Remediation of Heavy Metals Using Biomass-Based Adsorbents: Adsorption Kinetics and Isotherm Models
Abstract
:1. Introduction
2. Heavy Metals Remediation Techniques
2.1. Chemical Precipitation
2.2. Coagulation and Flocculation
2.3. Ion Flotation
2.4. Electrochemical Process
2.5. Membrane Filtration
2.6. Adsorption
2.7. Innovative Technologies for the Removal of Heavy Metals from Industrial Effluent
2.7.1. Hydrogels
2.7.2. Multifunctional Nanomaterials
2.7.3. Biosorption
- Entrapment: This technique is relatively cheap and uses reagents such as polyurethane, polysulfone, and so on. However, there is mass transfer resistance [62].
- Crosslinking: This technique provides increased strength. The disadvantages are that there is a loss of activity, and it is not universal. Examples of reagents are formaldehyde and nitro [62].
- Encapsulation: This technique prevents biosorbents leakage and had higher catalyst densities. However, it produces fragile capsules and mass transfer resistance. It makes use of reagents such as cellulose, gelatine, and polyvinyl acetate [63].
- Adsorption: This technique is cheap and simple and encourages higher biomass loading. However, there are risks of unstable binding and possible leakage of biosorbents. Examples of biosorbents include active charcoal, carbon nanotubes, and ceramics [64,65,66,67,68]. Table 1 shows the advantages and limitation of several heavy metal remediation techniques.
3. Heavy Metal Removal Using Biomass-Based Adsorbent
3.1. Overview of Agricultural Waste Adsorbent (AWB)
Adsorbent–Adsorbate Interaction
4. Adsorption Kinetics Models
- Equilibrium conditions: Many isotherm models assume that the biosorption process reaches equilibrium, meaning that the amount of heavy metal adsorbed onto the adsorbent no longer changes with time.
- Homogeneous adsorption surface: Many isotherm models assume that the adsorption surface of the biosorbent is homogeneous, meaning that all active sites on the adsorbent have the same properties.
- First-order reaction kinetics: Some kinetic models assume that the adsorption process follows first-order reaction kinetics, meaning that the rate of adsorption is directly proportional to the concentration of the heavy metal.
- Pseudo-second-order kinetics: Other kinetic models assume that the adsorption process follows pseudo-second-order kinetics, meaning that the rate of adsorption is proportional to the square of the concentration of the heavy metal.
- Langmuir isotherm: The Langmuir isotherm model assumes that the adsorption occurs on a homogeneous surface with a fixed number of active sites that have the same adsorption energy.
- Freundlich isotherm: The Freundlich isotherm model assumes that the adsorption occurs on a heterogeneous surface, meaning that the active sites have different adsorption energies.
- BET isotherm: The BET isotherm model assumes that the adsorbent surface consists of multiple layers of adsorption sites, and that the adsorption energy decreases with increasing coverage of the surface.
4.1. Pseudo-First Order Lagergren Model
4.2. Lagergren Pseudo Second-Order-Model
4.3. Intraparticle Diffusion Model
4.4. The Avrami Kinetic Model
4.5. The Bangham Kinetic Model
4.6. The Boyd Kinetic Model
4.7. Elovich Kinetic Model
5. Adsorption Isotherm Models
6. Reusability of Biomass-Based Adsorbent
7. Conclusions, Challenges and Perspectives
- (1)
- It is important to develop and improve a technique for carbonizing agricultural waste to encourage the commercialization of biomass-based adsorbents.
- (2)
- The advancement of extremely effective green modifying substances and processes for use in the biological sorption process is also necessary.
- (3)
- Possible future investigations should be expanded to incorporate the use of biomass-based adsorbents to address engineering problems on a pollution scale.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Omoarukhe, F.O.; Epelle, E.I.; Ogbaga, C.C.; Okolie, J.A. Stochastic Economic Evaluation of Different Production Pathways for Renewable Propylene Glycol Production via Catalytic Hydrogenolysis of Glycerol. React. Chem. Eng. 2022, 8, 184–198. [Google Scholar] [CrossRef]
- Ali, M.M.; Ali, M.L.; Islam, M.S.; Rahman, M.Z. Preliminary Assessment of Heavy Metals in Water and Sediment of Karnaphuli River, Bangladesh. Envion. Nanotechnol. Monit. Manag. 2016, 5, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Choudhry, A.; Sharma, A.; Khan, T.A.; Chaudhry, S.A. Flax Seeds Based Magnetic Hybrid Nanocomposite: An Advance and Sustainable Material for Water Cleansing. J. Water Process. Eng. 2021, 42, 102150. [Google Scholar] [CrossRef]
- Huang, L.; Cheng, J.; Zhang, H.; Wang, Z.; Benettayeb, A.; Seihoub, F.Z.; Pal, P.; Ghosh, S.; Usman, M.; Chia, C.H.; et al. Chitosan Nanoparticles as Potential Nano-Sorbent for Removal of Toxic Environmental Pollutants. Nanomaterials 2023, 13, 447. [Google Scholar] [CrossRef]
- Benettayeb, A.; Ghosh, S.; Usman, M.; Seihoub, F.Z.; Sohoo, I.; Chia, C.H.; Sillanpää, M. Some Well-Known Alginate and Chitosan Modifications Used in Adsorption: A Review. Water 2022, 14, 1353. [Google Scholar] [CrossRef]
- Nibali, L.; Buti, J.; Barbato, L.; Cairo, F.; Graziani, F.; Jepsen, S. Adjunctive Effect of Systemic Antibiotics in Regenerative/Reconstructive Periodontal Surgery—A Systematic Review with Meta-Analysis. Antibiotics 2022, 11, 8. [Google Scholar] [CrossRef]
- Ouyang, D.; Zhuo, Y.; Hu, L.; Zeng, Q.; Hu, Y.; He, Z. Research on the Adsorption Behavior of Heavy Metal Ions by Porous Material Prepared with Silicate Tailings. Minerals 2019, 9, 291. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.S.; Gayathri, R.; Rathi, B.S. A Review on Adsorptive Separation of Toxic Metals from Aquatic System Using Biochar Produced from Agro-Waste. Chemosphere 2021, 285, 131438. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, Y.; Zeng, G.; Liu, S.; Que, W.; Li, J.; Li, M.; Wen, J. Adsorption of 17Β-Estradiol by Graphene Oxide: Effect of Heteroaggregation with Inorganic Nanoparticles. Chem. Eng. J. 2018, 343, 371–378. [Google Scholar] [CrossRef]
- Ahsan, M.A.; Islam, M.T.; Hernandez, C.; Castro, E.; Katla, S.K.; Kim, H.; Lin, Y.; Curry, M.L.; Gardea-Torresdey, J.; Noveron, J.C. Biomass Conversion of Saw Dust to a Functionalized Carbonaceous Materials for the Removal of Tetracycline, Sulfamethoxazole and Bisphenol A from Water. J. Envion. Chem. Eng. 2018, 6, 4329–4338. [Google Scholar] [CrossRef]
- Salleh, M.A.M.; Mahmoud, D.K.; Karim, W.A.W.A.; Idris, A. Cationic and Anionic Dye Adsorption by Agricultural Solid Wastes: A Comprehensive Review. Desalination 2011, 280, 1–13. [Google Scholar] [CrossRef]
- Liu, X.; Steele, J.C.; Meng, X.Z. Usage, Residue, and Human Health Risk of Antibiotics in Chinese Aquaculture: A Review. Environ. Pollut. 2017, 223, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Yahya, M.A.; Al-Qodah, Z.; Ngah, C.W.Z. Agricultural Bio-Waste Materials as Potential Sustainable Precursors Used for Activated Carbon Production: A Review. Renew. Sustain. Energy Rev. 2015, 46, 218–235. [Google Scholar] [CrossRef]
- Yousafzai, A.M.; Ullah, F.; Bari, F.; Raziq, S.; Riaz, M.; Khan, K.; Nishan, U.; Sthanadar, I.A.; Shaheen, B.; Shaheen, M.; et al. Bioaccumulation of Some Heavy Metals: Analysis and Comparison of Cyprinus Carpio and Labeo Rohita from Sardaryab, Khyber Pakhtunkhwa. BioMed Res. Int. 2017, 2017, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benjelloun, M.; Miyah, Y.; Akdemir Evrendilek, G.; Zerrouq, F.; Lairini, S. Recent Advances in Adsorption Kinetic Models: Their Application to Dye Types. Arab. J. Chem. 2021, 14, 103031. [Google Scholar] [CrossRef]
- Kumar, A.; Gupta, H. Activated Carbon from Sawdust for Naphthalene Removal from Contaminated Water. Envion. Technol. Innov. 2020, 20, 101080. [Google Scholar] [CrossRef]
- Gupta, G.K.; Mondal, M.K. Mechanism of Cr(VI) Uptake onto Sagwan Sawdust Derived Biochar and Statistical Optimization via Response Surface Methodology. Biomass Convers. Biorefin. 2020, 13, 709–725. [Google Scholar] [CrossRef]
- Mostafapour, F.K.; Mahvi, A.H.; Khatibi, A.D.; Saloot, M.K.; Mohammadzadeh, N.; Balarak, D. Adsorption of Lead(II) Using Bioadsorbent Prepared from Immobilized Gracilaria Corticata Algae: Thermodynamics, Kinetics and Isotherm Analysis. Desalination Water Treat. 2022, 265, 103–113. [Google Scholar] [CrossRef]
- Mahvi, A.H.; Balarak, D.; Bazrafshan, E. Remarkable Reusability of Magnetic Fe3O4-Graphene Oxide Composite: A Highly Effective Adsorbent for Cr(VI) Ions. Int. J. Environ. Anal. Chem. 2021, 103, 1910250. [Google Scholar] [CrossRef]
- Bazrafshan, E.; Sobhanikia, M.; Mostafapour, F.K.; Kamani, H.; Balarak, D. Global Nest Chromium Biosorption from Aqueous Environments by Mucilaginous Seeds of Cydonia Oblonga: Kinetic and Thermodynamic Studies. Glob. Nest J. 2017, 19, 269–277. [Google Scholar]
- Crini, G. Recent Developments in Polysaccharide-Based Materials Used as Adsorbents in Wastewater Treatment. Prog. Polym. Sci. 2005, 30, 38–70. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, W.; Duan, A.; Zeng, G.; Huang, D.; Lai, C.; Tan, X.; Cheng, M.; Wang, R.; Zhou, C.; et al. Adsorption Behavior of Engineered Carbons and Carbon Nanomaterials for Metal Endocrine Disruptors: Experiments and Theoretical Calculation. Chemosphere 2019, 222, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Bello, O.S.; Moshood, M.A.; Ewetumo, B.A.; Afolabi, I.C. Ibuprofen Removal Using Coconut Husk Activated Biomass. Chem. Data Collect. 2020, 29, 100533. [Google Scholar] [CrossRef]
- Pehlivan, E.; Altun, T.; Cetin, S.; Iqbal Bhanger, M. Lead Sorption by Waste Biomass of Hazelnut and Almond Shell. J. Hazard. Mater. 2009, 167, 1203–1208. [Google Scholar] [CrossRef]
- Jiao, G.J.; Ma, J.; Li, Y.; Jin, D.; Ali, Z.; Zhou, J.; Sun, R. Recent Advances and Challenges on Removal and Recycling of Phosphate from Wastewater Using Biomass-Derived Adsorbents. Chemosphere 2021, 278, 130377. [Google Scholar] [CrossRef]
- Sher, F.; Iqbal, S.Z.; Albazzaz, S.; Ali, U.; Mortari, D.A.; Rashid, T. Development of Biomass Derived Highly Porous Fast Adsorbents for Post-Combustion CO2 Capture. Fuel 2020, 282, 118506. [Google Scholar] [CrossRef]
- Natarajan, S.; Lee, Y.S.; Aravindan, V. Biomass-Derived Carbon Materials as Prospective Electrodes for High-Energy Lithium- and Sodium-Ion Capacitors. Chem. Asian J. 2019, 14, 936–951. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, F.S. Removal of Lead from Water Using Biochars Prepared from Hydrothermal Liquefaction of Biomass. J. Hazard. Mater. 2009, 167, 933–939. [Google Scholar] [CrossRef]
- Agarwal, S.; Tyagi, I.; Gupta, V.K.; Dehghani, M.H.; Jaafari, J.; Balarak, D.; Asif, M. Rapid Removal of Noxious Nickel (II) Using Novel γ-Alumina Nanoparticles and Multiwalled Carbon Nanotubes: Kinetic and Isotherm Studies. J. Mol. Liq. 2016, 224, 618–623. [Google Scholar] [CrossRef]
- Balarak, D. A Joghataei Isotherms and Thermodynamics of CD (II) Ion Removal. Int. J. Pharm. 2016, 8, 15780–15788. [Google Scholar]
- Al-Qodah, Z.; Yahya, M.A.; Al-Shannag, M. On the Performance of Bioadsorption Processes for Heavy Metal Ions Removal by Low-Cost Agricultural and Natural by-Products Bioadsorbent: A Review. Desalination Water Treat. 2017, 85, 339–357. [Google Scholar] [CrossRef]
- Epelle, E.I.; Okoye, P.U.; Roddy, S.; Gunes, B.; Okolie, J.A. Advances in the Applications of Nanomaterials for Wastewater Treatment. Environments 2022, 9, 141. [Google Scholar] [CrossRef]
- Vareda, J.P.; Valente, A.J.; Durães, L. Assessment of Heavy Metal Pollution from Anthropogenic Activities and Remediation Strategies: A Review—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S0301479719307546 (accessed on 23 May 2022).
- Brbooti, M.M.; Abid, B.A.; Al-shuwaiki, N.M. Removal of Heavy Metals Using Chemicals Precipitation. Eng. Technol. J. 2011, 29, 595–612. [Google Scholar]
- Meunier, N.; Drogui, P.; Montané, C.; Hausler, R.; Blais, J.-F.; Mercier, G. Heavy Metals Removal from Acidic and Saline Soil Leachate Using Either Electrochemical Coagulation or Chemical Precipitation. J. Environ. Eng. 2006, 132, 545–554. [Google Scholar] [CrossRef]
- Alalwan, H.A.; Kadhom, M.A.; Alminshid, A.H. Removal of Heavy Metals from Wastewater Using Agricultural Byproducts. J. Water Supply Res. Technol. AQUA 2020, 69, 99–112. [Google Scholar] [CrossRef]
- Wang, L.K.; Hung, Y.T.; Shammas, N.K. Physicochemical Treatment Processes; Humana Press: Totowa, NJ, USA, 2005; ISBN 1588291650. [Google Scholar]
- Albuquerque, C.F.; Luna-Finkler, C.L.; Rufino, R.D.; Luna, J.M.; De Menezes, C.T.B.; Santos, V.A.; Sarubbo, L.A. Evaluation of Biosurfactants for Removal of Heavy Metal Ions from Aqueous Effluent Using Flotation Techniques. Int. Rev. Chem. Eng. 2012, 4, 156–161. [Google Scholar]
- Gao, G.; Xie, S.; Zheng, S.; Xu, Y.; Sun, Y. Two-Step Modification (Sodium Dodecylbenzene Sulfonate Composites Acid-Base) of Sepiolite (SDBS/ABsep) and Its Performance for Remediation of Cd Contaminated Water and Soil. J. Hazard. Mater. 2022, 433, 128760. [Google Scholar] [CrossRef]
- Tran, H.N.; Wang, Y.F.; You, S.J.; Chao, H.P. Insights into the Mechanism of Cationic Dye Adsorption on Activated Charcoal: The Importance of Π–Π Interactions. Process Saf. Environ. Prot. 2017, 107, 168–180. [Google Scholar] [CrossRef]
- Du, X.; Hao, X.; Wang, Z.; Guan, G. Electroactive Ion Exchange Materials: Current Status in Synthesis, Applications and Future Prospects. J. Mater. Chem. A 2016, 4, 6236–6258. [Google Scholar] [CrossRef]
- Raouf MS, A.; Raheim ARM, A. Removal of Heavy Metals from Industrial Waste Water by Biomass-Based Materials: A Review. J. Pollut. Eff. Control. 2016, 5, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Kwak, S.Y. Rapid Adsorption of Bisphenol A from Wastewater by β-Cyclodextrin-Functionalized Mesoporous Magnetic Clusters. Appl. Surf. Sci. 2019, 467–468, 178–184. [Google Scholar] [CrossRef]
- Azimi, A.; Azari, A.; Rezakazemi, M.; Ansarpour, M. Removal of Heavy Metals from Industrial Wastewaters: A Review. ChemBioEng Rev. 2017, 4, 37–59. [Google Scholar] [CrossRef]
- Xu, D.; Huang, Y.; Jin, X.; Sun, T. Synergistic Treatment of Heavy Metals in Municipal Solid Waste Incineration Fly Ash with Geopolymer and Chemical Stabilizers. Process. Saf. Environ. Prot. 2022, 160, 763–774. [Google Scholar] [CrossRef]
- Ariffin, N.; Mustafa, M.; Bakri, A.; Remy, M.; Mohd, R.; Zaino, A.; Murshed, M.F.; Faris, M.A. Review on Adsorption of Heavy Metal in Wastewater by Using Geopolymer. MATEC Web Conf. 2017, 97, 1–8. [Google Scholar] [CrossRef]
- Wan Ngah, W.S.; Hanafiah, M.A.K.M. Removal of Heavy Metal Ions from Wastewater by Chemically Modified Plant Wastes as Adsorbents: A Review. Bioresour. Technol. 2008, 99, 3935–3948. [Google Scholar] [CrossRef]
- Mukherjee, A.; Okolie, J.A.; Niu, C.; Dalai, A.K. Techno—Economic Analysis of Activated Carbon Production from Spent Coffee Grounds: Comparative Evaluation of Different Production Routes. Energy Convers. Manag. X 2022, 14, 100218. [Google Scholar] [CrossRef]
- Joseph, L.; Jun, B.M.; Flora, J.R.V.; Park, C.M.; Yoon, Y. Removal of Heavy Metals from Water Sources in the Developing World Using Low-Cost Materials: A Review. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0045653519308616 (accessed on 30 September 2021).
- Kaveeshwar, A.R.; Kumar, P.S.; Revellame, E.D.; Gang, D.D.; Zappi, M.E.; Subramaniam, R. Adsorption Properties and Mechanism of Barium (II) and Strontium (II) Removal from Fracking Wastewater Using Pecan Shell Based Activated Carbon. J. Clean. Prod. 2018, 193, 1–13. [Google Scholar] [CrossRef]
- Chen, J.; Feng, J.; Yan, W. Facile Synthesis of a Polythiophene/TiO2 Particle Composite in Aqueous Medium and Its Adsorption Performance for Pb(II). RSC Adv. 2015, 5, 86945–86953. [Google Scholar] [CrossRef]
- Jasmani, L.; Rusli, R.; Khadiran, T.; Jalil, R.; Adnan, S. Application of Nanotechnology in Wood-Based Products Industry: A Review. Nanoscale Res. Lett. 2020, 15, 207. [Google Scholar] [CrossRef]
- Joshi, M.K.; Lee, S.; Tiwari, A.P.; Maharjan, B.; Poudel, S.B.; Park, C.H.; Kim, C.S. Integrated Design and Fabrication Strategies for Biomechanically and Biologically Functional PLA/β-TCP Nanofiber Reinforced GelMA Scaffold for Tissue Engineering Applications. Int. J. Biol. Macromol. 2020, 164, 976–985. [Google Scholar] [CrossRef]
- Yang, Z.; Peng, H.; Wang, W.; Liu, T. Crystallization Behavior of Poly(ε-Caprolactone)/Layered Double Hydroxide Nanocomposites. J. Appl. Polym. Sci. 2010, 116, 2658–2667. [Google Scholar] [CrossRef]
- Gad, Y.H. Preparation and Characterization of Poly(2-Acrylamido-2-Methylpropane-Sulfonic Acid)/Chitosan Hydrogel Using Gamma Irradiation and Its Application in Wastewater Treatment. Radiat. Phys. Chem. 2008, 77, 1101–1107. [Google Scholar] [CrossRef]
- Okon-Akan, O.A.; Olaoye, K.O.; Ibrahin, A.O. Characterization of Activated Carbon Produced from Teak (Tectona grandis) Sawdust. Sci. J. Field Wood Eng. 2022, 18, 21–25. [Google Scholar]
- Debnath, S.; Ghosh, U.C. Nanostructured Hydrous Titanium(IV) Oxide: Synthesis, Characterization and Ni(II) Adsorption Behavior. Chem. Eng. J. 2009, 152, 480–491. [Google Scholar] [CrossRef]
- Sepehri, A.; Sarrafzadeh, M.H.; Avateffazeli, M. Interaction between Chlorella Vulgaris and Nitrifying-Enriched Activated Sludge in the Treatment of Wastewater with Low C/N Ratio. J. Clean. Prod. 2020, 247, 119164. [Google Scholar] [CrossRef]
- Benettayeb, A.; Haddou, B. New Biosorbents Based on the Seeds, Leaves and Husks Powder of Moringa Oleifera for the Effective Removal of Various Toxic Pollutants. Int. J. Environ. Anal. Chem. 2021. [Google Scholar] [CrossRef]
- Benettayeb, A.; Usman, M.; Tinashe, C.C.; Adam, T.; Haddou, B. A Critical Review with Emphasis on Recent Pieces of Evidence of Moringa Oleifera Biosorption in Water and Wastewater Treatment. Environ. Sci. Pollut. Res. 2022, 29, 48185–48209. [Google Scholar] [CrossRef] [PubMed]
- Fosso-Kankeu, E.; Mulaba-Bafubiandi, A.F. Review of Challenges in the Escalation of Metal-Biosorbing Processes for Wastewater Treatment: Applied and Commercialized Technologies. Afr. J. Biotechnol. 2014, 13, 1756–1771. [Google Scholar] [CrossRef] [Green Version]
- Górecka, E.; Jastrzębska, M. Review Article: Immobilization Techniques and Biopolymer Carriers. Biotechnol. Food Sci. 2011, 75, 65–86. [Google Scholar]
- Wang, J.; Chen, C. Biosorbents for Heavy Metals Removal and Their Future. Biotechnol. Adv. 2009, 27, 195–226. [Google Scholar] [CrossRef]
- de Freitas, G.R.; da Silva, M.G.C.; Vieira, M.G.A. Biosorption Technology for Removal of Toxic Metals: A Review of Commercial Biosorbents and Patents. Environ. Sci. Pollut. Res. 2019, 26, 19097–19118. [Google Scholar] [CrossRef]
- Moghadas, B.K.; Esmaeili, H.; Tamjidi, S.; Geramifard, A. Advantages of Nanoadsorbents, Biosorbents, and Nanobiosorbents for Contaminant Removal. In Nano-Biosorbents for Decontamination of Water, Air, and Soil Pollution; Elsevier: Amsterdam, The Netherlands, 2022; pp. 105–133. [Google Scholar] [CrossRef]
- Vaghetti, J.C.P.; Lima, E.C.; Royer, B.; da Cunha, B.M.; Cardoso, N.F.; Brasil, J.L.; Dias, S.L.P. Pecan Nutshell as Biosorbent to Remove Cu(II), Mn(II) and Pb(II) from Aqueous Solutions. J. Hazard. Mater. 2009, 162, 270–280. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Ngo, H.H.; Guo, W. Watermelon Rind: Agro-Waste or Superior Biosorbent? Appl. Biochem. Biotechnol. 2012, 167, 1699–1715. [Google Scholar] [CrossRef] [PubMed]
- Akunwa, N.K.; Muhammad, M.N.; Akunna, J.C. Treatment of Metal-Contaminated Wastewater: A Comparison Oflow-Cost Biosorbents. J. Envion. Manag. 2014, 146, 517–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, K. A Novel Agricultural Waste Adsorbent, Watermelon Shell for the Removal of Copper from Aqueous Solutions. Iran. J. Energy Environ. 2012, 3, 143–156. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Jin, L.; Wang, X. Cadmium Absorption and Transportation Pathways in Plants. Int. J. Phytoremediat. 2017, 19, 133–141. [Google Scholar] [CrossRef]
- Anastopoulos, I.; Pashalidis, I.; Hosseini-Bandegharaei, A.; Giannakoudakis, D.A.; Robalds, A.; Usman, M.; Escudero, L.B.; Zhou, Y.; Colmenares, J.C.; Núñez-Delgado, A.; et al. Agricultural Biomass/Waste as Adsorbents for Toxic Metal Decontamination of Aqueous Solutions. J. Mol. Liq. 2019, 295, 111684. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Y.; Yang, Z.; Han, W.; Yuan, L.; Zhang, L.; Huang, X. Efficient Removal of Pb(II) and Cd(II) from Aqueous Solutions by Mango Seed Biosorbent. Chem. Eng. J. Adv. 2022, 11, 100295. [Google Scholar] [CrossRef]
- Wang, X.S.; Qin, Y.; Li, Z.F. Biosorption of Zinc from Aqueous Solutions by Rice Bran: Kinetics and Equilibrium Studies. Sep. Sci. Technol. 2006, 41, 747–756. [Google Scholar] [CrossRef]
- Yin, K.; Wang, Q.; Lv, M.; Chen, L. Microorganism Remediation Strategies towards Heavy Metals. Chem. Eng. J. 2019, 360, 1553–1563. [Google Scholar] [CrossRef]
- Marín-Rangel, V.M.; Cortés-Martínez, R.; Cuevas Villanueva, R.A.; Garnica-Romo, M.G.; Martínez-Flores, H.E. As (V) Biosorption in an Aqueous Solution Using Chemically Treated Lemon (Citrus Aurantifolia Swingle) Residues. J. Food Sci. 2012, 77, T10–T14. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Tran, H.N.; Chao, H.P.; Lin, C.C. Activated Carbons Derived from Teak Sawdust-Hydrochars for Efficient Removal of Methylene Blue, Copper, and Cadmium from Aqueous Solution. Water 2019, 11, 2581. [Google Scholar] [CrossRef] [Green Version]
- Tarrés, Q.; Oliver-Ortega, H.; Boufi, S.; Àngels Pèlach, M.; Delgado-Aguilar, M.; Mutjé, P. Evaluation of the Fibrillation Method on Lignocellulosic Nanofibers Production from Eucalyptus Sawdust: A Comparative Study between High-Pressure Homogenization and Grinding. Int. J. Biol. Macromol. 2020, 145, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- Parthasarathy, P.; Narayanan, K.S. Hydrogen Production from Steam Gasification of Biomass: Influence of Process Parameters on Hydrogen Yield—A Review. Renew. Energy 2014, 66, 570–579. [Google Scholar] [CrossRef]
- Zhou, K.; Yang, Z.; Liu, Y.; Kong, X. Kinetics and Equilibrium Studies on Biosorption of Pb(II) from Aqueous Solution by a Novel Biosorbent: Cyclosorus Interruptus. J. Envion. Chem. Eng. 2015, 3, 2219–2228. [Google Scholar] [CrossRef]
- Ashrafi, S.D.; Kamani, H.; Soheil Arezomand, H.; Yousefi, N.; Mahvi, A.H. Optimization and Modeling of Process Variables for Adsorption of Basic Blue 41 on NaOH-Modified Rice Husk Using Response Surface Methodology. Desalination Water Treat. 2015, 57, 14051–14059. [Google Scholar] [CrossRef]
- Jung, B.; Farzaneh, H.; Khodary, A.; Abdel-Wahab, A. Photochemical Degradation of Trichloroethylene by Sulfite-Mediated UV Irradiation. J. Envion. Chem. Eng. 2015, 3, 2194–2202. [Google Scholar] [CrossRef]
- Sud, D.; Mahajan, G.; Kaur, M.P. Agricultural Waste Material as Potential Adsorbent for Sequestering Heavy Metal Ions from Aqueous Solutions—A Review. Bioresour. Technol. 2008, 99, 6017–6027. [Google Scholar] [CrossRef]
- Shafique, U.; Ijaz, A.; Salman, M.; Zaman, W.U.; Jamil, N.; Rehman, R.; Javaid, A. Removal of Arsenic from Water Using Pine Leaves. J. Taiwan Inst. Chem. Eng. 2012, 43, 256–263. [Google Scholar] [CrossRef]
- Reddy, D.H.K.; Harinath, Y.; Seshaiah, K.; Reddy, A.V.R. Biosorption of Pb(II) from Aqueous Solutions Using Chemically Modified Moringa Oleifera Tree Leaves. Chem. Eng. J. 2010, 162, 626–634. [Google Scholar] [CrossRef]
- Doǧan, M.; Abak, H.; Alkan, M. Adsorption of Methylene Blue onto Hazelnut Shell: Kinetics, Mechanism and Activation Parameters. J. Hazard. Mater. 2009, 164, 172–181. [Google Scholar] [CrossRef]
- Guimarães Gusmão, K.A.; Alves Gurgel, L.V.; Sacramento Melo, T.M.; Gil, L.F. Application of Succinylated Sugarcane Bagasse as Adsorbent to Remove Methylene Blue and Gentian Violet from Aqueous Solutions—Kinetic and Equilibrium Studies. Dye. Pigment. 2012, 92, 967–974. [Google Scholar] [CrossRef] [Green Version]
- Saha, P.; Chowdhury, S.; Gupta, S.; Kumar, I. Insight into Adsorption Equilibrium, Kinetics and Thermodynamics of Malachite Green onto Clayey Soil of Indian Origin. Chem. Eng. J. 2010, 165, 874–882. [Google Scholar] [CrossRef]
- Chen, J.; Shi, X.; Zhan, Y.; Qiu, X.; Du, Y.; Deng, H. Construction of Horizontal Stratum Landform-like Composite Foams and Their Methyl Orange Adsorption Capacity. Appl. Surf. Sci. 2017, 397, 133–143. [Google Scholar] [CrossRef]
- Ohs, B.; Krödel, M.; Wessling, M. Adsorption of Carbon Dioxide on Solid Amine-Functionalized Sorbents: A Dual Kinetic Model. Sep. Purif. Technol. 2018, 204, 13–20. [Google Scholar] [CrossRef]
- Ahmed, S.M.; Taha, M.R.; Taha, O.M.E. Kinetics and Isotherms of Dichlorodiphenyltrichloroethane (DDT) Adsorption Using Soil–Zeolite Mixture. Nanotechnol. Environ. Eng. 2018, 3, 4. [Google Scholar] [CrossRef]
- Baral, S.S.; Das, N.; Roy Chaudhury, G.; Das, S.N. A Preliminary Study on the Adsorptive Removal of Cr(VI) Using Seaweed, Hydrilla verticillata. J. Hazard. Mater. 2009, 171, 358–369. [Google Scholar] [CrossRef]
- Oluwaseyi, A.A.; Solomon, O.A.; Abayomi, B.; Demilade, T.A.; Morenike, O.A.; Omolabake, A.O.A.; Tosin, A.A.; Adedamola, T.O.; Kayode, A.A.; Olugbenga, S.B. Adsorptive Removal of Antibiotic Pollutants from Wastewater Using Biomass/biochar-based Adsorbents. RSC Adv. 2023, 13, 4678. [Google Scholar] [CrossRef]
- Kayode, A.A.; Oreoluwa, O.A.; Omolabake, A.O.A.; Oyeladun, R.A.; Abdullahi, B.O.; Oluwaseyi, A.A.; Halimat, O.; Nobanathi, W.M.; Olugbenga, S.B. Sawdust-biomass based Materials for Sequestration of Organic and Inorganic Pollutants and Potential for Engineering Applications. Curr. Res. Green Sustain. Chem. 2022, 5, 100274. [Google Scholar]
- Shagufta, Z.; Muhammad, I.K.; Noureddine; E.; Mushtaq, H.L.; Abdallah, S.; Shabnam, S.; Suryyia, M. Adsorption Performance of Rice Husk towards Copper Ions from Wastewate. Desalination Water Treat. 2022, 258, 133–142. [Google Scholar]
- Huang, Y.-D.-D. Comments on Using of “Pseudo-First-Order Model” [Appl. Surf. Sci. 394 (2017) 378–385, 397 (2017) 133–143, 426 (2017) 545–553, 437 (2018) 294–303]. Appl. Surf. Sci. 2019, 469, 564–565. [Google Scholar] [CrossRef]
- Afroze, S.; Sen, T.K. A Review on Heavy Metal Ions and Dye Adsorption from Water by Agricultural Solid Waste Adsorbents. Water Air Soil Pollut. 2018, 229, 1–50. [Google Scholar] [CrossRef]
- Chowdhury, S.; Saha, P. Sea Shell Powder as a New Adsorbent to Remove Basic Green 4 (Malachite Green) from Aqueous Solutions: Equilibrium, Kinetic and Thermodynamic Studies. Chem. Eng. J. 2010, 164, 168–177. [Google Scholar] [CrossRef]
- Yao, Z.Y.; Qi, J.H.; Wang, L.H. Equilibrium, Kinetic and Thermodynamic Studies on the Biosorption of Cu(II) onto Chestnut Shell. J. Hazard. Mater. 2010, 174, 137–143. [Google Scholar] [CrossRef]
- Weber, W.J.; Morris, J.C. Kinetics of Adsorption on Carbon from Solution. J. Sanit. Eng. Div. 1963, 89, 31–59. [Google Scholar] [CrossRef]
- Wang, K.; Ren, H.; Wang, Z.; Ma, S.; Wei, J.; Ke, W.; Guo, Y. Kinetic Characteristics of CH4 Adsorption on Coals under Variable Temperature–Pressure Coupling Interaction. Nat. Resour. Res. 2021, 30, 4597–4620. [Google Scholar] [CrossRef]
- Aharoni, C.; Ungarish, M. Kinetics of Activated Chemisorption. Part 2.—Theoretical Models. J. Chem. Soc. Faraday Trans. 1: Phys. Chem. Condens. Phases 1977, 73, 456–464. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, C.; Du, B.; Cui, H.; Fan, X.; Zhou, D.; Zhou, J. Effects of Zinc Application on Cadmium (Cd) Accumulation and Plant Growth through Modulation of the Antioxidant System and Translocation of Cd in Low- and High-Cd Wheat Cultivars. Environ. Pollut. 2020, 265, 115045. [Google Scholar] [CrossRef]
- Zhou, Q.; Gao, Q.; Luo, W.; Yan, C.; Ji, Z.; Duan, P. One-Step Synthesis of Amino-Functionalized Attapulgite Clay Nanoparticles Adsorbent by Hydrothermal Carbonization of Chitosan for Removal of Methylene Blue from Wastewater. Colloids Surf. A Physicochem. Eng. Asp. 2015, 470, 248–257. [Google Scholar] [CrossRef]
- Zhou, C.; Wu, Q.; Lei, T.; Negulescu, I.I. Adsorption Kinetic and Equilibrium Studies for Methylene Blue Dye by Partially Hydrolyzed Polyacrylamide/Cellulose Nanocrystal Nanocomposite Hydrogels. Chem. Eng. J. 2014, 251, 17–24. [Google Scholar] [CrossRef]
- Zhou, L.; Xu, X.; Xia, S. Effects of Sulfate on Simultaneous Nitrate and Selenate Removal in a Hydrogen-Based Membrane Biofilm Reactor for Groundwater Treatment: Performance and Biofilm Microbial Ecology. Chemosphere 2018, 211, 254–260. [Google Scholar] [CrossRef]
- Langmuir, I. The Constitution and Fundamental Properties of Solids and Liquids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H.M.F. Over the Adsorption in Solution. J. Phys. Chem. 1906, 57, 385–471. [Google Scholar]
- Bohart, G.S.; Adams, E.Q. Some Aspects of the Behavior of Charcoal with Respect to Chlorine. J. Am. Chem. Soc. 1920, 42, 523–544. [Google Scholar] [CrossRef] [Green Version]
- Bruanuer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–316. [Google Scholar] [CrossRef]
- Dubinin, M.M.; Radushkevich, L.V. The Equation of the Characteristic Curve of the Activated Charcoal. Proc. Acad. Sci. USSR Phys. Chem. Sect. 1947, 55, 331–337. [Google Scholar]
- Saadi, R.; Saadi, Z.; Fazaeli, R.; Fard, N.E. Monolayer and Multilayer Adsorption Isotherm Models for Sorption from Aqueous Media. Korean J. Chem. Eng. 2015, 32, 787–799. [Google Scholar] [CrossRef]
- Hill, T.L. Theory of Physical Adsorption. Adv. Catal. 1952, 4, 211–258. [Google Scholar]
- Khan, A.R.; Ataullah, R.; Al-Haddad, A. Equilibrium Adsorption Studies of Some Aromatic Pollutants from Dilute Aqueous Solutions on Activated Carbon at Different Temperatures—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0021979797950414 (accessed on 23 May 2022).
- Koble, R.A.; Corrigan, T.E. Adsorption Isotherms for Pure Hydrocarbons. Ind. Eng. Chem. 1952, 44, 383–387. [Google Scholar] [CrossRef]
- McMillan, W.G.; Teller, E. The Assumptions of the B.E.T. Theory. J. Phys. Colloid Chem. 1951, 55, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Myers, A.L.; Prausnitz, J.M. Thermodynamics of Mixed-Gas Adsorption. AIChE J. 1965, 11, 121–127. [Google Scholar] [CrossRef]
- Redlich, O.; Peterson, D.L. A Useful Adsorption Isotherm. J. Phys. Chem. 1959, 63, 1024. [Google Scholar] [CrossRef]
- Sips, R. Combined Form of Langmuir and Freundlich Equations. J. Chem. Phys. 1948, 16, 490–495. [Google Scholar] [CrossRef]
- Tempkin, M.I.; Pyzhev, V. Kinetics of Ammonia Synthesis on Promoted Iron Catalyst. Acta Phys. Chim. 1940, 12, 327–356. [Google Scholar]
- Toth, J. State Equations of the Solid Gas Interface Layer. Acta Chem. Acad. Hung. 1971, 69, 311–317. [Google Scholar]
- Das, S.; Barui, A.; Adak, A. Montmorillonite Impregnated Electrospun Cellulose Acetate Nanofiber Sorptive Membrane for Ciprofloxacin Removal from Wastewater. J. Water Process. Eng. 2020, 37, 101497. [Google Scholar] [CrossRef]
- Ahmed, M.J.; Hameed, B.H. Removal of Emerging Pharmaceutical Contaminants by Adsorption in a Fixed-Bed Column: A Review. Ecotoxicol. Envion. Saf. 2018, 149, 257–266. [Google Scholar] [CrossRef]
- Wahab, M.; Zahoor, M.; Muhammad Salman, S.; Kamran, A.W.; Naz, S.; Burlakovs, J.; Zekker, I. Adsorption-Membrane Hybrid Approach for the Removal of Azithromycin from Water: An Attempt to Minimize Drug Resistance Problem. Water 2021, 13, 1969. [Google Scholar] [CrossRef]
- Elovich, S.Y.; Larionov, O.G. Theory of Adsorption from 11, Nonelectrolyte Solutions on Solid Adsorbents. Russ. Chem. Bull. 1962, 11, 198–203. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, X.; Tang, L.; Zhang, F.; Zeng, G.; Peng, X.; Luo, L.; Deng, Y.; Pang, Y.; Zhang, J. Insight into Highly Efficient Co-Removal of p-Nitrophenol and Lead by Nitrogen-Functionalized Magnetic Ordered Mesoporous Carbon: Performance and Modelling. J. Hazard. Mater. 2017, 333, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Bertoldi, D.; Villegas, T.R.; Larcher, R.; Santato, A.; Nicolini, G. Arsenic Present in the Soil-Vine-Wine Chain in Vineyards Situated in an Old Mining Area in Trentino, Italy. Envion. Toxicol. Chem. 2013, 32, 773–779. [Google Scholar] [CrossRef]
- Kutluay, S. Excellent Adsorptive Performance of Novel Magnetic Nano-Adsorbent Functionalized with 8-Hydroxyquinoline-5-Sulfonic Acid for the Removal of Volatile Organic Compounds (BTX) Vapors. Fuel 2021, 287, 119691. [Google Scholar] [CrossRef]
- Oluwatobi, S.A.; Olugbenga, S.B. Enhanced Adsorption of Ciprofloxacin from Aqueous Solutions Using Functionalized Banana Stalk. Biomass Convers. Biorefin. 2020, 12, 5463–5478. [Google Scholar] [CrossRef]
- Jin, C.; Sun, J.; Chen, Y.; Guo, Y.; Han, D.; Wang, R.; Zhao, C. Sawdust Wastes-Derived Porous Carbons for CO2 Adsorption. Part 1. Optimization Preparation via Orthogonal Experiment. Sep. Purif. Technol. 2021, 276, 119270. [Google Scholar] [CrossRef]
- Yu, Z.; Zhou, L.; Huang, Y.; Song, Z.; Qiu, W. Effects of a Manganese Oxide-Modified Biochar Composite on Adsorption of Arsenic in Red Soil. J. Envion. Manag. 2015, 163, 155–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, L.; Liu, Y.; Zeng, G.; Liu, S.; Hu, X.; Zhou, L.; Tan, X.; Liu, N.; Li, M.; Wen, J. Adsorption of Estrogen Contaminants (17Β-Estradiol and 17A-Ethynylestradiol) by Graphene Nanosheets from Water: Effects of Graphene Characteristics and Solution Chemistry. Chem. Eng. J. 2018, 339, 296–302. [Google Scholar] [CrossRef]
- Tuomikoski, S.; Runtti, H.; Romar, H.; Lassi, U.; Kangas, T. Multiple Heavy Metal Removal Simultaneously by a Biomass-Based Porous Carbon. Water Environ. Res. 2021, 93, 1303–1314. [Google Scholar] [CrossRef]
- Alabarse, F.G.; Conceição, R.V.; Balzaretti, N.M.; Schenato, F.; Xavier, A.M. In-Situ FTIR Analyses of Bentonite under High-Pressure. Appl. Clay Sci. 2011, 51, 202–208. [Google Scholar] [CrossRef] [Green Version]
- Flory, P.J. Thermodynamics of Crystallization in High Polymers. I. Crystallization Induced by Stretching. J. Chem. Phys. 1947, 15, 397–408. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Mesoporous Activated Carbon from Wood Sawdust by K2CO3 Activation Using Microwave Heating. Bioresour. Technol. 2012, 111, 425–432. [Google Scholar] [CrossRef]
- Njoku, V.O.; Foo, K.Y.; Asif, M.; Hameed, B.H. Preparation of Activated Carbons from Rambutan (Nephelium Lappaceum) Peel by Microwave-Induced KOH Activation for Acid Yellow 17 Dye Adsorption. Chem. Eng. J. 2014, 250, 198–204. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Preparation and Characterization of Activated Carbon from Pistachio Nut Shells via Microwave-Induced Chemical Activation. Biomass Bioenergy 2011, 35, 3257–3261. [Google Scholar] [CrossRef]
- Inyang, M.I.; Gao, B.; Yao, Y.; Xue, Y.; Zimmerman, A.; Mosa, A.; Pullammanappallil, P.; Ok, Y.S.; Cao, X. A Review of Biochar as a Low-Cost Adsorbent for Aqueous Heavy Metal Removal. Crit. Rev. Envion. Sci. Technol. 2016, 46, 406–433. [Google Scholar] [CrossRef]
- Yu, J.; Tang, T.; Cheng, F.; Huang, D.; Martin, J.L.; Brewer, C.E.; Grimm, R.L.; Zhou, M.; Luo, H. Waste-to-Wealth Application of Wastewater Treatment Algae-Derived Hydrochar for Pb(II) Adsorption. MethodsX 2021, 8, 101263. [Google Scholar] [CrossRef]
- Doebele, V. Condensation et Évaporation de l’Hexane Dans Les Membranes d’Alumine Poreuse (Condensation and Evaporation of Hexane). Ph.D. Thesis, Université Grenoble Alpes (ComUE), Saint-Martin-d’Hères, France, 2019. Available online: https://www.theses.fr/2019GREAY021 (accessed on 17 March 2023).
- Kayode, M.O.; Victor, A.J.; Oluwaseun, F.G.; Opeyemi, O.O.; Samuel, O.A.; Kudirat, J.L. Biosorption Potentials of Sawdust in Removing Zinc Ions from Aqueous Solution. Int. J. Sci. Res. Manag. (IJSRM) 2021, 9, FE-2021-191-198. [Google Scholar]
- Tran, H.N.; Lima, E.C.; Juang, R.S.; Bollinger, J.C.; Chao, H.P. Thermodynamic Parameters of Liquid–Phase Adsorption Process Calculated from Different Equilibrium Constants Related to Adsorption Isotherms: A Comparison Study. J. Envion. Chem. Eng. 2021, 9, 106674. [Google Scholar] [CrossRef]
- Wang, S.; Kwak, J.H.; Islam, M.S.; Naeth, M.A.; Gamal El-Din, M.; Chang, S.X. Biochar Surface Complexation and Ni(II), Cu(II), and Cd(II) Adsorption in Aqueous Solutions Depend on Feedstock Type. Sci. Total. Environ. 2020, 712, 136538. [Google Scholar] [CrossRef] [PubMed]
- Nwakonobi, T.U.; Onoja, S.B.; Ogbaje, H. Removal of Certain Heavy Metals from Brewery Wastewater Using Date Palm Seeds Activated Carbon. Appl. Eng. Agric. 2018, 34, 233–238. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E.; Wilson, L.; Morin-crini, N.; Crini, G.; Lichtfouse, E.; Wilson, L.; Conventional, N.M. Conventional and Non-Conventional Adsorbents for Wastewater Treatment (Hal-02082916 Conventional and Non—Conventional Adsorbents for Wastewater Treatment); Springer: Cham, Switzerland, 2019; Volume 17, ISBN 9783319921112. [Google Scholar]
- Singh, S.R.; Singh, A.P. Adsorption of Heavy Metals from Waste Waters Using Waste Biomass. Int. J. Eng. Res. 2017, V6, 423–428. [Google Scholar] [CrossRef]
- Singh, J.; Mishra, V. Simultaneous Removal of Cu2+, Ni2+ and Zn2+ Ions Using Leftover Azadirachta Indica Twig Ash. Bioremediat. J. 2020, 25, 48–71. [Google Scholar] [CrossRef]
- Obeng, G.Y.; Amoah, D.Y.; Opoku, R.; Sekyere, C.K.K.; Adjei, E.A.; Mensah, E. Coconut Wastes as Bioresource for Sustainable Energy: Quantifying Wastes, Calorific Values and Emissions in Ghana. Energies 2020, 13, 2178. [Google Scholar] [CrossRef]
- Wang, B.; Jiang, Y.S.; Li, F.Y.; Yang, D.Y. Preparation of Biochar by Simultaneous Carbonization, Magnetization and Activation for Norfloxacin Removal in Water. Bioresour. Technol. 2017, 233, 159–165. [Google Scholar] [CrossRef]
- Szewczuk-Karpisz, K.; Wiśniewska, M.; Medykowska, M.; Galaburda, M.V.; Bogatyrov, V.M.; Oranska, O.I.; Błachnio, M.; Oleszczuk, P. Simultaneous Adsorption of Cu(II) Ions and Poly(Acrylic Acid) on the Hybrid Carbon-Mineral Nanocomposites with Metallic Elements. J. Hazard. Mater. 2021, 412, 125138. [Google Scholar] [CrossRef] [PubMed]
- Vidyasagar, S.; Nesrin, O.; Martin, O.; Lars, B.; Stefan, K.; Robert, L. Thermogravimetric Analysis of Activated Carbons, Ordered Mesoporous Carbide-Derived Carbons, and Their Deactivation Kinetics of Catalytic Methane Decomposition. Ind. Eng. Chem. Res. 2014, 53, 1741–1753. [Google Scholar] [CrossRef]
- Chieng, H.I.; Lim, L.B.L.; Priyantha, N. Enhancing Adsorption Capacity of Toxic Malachite Green Dye through Chemically Modified Breadnut Peel: Equilibrium, Thermodynamics, Kinetics and Regeneration Studies. Environ. Technol. 2015, 36, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Sips, R. On the Structure of a Catalyst Surface. J. Chem. Phys. 1948, 16, 490–495. [Google Scholar] [CrossRef]
- Essandoh, M.; Kunwar, B.; Pittman, C.U.; Mohan, D.; Mlsna, T. Sorptive Removal of Salicylic Acid and Ibuprofen from Aqueous Solutions Using Pine Wood Fast Pyrolysis Biochar. Chem. Eng. J. 2015, 265, 219–227. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Insights into the Modeling of Adsorption Isotherm Systems. Chem. Eng. J. 2010, 156(1), 2–10. [Google Scholar] [CrossRef]
- Olugbenga, S.B.; Esther, O.A.; Kayode, A.A.; Samuel, A.A.; Adejumoke, A.I.; Adewumi, O.D. Rhodamine B Dye Sequestration Using Gmelina Aborea Leaf Powder. Heliyon 2019, 5, e02872. [Google Scholar] [CrossRef] [Green Version]
- Zare, E.N.; Motahari, A.; Sillanpää, M. Nanoadsorbents Based on Conducting Polymer Nanocomposites with Main Focus on Polyaniline and Its Derivatives for Removal of Heavy Metal Ions/Dyes: A Review. Envion. Res. 2018, 162, 173–195. [Google Scholar] [CrossRef]
- Rosa, L.M.T.; Botero, W.G.; do Carmo, J.B.; Gabriel, G.V.M.; Waldman, W.R.; Cavagis, A.D.M.; Goveia, D.; de Oliveira, L.C. Application of Natural Organic Residues in the Remediation of Metals from E-Waste. Envion. Technol. Innov. 2022, 27, 102452. [Google Scholar] [CrossRef]
- Ali, I.; Peng, C.; Naz, I. Removal of Lead and Cadmium Ions by Single and Binary Systems Using Phytogenic Magnetic Nanoparticles Functionalized by 3-Marcaptopropanic Acid. Chin. J. Chem. Eng. 2019, 27, 949–964. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the Use and Interpretation of Adsorption Isotherm Models: A Review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Chen, X.; Yuan, B.; Fu, M.L. A Facile Foaming-Polymerization Strategy to Prepare 3D MnO2 Modified Biochar-Based Porous Hydrogels for Efficient Removal of Cd(II) and Pb(II). Chemosphere 2020, 239, 124745. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhou, J.; Liu, Y.; Guo, J.; Ren, J.; Zhou, F. Preparation of Iminodiacetic Acid-Modified Magnetic Biochar by Carbonization, Magnetization and Functional Modification for Cd(II) Removal in Water. Fuel 2018, 233, 469–479. [Google Scholar] [CrossRef]
Heavy Metal Remediation Methods | Advantages | Limitations |
---|---|---|
Activated carbon promoted adsorption | High efficiency | Expensive, regeneration challenges |
Modified biopolymer promoted biosorption | Improved adsorption capacity and selectivity | Difficulties in the optimization of operating conditions and the selection of the most promising bio-sorbent |
Coagulation and precipitation | Ease of operating | High chemical consumption Costly process, sludge disposal issues in the case of precipitation |
Electrochemical methods | High removal capacity and selectivity Does not require a chemical | High capital and operating cost |
Ion exchange | High selectivity for metal ions and ease of regeneration | Expensive process |
Membrane filtration | High metal separation selectivity, requires low space | High operating cost in most cases |
Nanofiltration | Could simultaneously remove metals and organic pollutants | Long-duration and restricted applications |
Type | Expression | Equation | Ref. |
---|---|---|---|
Lagergren pseudo-first order | (2) | [91,92,93] | |
(3) | [94] | ||
Pseudo-second order | (4) | [90,95] | |
Intraparticle diffusion model | (5) | [96,97,98,99] | |
Avrami | (6) | [89,90] | |
Bangham | (7) | [100] | |
(8) | [15] | ||
Boyd | (9) | [15] | |
Elovich | (10) | [101] |
Isotherm | Non-Linear Form | Eq. | Linear Form | Eq. | Plot | Ref. |
---|---|---|---|---|---|---|
Langmuir | (11) | (12) | [106] | |||
(13) | ||||||
(14) | ||||||
(15) | ||||||
Freundlich | (16) | (17) | [107] | |||
Bohart–Adams | (18) | (19) | – | [108] | ||
Brunauer–Emmett–Teller (BET) | (20) | (21) | [109] | |||
Dubinin–Radushkevich | (22) | (23) | [110] | |||
Flory–Huggins | (24) | (25) | [111] | |||
Frenkel–Halsey–Hill | (26) | – | – | [112] | ||
Khan | (27) | – | – | [113] | ||
Koble–Corrigan | (28) | (29) | – | [114] | ||
MacMillan–Teller | (30) | – | – | [115] | ||
Radke–Prausnitz | (31) | – | – | [116] | ||
Redlich–Peterson | (32) | (33) | – | [117] | ||
Sips | (34) | (35) | [118] | |||
Temkin | (36) | (37) | [119] | |||
Toth | (38) | (39) | [120] | |||
Wolborska | (40) | – | – | [121] | ||
Yoon–Nelson | (41) | – | – | [122] | ||
Harkins–Jura | – | (42) | [123] | |||
Halsey | – | (43) | [123] | |||
Elovich–Larionov | – | (44) | [124] |
S/N | Materials | Heavy Metal | Initial Conc. | Adsorbent Dose | pH | Temperature | Adsorption Capacity/Removal Efficiency | Kinetics | Isotherms | Mechanisms |
---|---|---|---|---|---|---|---|---|---|---|
1 | Red seaweed Kappaphycus sp. | Pb2+ Cu2+ Fe2+ Zn2+ | 10 mg/L. | 4 g | 2–7 | 25 | 22.27 19.46 17.09 16.78 mg/g | IPD | Temkin model | xxx |
2 | Sunflower-based adsorbent | Cd2+ Cu2+ Cr6+ Ni2+ | 50 mg/L | 4 g | 2 | 3.2 mg/g–252.5 mg/g | PSO | Langmuir | xxx | |
3 | L-cysteine (Cys) intercalated MgAl-layered double hydroxide (MgAl-Cys-LDH) | Cu2+ Pb2+ Cd2+ | 100 mg/L 300 mg/L 100 mg/L | 0.05 g | 5.0 5.73 5.85 | 25 | 58.07 186.2 93.11 mg/g | PSO | Langmuir | xxx |
4 | Recycling spent lithium-ion battery: spent lithium iron phosphate (SLFP) spent lithium manganate (SLMO) cathodes | Cu2+ Pb2+ Cd2+ Zn2+ | 100 mg/L | 0.5 g | 6 5 6 6 | 25 | 44.28, 39.54, 25.63, and 27.34 mg/g and 32.51, 31.83, 26.24 and 25.25 mg/g | PSO | Langmuir | xxx |
5 | Bamboo stem biomass | Pb2+ Cd2+ | 50 mg/L | 0.25–2 g | 5 | 25 | 95.92 80.98% | PSO | Freundlich | xxx |
6 | EDTA-modified agricultural by-product-based adsorbent: ethylenediaminetetraacetic acid-modified lotus seedpod (EDTA-LSP) | Pb2+ malachite green (MG). | 100 mg/L | 5 mg | 5 6 | 25 | 225.88 mg/g 347.87 mg/g | PSO | Langmuir | xxx |
7 | Biochar of date palm waste | Pb2+ Cu2+ | 50–250 mg/L | 1.0 g 1.8 g | 4.5 5.5 | 30 | 98.9 mg/g 41 mg/g | PSO | Freundlich-Langmuir and H–J isotherms | xxx |
8 | Graphene | NO3- | 500 mg/L | 0.05 g | 7 | 30 | 89.97 mg/g | PSO | Langmuir | xxx |
9 | Fe3O4/montmorillonitenanocomposite(Fe3O4/MMTNC) | Pb2+ Cu2+ Ni2+ | 510.16 182.94 111.90 mg/L | 0.06 g 0.08 g 0.08 g | Same as the solution pH | 25 | 89.72%, 94.89%, and 76.15% | PSO | Langmuir | electrostaticattractionandcoordination |
10 | Activated carbons (ACs) from chickpea (Cicer arietinum) husks | Pb2+ Cr2+ Cu2+ | 100–400 mg/L | 2–6 g | 2–10 | 20–40 | 135.8 59.6 56.2 mg/g | PSO | Freundlich | xxx |
11 | Microwave-functionalized cellulose derived from rice husk | Pb2+ Cd2+ Ni2+ | 10–300 mg/L. | 1–4 g | 2–8 2–7 2–5.5 | 20, 35, 50 | 295.20 mg/g 151.51 mg/g 72.80 mg/g | PSO | Langmuir | ion exchange and chelation, physical adsorption |
12 | Self-activation of kenaf fiber and then the kenaf-based activated carbon (KAC) | lead Pb2+ copper Cu2+ Congo red (CR) dye | 5 mg/L | 1.5 g/L | 4–7 | 27 | 92% 80% 95% | PSO | Langmuir (for Cu2+) and Freundlich models (for Pb2+ and CR) | physical adsorption and chemical adsorption |
13 | Mixed biomass [Aspergillus campestris and two forms of Delonix regia seed (raw and acid-treated Delonix regia seed)] | Cu2+ | 10 to 100 mg/L | 1.0 g | 6 | 30 | 62.02 mg/g and 66.9 mg/g | PSO | Freundlich isotherm model | physical adsorption (physisorption) mechanism |
14 | Thiol-functionalized mesoporous silica-coated magnetite nanoparticles | Ni2+ Cu2+ Cr3+ | 2 mg/L 2 mg/L 8 mg/L | 0.008 to 0.04 g | 7 10 10 | 25 | 4.476, 4.038, and 1.119 mg/g | PSO, PSO, and PFO | Langmuir Langmuir Freundlich | |
15 | Cross-linked chitosan-g-acrylonitrile copolymer | Cr6+ Cu2+ Ni2+ | 200 mg/L | 6 g 6 g 5 g | 5 5 5.5 | 30 | 84% 86% 81% | PSO | Freundlich isotherm model | xxx |
16 | Iminodiacetic acid functionalized D301 resin | Cu2+ Pb2+ Cd2+ | 10 mg/L | 0.01 g | 5 | 20 | 4.48 2.99 2.26 mg/g | PFO | Langmuir | chemisorption |
17 | Beech sawdust | Cu2+ Ni2+ Zn2+ | 0.2 mg/L | 1 g | 4.8–5.3 | 25 | 4.5 mg/g 4 mg/g 2 mg/g | PSO | Langmuir | ion exchange mechanism |
18 | Treated old newspaper | Cd2+ | 30 mg/L | 0.33–1 g | 6.4 | 22 | 8.41 mg/g 2.87 mg/g | PSO | Langmuir | xxx |
19 | Sugarcane Bagasse (SCB) | Hg2+ | 76 mg/L | 1–7 g | 4 | 30 | 35.71 mg/g | PSO | Freundlich and Langmuir models | xxx |
20 | Grapefruit peel | Cd2+ Ni2+ | 50 mg/L | 4 g | 5 | 20–50 | 42.09 46.13 mg/g | PSO | Freundlich isotherm model | ion exchange mechanism |
21 | Peanut shell biomass | Cu2+ Cr3+ | 100 mg/L | 10 g | 5 | 20 | 25.39 mg/g 27.86 mg/g | PSO | Langmuir | physical sorption |
22 | Zeolite Based on Oil Shale Ash | Cu2+ Ni2+ Pb2+ Cd2+ | 500 mg/L | 0.05 g | 6 6 5 5 | 20–50 | 224.72 156.74 118.34 53.02 mg/g | PSO | Langmuir | ion exchange mechanism |
23 | Untreated coffee grounds | Cd2+ | 100 mg/L | 9 g | 7 | 20 | 15.65 mg/g | PSO | Langmuir | electrostatic interaction |
24 | Cellulosic waste orange peel (CWOP) | Cu2+ | 100 mg/L | 1 g | 5 | 20–50 | 63 mg/g | external mass transfer kinetic model | Freundlich adsorption isotherm model | xxx |
25 | Thiacalix [4]arene-loaded resin | Cu2+ Pb2+ Cd2+ | 25 to 125 mg/L | 0.1 g | 2–7 | 10–40 | 21.4 47.9 44.9 mg/g | PSO | Langmuir model | xxx |
26 | Hierarchical CaCO3–maltose meso/macroporous hybrid materials | Pb2+ Cd2+ Cu2+ Co2+ Mn2+ Ni2+ | 300–900 mg/L | 0.43 g | 7 | 25 | 3242.48 487.80 628.93 393.70 558.66 769.23 mg/g | PSO and IPD | Langmuir model | precipitation |
27 | Ethyl acrylate grafted chitosan | Pb2+ Cd2+ Zn2+ | 100 mg/L | 0.15 g | 6 | 25 | 92% 86% 98% | PSO | Langmuir model | physical |
28 | Novel Fe3O4 magnetic nanoparticles (MNPs) modified with 3 aminopropyltriethoxysilane (APS) and copolymers of acrylic acid (AA) and crotonic acid (CA) | Cd2+ Zn2+ Pb2+ Cu2+ | 20–450 mg/L | 0.05 g | 5.5 | 25 | 29.6 43.4 166.1 126.9 mg/g | PSO | Langmuir model | chemisorption |
29 | Eriobotrya japonica seed biocomposite | Cu2+ | 75 mg/L | 0.1 g | 5 | 45 | 46.94 mg/g | PSO | Langmuir model | chemisorption |
30 | Native Groundnut husk | Cu2+ | 10 to 200 mg/L | 0.8 g | 6 | 25 | 15.36 mg/g | PSO | Langmuir model | ion exchange |
31 | Bencylhexadecyldimethyl ammonium chloride, BCDMACl | Cu2+ Zn2+ | 50–200 mg/L | 0.5 g | 5–6 | 25 | 50.76 mg/g 35.21 mg/g | PSO | Langmuir model | cation exchange and replacement |
32 | Nitrogen-doped magnetic carbon nanoparticles | Cr3+ | 12.82 mg/L | 0.01 g | 8 | 25 | 12.28 mg/g | PSO | Langmuir model | ion exchange |
33 | Novel eco-friendly synthesized Alginate-Au nanoparticles-Mica bionanocomposite | Pb2+ Cu2+ | 50 mg/L | 0.01 g | 4 6 6 | 35 | 224.97 169.817 177.745 mg/g | PSO | Freundlich Langmuir Freundlich | dissociative adsorption mechanism |
34 | Natural Moroccan Clay | Cd2+ | 10–200 mg/L | 0.8 g | 5 | 25–55 | 5.25 mg/g | PSO | Langmuir model | chemisorption |
35 | Shanghai silty clay | Cd2+ Pb2+ As5+ Cr6+ | 100 mg/L 100 mg/L 50 mg/L 50 mg/L | 4 to 40 g 4 to 40 g 10 to 60 g 10 to 60 g | 7 | 25 | 26.46 8.90 2.80 1.85 mg/g | PSO | Langmuir Langmuir Freundlich Freundlich | Chemical precipitation ion exchange complexation |
36 | Xanthate watermelon rind | As5+ As3+ | 4 mg/L | 1 g | 8.2 | 20 | 96% 98% | PSO | Langmuir isotherm | |
37 | Watermelon rind in a well-stirred batch system | Cu2+ Zn2+ Pb2+ | 10 mg/L | 0.5 g | 5.0 6.8 6.8 | 20 | 6.281 mg/g 6.845 mg/g 98.063 mg/g | PSO | Langmuir adsorption isotherm | ion exchange and micro-precipitation |
38 | Dried potato peel (DPP) | Cu2+ | 25–300 mg/L | 0.25–1.5 g | 2–5 | 25 | 84.74 mg/g | PSO | Langmuir and Freundlich models | |
39 | Husk powder (PHP), | Pb2+ Mn2+ Cd2+ Ni2+ Co2+ | 20 mg/L | 5 g | 6 | 25 ± 2 °C | 100% 41% 45% 24% 30% | Langmuir | ||
40 | Green algae specie (Spirogyra and Cladophora spp) | Cu2+ Pb2+ | 100 mg/L | 1.0 g | 5 | 25 | 92.5–85.1%, 88.0%, and 82.6% | Langmuir Freundlich model | physical adsorption and chemical adsorption |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abiodun, O.-A.O.; Oluwaseun, O.; Oladayo, O.K.; Abayomi, O.; George, A.A.; Opatola, E.; Orah, R.F.; Isukuru, E.J.; Ede, I.C.; Oluwayomi, O.T.; et al. Remediation of Heavy Metals Using Biomass-Based Adsorbents: Adsorption Kinetics and Isotherm Models. Clean Technol. 2023, 5, 934-960. https://doi.org/10.3390/cleantechnol5030047
Abiodun O-AO, Oluwaseun O, Oladayo OK, Abayomi O, George AA, Opatola E, Orah RF, Isukuru EJ, Ede IC, Oluwayomi OT, et al. Remediation of Heavy Metals Using Biomass-Based Adsorbents: Adsorption Kinetics and Isotherm Models. Clean Technologies. 2023; 5(3):934-960. https://doi.org/10.3390/cleantechnol5030047
Chicago/Turabian StyleAbiodun, Okon-Akan Omolabake, Oluwasogo Oluwaseun, Olaoye Kayode Oladayo, Omoogun Abayomi, Akpowu Arubi George, Emmanuel Opatola, Robinson Friday Orah, Efe Jeffery Isukuru, Ifunanya Chiamaka Ede, Oluwadara Temitayo Oluwayomi, and et al. 2023. "Remediation of Heavy Metals Using Biomass-Based Adsorbents: Adsorption Kinetics and Isotherm Models" Clean Technologies 5, no. 3: 934-960. https://doi.org/10.3390/cleantechnol5030047
APA StyleAbiodun, O. -A. O., Oluwaseun, O., Oladayo, O. K., Abayomi, O., George, A. A., Opatola, E., Orah, R. F., Isukuru, E. J., Ede, I. C., Oluwayomi, O. T., Okolie, J. A., & Omotayo, I. A. (2023). Remediation of Heavy Metals Using Biomass-Based Adsorbents: Adsorption Kinetics and Isotherm Models. Clean Technologies, 5(3), 934-960. https://doi.org/10.3390/cleantechnol5030047