Effect of Methane on Combustion of Glycerol and Methanol Blends Using a Novel Swirl Burst Injector in a Model Dual-Fuel Gas Turbine Combustor
Abstract
:1. Introduction
2. Experimental Setup
2.1. Working Principle of Swirl Burst Injector
2.2. Experimental Setup of the Model Dual-Fuel Gas Turbine Combustor
3. Results and Discussion
3.1. The Effect of Methane Amount in the Dual-Fuel Combustion
3.1.1. Global Flame Characteristics for Various Methane Amount in the Dual-Fuel Combustion
The Effect of Methane Amount on Visual Flame Images
The Effect of Methane Amount on Emissions in Combustion Gas Products
3.1.2. Combustion Completeness Estimation for the Varying Methane Amount
3.2. The Effect of ALR
3.2.1. Global Flame Characteristics for Various ALRs of G/M of 60/40 Methane Dual-Fuel Combustion
The Effect of ALR on Visual Flame Images
The Effect of ALR on Emissions in Combustion Gas Products
3.2.2. Combustion Completeness Estimation for the Varying ALRs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
AA | atomizing air or gas |
AB | air blast |
ALR | air or gas to liquid mass ratio |
AO | algae oil |
CH4 | methane |
CO | carbon monoxide |
D | diameter of the center liquid fuel channel and the injector exit |
FB | flow blurring |
G/M | glycerol/methanol |
LPM | lean premixed combustion |
H | gap between the center liquid fuel channel tip and injector exit |
HRR | heat release rate |
MFC | mass flow controller |
MLPM | milliliter per minute |
NG | natural gas |
NOx | nitrogen oxides (including NO and NO2) |
PA | primary air |
SB | swirl burst |
SLPM | standard liter per minute |
SMD | Sauter mean diameter |
SN | swirl number |
VO | vegetable oil |
hub diameter | |
tip diameter | |
exit vane angle |
References
- Suhara, A.; Karyadi; Herawan, S.G.; Tirta, A.; Idris, M.; Roslan, M.F.; Putra, N.R.; Hananto, A.L.; Veza, I. Biodiesel Sustainability: Review of Progress and Challenges of Biodiesel as Sustainable Biofuel. Clean Technol. 2024, 6, 886–906. [Google Scholar] [CrossRef]
- Leung, D.Y.C.; Wu, X.; Leung, M.K.H. A Review on Biodiesel Production Using Catalyzed Transesterification. Appl. Energy 2010, 87, 1083–1095. [Google Scholar] [CrossRef]
- Farag, H.A.; El-Maghraby, A.; Taha, N.A. Transesterification of Esterified Mixed Oil for Biodiesel Production. Int. J. Chem. Biochem. Sci. 2012, 2, 105–114. [Google Scholar]
- Yuan, Z.; Xia, S.; Chen, P.; Hou, Z.; Zheng, X. Etherification of Biodiesel-Based Glycerol with Bioethanol over Tungstophosphoric Acid To Synthesize Glyceryl Ethers. Energy Fuels 2011, 25, 3186–3191. [Google Scholar] [CrossRef]
- Quispe, C.A.G.; Coronado, C.J.R.; Carvalho, J.A., Jr. Glycerol: Production, Consumption, Prices, Characterization and New Trends in Combustion. Renew. Sustain. Energy Rev. 2013, 27, 475–493. [Google Scholar] [CrossRef]
- Feng, C.; Zhang, M.; Wu, H. Combustion of Fuel Mixtures Containing Crude Glycerol (CG): Important Role of Interactions between CG and Fuel Components in Particulate Matter Emission. Ind. Eng. Chem. Res. 2018, 57, 4132–4138. [Google Scholar] [CrossRef]
- Jiang, L.; Agrawal, A.K. Combustion of Straight Glycerol with/without Methane Using a Fuel-Flexible, Low-Emissions Burner. Fuel 2014, 136, 177–184. [Google Scholar] [CrossRef]
- Islam, S.M.R.; Patel, I.; Jiang, L. Effect of Methane in Global Combustion Characteristics of Glycerol and Methanol Blend by Using a Novel Swirl Burst Injector. In Proceedings of the 2024 AIAA SciTech Forum and Exposition, Orlando, FL, USA, 8–12 January 2024. [Google Scholar]
- He, Q.; McNutt, J.; Yang, J. Utilization of the Residual Glycerol from Biodiesel Production for Renewable Energy Generation. Renew. Sustain. Energy Rev. 2017, 71, 63–76. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Muldoon, V.L.; Deng, S. Crude Glycerol and Glycerol as Fuels and Fuel Additives in Combustion Applications. Renew. Sustain. Energy Rev. 2022, 159, 112206. [Google Scholar] [CrossRef]
- Chilakamarry, C.R.; Mimi Sakinah, A.M.; Zularisam, A.W.; Pandey, A.; Vo, D.-V.N. Technological Perspectives for Utilisation of Waste Glycerol for the Production of Biofuels: A Review. Environ. Technol. Innov. 2021, 24, 101902. [Google Scholar] [CrossRef]
- Agwu, O.; Valera-Medina, A.; Katrašnik, T.; Seljak, T. Flame Characteristics of Glycerol/Methanol Blends in a Swirl-Stabilised Gas Turbine Burner. Fuel 2021, 290, 119968. [Google Scholar] [CrossRef]
- Deka, T.J.; Osman, A.I.; Baruah, D.C.; Rooney, D.W. Methanol Fuel Production, Utilization, and Techno-Economy: A Review. Environ. Chem. Lett. 2022, 20, 3525–3554. [Google Scholar] [CrossRef]
- Jiang, L.; Hall, T.; Williams, D.; Swinney, R. Global Combustion Characteristics of Glycerol and Methanol Blends Using a Novel Fuel-Flexible Injector. In Proceedings of the 2023 AIAA SCITECH Forum, Online, National Harbor, MD, USA, 23–27 January 2023. [Google Scholar]
- Lefebvre, A.H. Airblast Atomization. Prog. Energy Combust. Sci. 1980, 6, 233–261. [Google Scholar] [CrossRef]
- Simmons, B.M.; Agrawal, A.K. Spray Characteristics of a Flow-Blurring Atomizer. At. Sprays 2010, 20, 821–835. [Google Scholar] [CrossRef]
- Akinyemi, O.S.; Jiang, L. Development and Combustion Characterization of a Novel Twin-Fluid Fuel Injector in a Swirl-Stabilized Gas Turbine Burner Operating on Straight Vegetable Oil. Exp. Therm. Fluid Sci. 2019, 102, 279–290. [Google Scholar] [CrossRef]
- Institute of Mechanics and Thermodynamics, Chemnitz University of Technology, Chemnitz, Germany; Roudini, M.; Wozniak, G. Investigation of the Secondary Atomization in Prefilming Air-Blast Atomizers. IJCEA 2019, 10, 138–143. [Google Scholar] [CrossRef]
- Guildenbecher, D.R.; López-Rivera, C.; Sojka, P.E. Secondary Atomization. Exp. Fluids 2009, 46, 371–402. [Google Scholar] [CrossRef]
- Bhayaraju, U.; Hassa, C. Planar Liquid Sheet Breakup of Prefilming and Nonprefilming Atomizers at Elevated Pressures. At. Sprays 2009, 19, 1147–1169. [Google Scholar] [CrossRef]
- Simmons, B.M.; Panchasara, H.V.; Agrawal, A.K. A Comparison of Air-Blast and Flow-Blurring Injectors Using Phase Doppler Particle Analyzer Technique. In Proceedings of the ASME Turbo Expo, Orlando, FL, USA, 8–12 June 2009; pp. 981–992. [Google Scholar]
- Qavi, I.; Jiang, L.; Akinyemi, O.S. Near-Field Spray Characterization of a High-Viscosity Alternative Jet Fuel Blend C-3 Using a Flow Blurring Injector. Fuel 2021, 293, 120350. [Google Scholar] [CrossRef]
- Hendershott, T.H.; Stouffer, S.; Monfort, J.R.; Diemer, J.; Busby, K.; Corporan, E.; Wrzesinski, P.; Caswell, A.W. Ignition of Conventional and Alternative Fuel at Low Temperatures in a Single-Cup Swirl-Stabilized Combustor. In Proceedings of the AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 8–12 January 2018. [Google Scholar]
- Gañán-Calvo, A.M. Enhanced Liquid Atomization: From Flow-Focusing to Flow-Blurring. Appl. Phys. Lett. 2005, 86, 214101. [Google Scholar] [CrossRef]
- Panchasara, H.V.; Sequera, D.E.; Schreiber, W.C.; Agrawal, A.K. Emissions Reductions in Diesel and Kerosene Flames Using a Novel Fuel Injector. J. Propuls. Power 2009, 25, 984–987. [Google Scholar] [CrossRef]
- Jiang, L.; Agrawal, A.K. Spray Features in the near Field of a Flow-Blurring Injector Investigated by High-Speed Visualization and Time-Resolved PIV. Exp. Fluids 2015, 56, 103. [Google Scholar] [CrossRef]
- Simmons, B.M.; Agrawal, A.K. Drop Size and Velocity Measurements in Bio-Oil Sprays Produced by the Flow-Blurring Injector. In Proceedings of the ASME Turbo Expo, ASMEDC, Vancouver, BC, Canada, 6–10 June 2011; pp. 701–710. [Google Scholar]
- Panchasara, H.V.; Simmons, B.M.; Agrawal, A.K.; Spear, S.K.; Daly, D.T. Combustion Performance of Biodiesel and Diesel-Vegetable Oil Blends in a Simulated Gas Turbine Burner. In Proceedings of the ASME Turbo Expo, Berlin, Germany, 9–13 June 2008. [Google Scholar]
- Qavi, I.; Jiang, L. Optical Characterization of Near-Field Sprays for Various Alternative and Conventional Jet Fuels Using a Flow-Blurring Injector. Flow Turbul. Combust. 2022, 108, 599–624. [Google Scholar] [CrossRef]
- Jiang, L.; Agrawal, A.K. Investigation of Glycerol Atomization in the Near-Field of a Flow-Blurring Injector Using Time-Resolved PIV and High-Speed Visualization. Flow Turbul. Combust. 2015, 94, 323–338. [Google Scholar] [CrossRef]
- Simmons, B.M.; Agrawal, A.K. Flow Blurring Atomization for Low-Emission Combustion of Liquid Biofuels. Combust. Sci. Technol. 2012, 184, 660–675. [Google Scholar] [CrossRef]
- Sharma, S.; Biswal, Y.; Drabo, M.; Kolhe, P.S. Effect of Flow Field on Glycerol Combustion in a Swirl Stabilized Combustor Employing Flow Blurring Atomizer. In Proceedings of the 9th Thermal and Fluids Engineering Conference (TFEC), Corvallis, OR, USA, 21–24 April 2024. [Google Scholar]
- Biswal, Y.; Sharma, S.; Warghat, K.V.; Nayak, G.M.; Drabo, M.; Kolhe, P.S. Characterization of Flame Morphology for Twin Fluid Atomizer-Based Swirl Stabilized Combustor. In Proceedings of the AIAA SCITECH Forum, Orlando, FL, USA, 8–12 January 2024. [Google Scholar]
- Jiang, L.; Akinyemi, O.S.; Danh, V. Investigation of Combustion Characteristics of Straight Vegetable Oil for a Novel Twin-Fluid Fuel Injector: Heterogeneous Combustion. In Proceedings of the 10th U. S. National Combustion Meeting Organized by the Eastern States Section of the Combustion Institute, College Park, MD, USA, 23–26 April 2017. [Google Scholar]
- Danh, V.; Akinyemi, O.S.; Taylor, C.E.; Frank, J.T.; Jiang, L. Effect of Injector Swirl Number on Near-Field Spray Characteristics of a Novel Twin-Fluid Injector. Exp. Fluids 2019, 60, 80. [Google Scholar] [CrossRef]
- Akinyemi, O.S.; Jiang, L.; Hernandez, R.; McIntyre, C.; Holmes, W. Combustion of Straight Algae Oil in a Swirl-Stabilized Burner Using a Novel Twin-Fluid Injector. Fuel 2019, 241, 176–187. [Google Scholar] [CrossRef]
- Akinyemi, O.S.; Qavi, I.; Taylor, C.E.; Jiang, L. Effect of the Air-to-Liquid Mass Ratio on the Internal Flow and near-Field Spray Characteristics of a Two-Phase Swirl Burst Injector. J. Aerosol Sci. 2023, 167, 106092. [Google Scholar] [CrossRef]
- Breerwood, J.; Jiang, L.; Ahmed, M.S. Near-Field Spray Characteristics and Steadiness of a Novel Twin-Fluid Injector with Enhanced Primary Atomization. J. Aerosol Sci. 2024, 180, 106402. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Cary, J.; Fezzaa, K.; Clark, S.; McClain, S.T.; Jiang, L. Effect of Internal and External Swirls on Near-Field Spray Characteristics of Swirl Burst Injectors Using High-Speed X-Ray Imaging. In Proceedings of the AIAA SCITECH Forum, Orlando, FL, USA, 8–12 January 2024. [Google Scholar]
- Danh, V.; Jiang, L.; Akinyemi, O.S. Investigation of Water Spray Characteristics in the near Field of a Novel Swirl Burst Injector. Exp. Therm. Fluid Sci. 2019, 102, 376–386. [Google Scholar] [CrossRef]
- Murugan, R.; Kolhe, P.S.; Sahu, K.C. A Combined Experimental and Computational Study of Flow-Blurring Atomization in a Twin-Fluid Atomizer. Eur. J. Mech.—B/Fluids 2020, 84, 528–541. [Google Scholar] [CrossRef]
- Ling, Y.; Jiang, L. A Detailed Numerical Investigation of Two-Phase Flows Inside a Planar Flow-Blurring Atomizer. At. Sprays 2024, 34, 1–20. [Google Scholar] [CrossRef]
- Nasim, M.N.; Qavi, I.; Jiang, L. Effect of Varying Internal Geometry on the Near-Field Spray Characteristics of a Swirl Burst Injector. Flow Turbul. Combust. 2023, 111, 641–674. [Google Scholar] [CrossRef]
- Cravero, C.; Marogna, N.; Marsano, D. A Numerical Study of Correlation Between Recirculation Length and Shedding Frequency in Vortex Shedding Phenomena. WSEAS Trans. Fluid Mech. 2021, 16, 48–62. [Google Scholar] [CrossRef]
- Shi, L.; Yang, G.; Yao, S. Large Eddy Simulation of Flow Past a Square Cylinder with Rounded Leading Corners: A Comparison of 2D and 3D Approaches. J. Mech. Sci. Technol. 2018, 32, 2671–2680. [Google Scholar] [CrossRef]
- Papagiannakis, R.G.; Hountalas, D.T. Combustion and Exhaust Emission Characteristics of a Dual Fuel Compression Ignition Engine Operated with Pilot Diesel Fuel and Natural Gas. Energy Convers. Manag. 2004, 45, 2971–2987. [Google Scholar] [CrossRef]
- Guido, C.; Alfè, M.; Gargiulo, V.; Napolitano, P.; Beatrice, C.; Del Giacomo, N. Chemical/Physical Features of Particles Emitted from a Modern Automotive Dual-Fuel Methane–Diesel Engine. Energy Fuels 2018, 32, 10154–10162. [Google Scholar] [CrossRef]
- Malaquias, A.C.T.; da Costa, R.B.R.; Netto, N.A.D.; Coronado, C.J.R.; Baêta, J.G.C. A Review of Dual-Fuel Combustion Mode in Spark-Ignition Engines. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 426. [Google Scholar] [CrossRef]
- Di Iorio, S.; Sementa, P.; Vaglieco, B.M. Experimental Investigation of a Methane-Gasoline Dual-Fuel Combustion in a Small Displacement Optical Engine. In Proceedings of the 11th International Conference on Engines & Vehicles, Capri, Napoli, Italy, 15–19 September 2013. [Google Scholar]
- Altaher, M.A.; Li, H.; Andrews, G.E. Co-Firing of Kerosene and Biodiesel with Natural Gas in a Low NOx Radial Swirl Combustor. In Volume 1: Aircraft Engine; Ceramics; Coal, Biomass and Alternative Fuels; Controls, Diagnostics and Instrumentation, Proceedings of the ASME Turbo Expo 2012, Copenhagen, Denmark, 11–15 June 2012; American Society of Mechanical Engineers: New York, NY, USA, 2012; pp. 557–567. [Google Scholar]
- Chong, C.T.; Chiong, M.-C.; Ng, J.-H.; Tran, M.-V.; Valera-Medina, A.; Józsa, V.; Tian, B. Dual-Fuel Operation of Biodiesel and Natural Gas in a Model Gas Turbine Combustor. Energy Fuels 2020, 34, 3788–3796. [Google Scholar] [CrossRef]
- Hall, T.; Williams, D.; Islam, S.M.R.; Patel, I.; Chakmakjian, C.; Jiang, L. Clean Co-Combustion of Glycerol and Methanol Blends Using a Novel Fuel-Flexible Injector. Fuel 2024, 371, 132125. [Google Scholar] [CrossRef]
- Lilley, D.G. Swirl Flows in Combustion: A Review. AIAA J. 1977, 15, 1063–1078. [Google Scholar] [CrossRef]
- Khandelwal, B.; Lili, D.; Sethi, V. Design and Study on Performance of Axial Swirler for Annular Combustor by Changing Different Design Parameters. J. Energy Inst. 2014, 87, 372–382. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Geng, H.; Zhen, X.; Liu, M.; Xu, S.; Li, C. Effects of Diesel and Methanol Injection Timing on Combustion, Performance, and Emissions of a Diesel Engine Fueled with Directly Injected Methanol and Pilot Diesel. Appl. Therm. Eng. 2019, 163, 114234. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Meng, X.; Tian, J.; Wang, Y.; Long, W.; Li, S. Combustion Characteristics of High Pressure Direct-Injected Methanol Ignited by Diesel in a Constant Volume Combustion Chamber. Fuel 2019, 254, 115598. [Google Scholar] [CrossRef]
- Duraisamy, G.; Rangasamy, M.; Govindan, N. A Comparative Study on Methanol/Diesel and Methanol/PODE Dual Fuel RCCI Combustion in an Automotive Diesel Engine. Renew. Energy 2020, 145, 542–556. [Google Scholar] [CrossRef]
- Seljak, T.; Katrašnik, T. Emission Reduction through Highly Oxygenated Viscous Biofuels: Use of Glycerol in a Micro Gas Turbine. Energy 2019, 169, 1000–1011. [Google Scholar] [CrossRef]
- Ferreira, A.G.M.; Egas, A.P.V.; Fonseca, I.M.A.; Costa, A.C.; Abreu, D.C.; Lobo, L.Q. The Viscosity of Glycerol. J. Chem. Thermodyn. 2017, 113, 162–182. [Google Scholar] [CrossRef]
- Exclusively Canon, Essential for EOS Users. Available online: https://www.eos-magazine.com/articles/eospedia/what-is/iso.html (accessed on 12 October 2024).
- Turns, S.R. An Introduction to Combustion: Concepts and Applications, 3rd ed.; McGraw-Hill: New York, NY, USA, 2012; ISBN 978-0-07-338019-3. [Google Scholar]
- Li, S.; Qian, W.; Liu, H.; Liu, G.; Zhu, M. Autoignition and Flame Lift-off Behavior of a Fuel Jet Mixing with Turbulent Hot Air Coflow. Proc. Combust. Inst. 2021, 38, 6385–6392. [Google Scholar] [CrossRef]
- Kalghatgi, T.G. Lift-off Heights and Visible Lengths of Vertical Turbulent Jet Diffusion Flames in Still Air. Combust. Sci. Technol. 1984, 41, 17–29. [Google Scholar] [CrossRef]
- Çengel, Y.A.; Ghajar, A.J. Heat and Mass Transfer: Fundamentals & Applications, 5th ed.; McGraw Hill Education: New York, NY, USA, 2015; ISBN 978-0-07-339818-1. [Google Scholar]
- Bradley, D.; Entwistle, A.G. Determination of the Emissivity, for Total Radiation, of Small Diameter Platinum-10% Rhodium Wires in the Temperature Range 600-1450 C. Br. J. Appl. Phys. 1961, 12, 708–711. [Google Scholar] [CrossRef]
- Hindasageri, V.; Vedula, R.P.; Prabhu, S.V. Thermocouple Error Correction for Measuring the Flame Temperature with Determination of Emissivity and Heat Transfer Coefficient. Rev. Sci. Instrum. 2013, 84, 024902. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Panahi, A.; Levendis, Y.A. Spectral Emissivity and Temperature of Heated Surfaces Based on Spectrometry and Digital Thermal Imaging—Validation with Thermocouple Temperature Measurements. Exp. Therm. Fluid Sci. 2020, 112, 110017. [Google Scholar] [CrossRef]
- Petrov, V.; Reznik, V. Measurement of the Emissivity of Quartz Glass. High Temp.-High Press. 1972, 4, 687–693. [Google Scholar]
- Çengel, Y.A. Heat Transfer: A Practical Approach, 2nd ed.; McGraw-Hill Companies: New York, NY, USA, 2002; ISBN 0-07-245893-3. [Google Scholar]
- Shannon, K.S.; Butler, B.W. A Review of Error Associated with Thermocouple Temperature Measurement in Fire Environments. In Proceedings of the 2nd International Wildland Fire Ecology and Fire Management Congress and the 5th Symposium on Fire and Forest Meteorology, Orlando, FL, USA, 16–20 November 2003. [Google Scholar]
Parts | Dimensions |
---|---|
Center channel diameter, D | 1.5 mm |
The gap between the liquid flow tube exit and atomizer exit, H | 0.375 mm |
1.5 mm | |
2.1 mm | |
70° | |
Injector swirl number, ISN | 2.4 |
Property | Diesel | Methanol | Glycerol | G/M of 60/40 Blend |
---|---|---|---|---|
Chemical formula | C11.125H19.992 | CH4O | C3H8O3 | N/A |
Lower heating value, LHV (MJ/kg) | 44.60 | 19.90 | 15.80 | 17.22 |
Density at 25 °C (kg/m3) | 834.00 | 791.00 | 1260.00 | 1045.46 |
Kinematic viscosity at 25 °C (mm2/s) | 3.88 | 0.59 | 965.80 | 8.02 |
Auto-ignition temperature (°C) | 260.00 | 464.00 | 370.00 | N/A |
Vaporization temperature (°C) | 160.00–370.00 | 64.70 | 290.00 | N/A |
Heat of vaporization (kJ/kg) | 250.00 | 726.10 | 662.00 | N/A |
Stoichiometric air/fuel ratio (mol/mol) | 16.12 | 7.14 | 16.66 | 10.92 |
ALR | HRR of G/M of 60/40 Fuel (kW) | HRR of Methane (kW) | G/M of 60/40 Blend Volume Flow Rate (MLPM) | Methane Flow Rate (SLPM) | Atomizing Air Flow Rate (SLPM) | Primary Air Flow Rate (SLPM) |
---|---|---|---|---|---|---|
3.0 | 7.0 | 0 | 23.33 | 0 | 57.37 | 86.99 |
3.0 | 6.8 | 0.2 | 22.67 | 0.33 | 55.74 | 88.05 |
3.0 | 6.6 | 0.4 | 22.00 | 0.67 | 54.10 | 89.12 |
3.0 | 6.4 | 0.6 | 21.33 | 1.00 | 52.46 | 90.18 |
3.0 | 6.2 | 0.8 | 20.67 | 1.33 | 50.82 | 91.25 |
3.0 | 6.0 | 1.0 | 20.00 | 1.67 | 49.18 | 92.33 |
3.0 | 5.5 | 1.5 | 18.33 | 2.50 | 45.08 | 94.97 |
3.0 | 5.0 | 2.0 | 16.67 | 3.34 | 40.98 | 97.64 |
3.0 | 4.5 | 2.5 | 15.00 | 4.17 | 36.88 | 100.30 |
3.0 | 4.0 | 3.0 | 13.33 | 5.00 | 32.79 | 102.96 |
2.5 | 6.0 | 1.0 | 20.00 | 1.67 | 40.98 | 100.51 |
2.0 | 6.0 | 1.0 | 20.00 | 1.67 | 32.79 | 108.70 |
Advantages | Limitations |
---|---|
Without air nor fuel pre-heating, achieving lean-premixed combustion with near zero NOx and CO emissions of the dual-fuel G/M 60/40-methane with the methane amount of 0–3.0 kW. | Approximation of the properties of combustion products as air properties, that leads to the qualitative estimate of the combustion completeness. |
Determining the optimum methane amount to enhance the efficiency of the dual-fuel combustion of G/M 60/40-methane blends. | Use of unburned hydrocarbon measurement device can provide more accurate results of combustion completeness. |
Achieving complete combustion of G/M 60/40-methane blends with a small amount of methane at 1 kW by using the novel SB injector at an ALR of 2.5, enabling use of waste crude glycerol as a biofuel. | Current simple flame color imaging could not provide more insight into the flame characteristics compared to other advanced optical diagnostics. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, S.M.R.; Patel, I.; Jiang, L. Effect of Methane on Combustion of Glycerol and Methanol Blends Using a Novel Swirl Burst Injector in a Model Dual-Fuel Gas Turbine Combustor. Clean Technol. 2024, 6, 1445-1464. https://doi.org/10.3390/cleantechnol6040069
Islam SMR, Patel I, Jiang L. Effect of Methane on Combustion of Glycerol and Methanol Blends Using a Novel Swirl Burst Injector in a Model Dual-Fuel Gas Turbine Combustor. Clean Technologies. 2024; 6(4):1445-1464. https://doi.org/10.3390/cleantechnol6040069
Chicago/Turabian StyleIslam, S. M. Rafiul, Ishaan Patel, and Lulin Jiang. 2024. "Effect of Methane on Combustion of Glycerol and Methanol Blends Using a Novel Swirl Burst Injector in a Model Dual-Fuel Gas Turbine Combustor" Clean Technologies 6, no. 4: 1445-1464. https://doi.org/10.3390/cleantechnol6040069
APA StyleIslam, S. M. R., Patel, I., & Jiang, L. (2024). Effect of Methane on Combustion of Glycerol and Methanol Blends Using a Novel Swirl Burst Injector in a Model Dual-Fuel Gas Turbine Combustor. Clean Technologies, 6(4), 1445-1464. https://doi.org/10.3390/cleantechnol6040069