − 1.17 | 0.91 | 0.87 | 27.98 | All soil | - |
Visconti1:5 | Visconti Reluy and De Paz (2012) [40] | ECe = 5.7 × EC1:5 − 1.20 | 0.91 | 0.87 | 28.36 | All soil | 0.3–3.3 |
P-ST1:5 | This study | See Table 4 | 0.98 | 0.98 | 10.64 | Fine and medium soil | 0.52–235.20 |
P-ST1:2 | 10.71 | ||||||
Hybrid-ST1:2 | 10.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouzemou, J.-E.; Laamrani, A.; El Battay, A.; Whalen, J.K. Predicting Soil Salinity Based on Soil/Water Extracts in a Semi-Arid Region of Morocco. Soil Syst. 2025, 9, 3. https://doi.org/10.3390/soilsystems9010003
Ouzemou J-E, Laamrani A, El Battay A, Whalen JK. Predicting Soil Salinity Based on Soil/Water Extracts in a Semi-Arid Region of Morocco. Soil Systems. 2025; 9(1):3. https://doi.org/10.3390/soilsystems9010003
Chicago/Turabian StyleOuzemou, Jamal-Eddine, Ahmed Laamrani, Ali El Battay, and Joann K. Whalen. 2025. "Predicting Soil Salinity Based on Soil/Water Extracts in a Semi-Arid Region of Morocco" Soil Systems 9, no. 1: 3. https://doi.org/10.3390/soilsystems9010003
APA StyleOuzemou, J.-E., Laamrani, A., El Battay, A., & Whalen, J. K. (2025). Predicting Soil Salinity Based on Soil/Water Extracts in a Semi-Arid Region of Morocco. Soil Systems, 9(1), 3. https://doi.org/10.3390/soilsystems9010003