Measurement and Correlation of Vapor–Liquid Equilibrium of Mixtures of 1,2-Propanediol or 1,4-Butanediol + 1,8-Diazabicyclo(5.4.0)undec-7-ene at 30 kPa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Used
2.2. Experimental Apparatus
2.3. Experimental Procedure
2.4. Estimation of Uncertainties
3. Experimental Results
3.1. 1,2-Propanediol+DBU
3.2. 1,4-Butanediol+DBU
4. Thermodynamic Modeling
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Z.; Deng, Z.; Davies, S.; Ciais, P. Monitoring global carbon emissions in 2022. Nat. Rev. Earth Environ. 2023, 4, 205–206. [Google Scholar] [CrossRef]
- Chao, C.; Deng, Y.; Dewil, R.; Baeyens, J.; Fan, X. Post-combustion carbon capture. Renew. Sustain. Energy Rev. 2021, 138, 110490. [Google Scholar] [CrossRef]
- Gao, W.; Liang, S.; Wang, R.; Jiang, Q.; Zhang, Y.; Zheng, Q.; Xie, B.; Toe, C.Y.; Zhu, X.; Wang, J.; et al. Industrial carbon dioxide capture and utilization: State of the art and future challenges. Chem. Soc. Rev. 2020, 23, 8584–8686. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, H.; Wang, Y.; Qi, C.; Shihan, Z.; Li, L.W.M. Development of biphasic solvent for CO2 capture by tailoring the polarity of amine solution. Fuel 2022, 325, 124885. [Google Scholar] [CrossRef]
- Singh, P.; Shah, S.; Rai, S.K. Post-combustion carbon capture by polymeric membrane: A review. Mater. Today Proc. 2022, 62, 318–324. [Google Scholar] [CrossRef]
- Raganati, F.; Miccio, F.; Ammendola, P. Adsorption of Carbon Dioxide for Post-combustion Capture: A Review. Energy Fuels 2021, 35, 12845–12868. [Google Scholar] [CrossRef]
- Heldebrant, D.J.; Koech, P.K.; Glezakou, V.A.; Rousseau, R.; Malhotra, D.; Cantu, D.C. Water-Lean Solvents for Post-Combustion CO2 Capture: Fundamentals, Uncertainties, Opportunities, and Outlook. Chem. Rev. 2017, 117, 9594–9624. [Google Scholar] [CrossRef] [PubMed]
- De Guido, G.; Pellegrini, L.A. Calculation of solid-vapor equilibria for cryogenic carbon capture. Comput. Ad Chem. Eng. 2022, 156, 107569. [Google Scholar] [CrossRef]
- IEA. Energy Technology Perspectives 2020—Special Report on Carbon Capture Utilisation and Storage: CCUS in Clean Energy Transitions; OECD Publishing: Paris, France, 2020; p. 171. [Google Scholar]
- Rochelle, G.T. Amine Scrubbing for CO2 Capture. Science 2009, 325, 1652–1654. [Google Scholar] [CrossRef]
- Ye, Y.; Zhao, X.; Chen, J.; Fang, M. Pilot-Scale Experimental Study of a New High-Loading Absorbent for Capturing CO2 from Flue Gas. Processes 2022, 10, 599. [Google Scholar] [CrossRef]
- Kladkaew, N.; Idem, R.; Tontiwachwuthikul, P.; Saiwan, C. Corrosion Behavior of Carbon Steel in the Monoethanolamine-H2O-CO2-O2-SO2 System: Products, Reaction Pathways, and Kinetics. Ind. Eng. Chem. Res. 2009, 48, 10169–10179. [Google Scholar] [CrossRef]
- Davis, J.; Rochelle, G. Thermal degradation of monoethanolamine at stripper conditions. Energy Procedia 2009, 1, 327–333. [Google Scholar] [CrossRef]
- Novitsky, E.G.; Grushevenko, E.A.; Borisov, I.L.; Anokhina, T.S.; Bazhenov, S.D. Monoethanolamine (MEA) Degradation: Influence on the Electrodialysis Treatment of MEA-Absorbent. Membranes 2023, 13, 491. [Google Scholar] [CrossRef]
- Jessop, P.G.; Heldebrant, D.J.; Li, X.; Eckert, C.A.; Liotta, C.L. Green chemistry: Reversible nonpolari-to-polar solvent. Nature 2005, 436, 1102. [Google Scholar] [CrossRef]
- Heldebrant, D.J.; Yonker, C.R.; Jessop, P.G.; Phan, L. CO2-binding organic liquids (CO2BOLs) for post-combustion CO2 capture. Energy Procedia 2009, 1, 1187–1195. [Google Scholar] [CrossRef]
- Lide, D.R. Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Heldebrant, D.J.; Yonker, C.R.; Jessop, P.G.; Phan, L. Organic liquid CO2 capture agents with high gravimetric CO2 capacity. Energy Environ. Sci. 2008, 1, 487–493. [Google Scholar] [CrossRef]
- Heldebrant, D.J.; Koech, P.K.; Ang, M.T.C.; Liang, C.; Rainbolt, J.E.; Yonker, C.R.; Jessop, P.G. Reversible zwitterionic liquids, the reaction of alkanol guanidines, alkanol amidines, and diamines with CO2. Green Chem. 2010, 12, 713–721. [Google Scholar] [CrossRef]
- Wanderley, R.R.; Høisæter, K.H.; Knuutila, H.K. Signs of alkylcarbonate formation in water-lean solvents: VLE-based understanding of pKa and pKs effects. Int. J. Greenh. Gas Control 2021, 109, 103398. [Google Scholar] [CrossRef]
- Mathias, P.M.; Afshar, K.; Zheng, F.; Bearden, M.D.; Freeman, C.J.; Andrea, T.; Koech, P.K.; Kutnyakov, I.; Zwoster, A.; Smith, A.R.; et al. Improving the regeneration of CO2-binding organic liquids with a polarity change. Energy Environ. Sci. 2013, 6, 2233–2242. [Google Scholar] [CrossRef]
- Zhu, X.; Lu, H.; Wu, K.; Zhu, Y.; Liu, Y.; Liu, C.; Liang, B. DBU-glycerol solution: A CO2 absorbent with high desorption ratio and low regeneration energy. Environ. Sci. Technol. 2020, 54, 7570–7578. [Google Scholar] [CrossRef]
- Duan, H.; Zhu, K.; Lu, H.; Liu, C.; Wu, K.; Liu, Y.; Liang, B. CO2 absorption performance in a rotating disk reactor using DBU-glycerol as solvent. Chin. J. Chem. Eng. 2020, 28, 104–113. [Google Scholar] [CrossRef]
- Lin, S. Study on Thermodynamical Properties of 1,8-diazabicyclo [5.4.0 undec-7-ene (DBU)-glycerol and CO2-DBU-glycerol Solutions. Master’s Thesis, Sichuan University, Chengdu, China, 2018. [Google Scholar]
- Li, Y.; Lu, H.; Liu, Y.; Wu, K.; Zhu, Y.; Liang, B. CO2 absorption and desorption enhancement by nano-SiO2 in DBU-glycerol solution with high viscosity. Sep. Purif. Technol. 2023, 309, 122983. [Google Scholar] [CrossRef]
- Liu, F.; Jing, G.; Lv, B.; Zhou, Z. High regeneration efficiency and low viscosity of CO2 capture in a switchable ionic liquid activated by 2-amino-2-methyl-1-propanol. Int. J. Greenh. Gas Control 2017, 60, 162–171. [Google Scholar] [CrossRef]
- Hedayati, A.; Feyzi, F. CO2-binding organic liquids for high pressure CO2 absorption: Statistica mixture design approach and thermodynamic modeling of CO2 solubility using LJ-Global TPT2 EoS. J. Mol. Liq. 2021, 337, 116396. [Google Scholar] [CrossRef]
- Ostonen, A.; Uusi-Kyyny, P.; Pakkanen, M.; Alopaeus, V. Dew points of pure DBN and DBU and vapor-liquid equilibria of water + DBN and water + DBU systems for cellulose solvent recycling. Fluid. Phase Equilibria 2016, 408, 79–87. [Google Scholar] [CrossRef]
- Lipkind, D.; Rath, N.; Chickos, J.S.; Pozdeev, V.A.; Verevkin, S.P. The Vaporization Enthalpies of 2- and 4-(N,N-Dimethylamino)pyridine, 1,5-Diazabicyclo [4.3.0]non-5-ene, 1,8-Diazabicyclo[5.4.0]undec-7-ene, Imidazo[1,2-a]pyridine and 1,2,4-Triazolo[1,5-a]pyrimidine by Correlation-Gas Chromatography. J. Phys. Chem. B 2011, 115, 8785–8796. [Google Scholar] [CrossRef] [PubMed]
- Boddu, S.K.; Rehman, N.U.; Mohanta, T.K.; Majhi, A.; Avula, S.K.; Al-Harrasi, A. A review on DBU-mediated organic transformations. Green Chem. Lett. Rev. 2022, 15, 765–795. [Google Scholar] [CrossRef]
- Moioli, S.; De Guido, G.; Gilardi, M.; Pellegrini, L.A.; Bonalumi, D.; Lozza, G. Isobaric Vapor-Liquid Equilibrium Data for the Isopropanol-Water System. J. Chem. Eng. Data 2021, 66, 4148–4158. [Google Scholar] [CrossRef]
- De Guido, G.; Moioli, S.; Gilardi, M.; Giudici, F.; Pellegrini, L. Downstream processing of butanol produced by fermentation: Thermodynamic measurements and modelling. Chem. Eng. Trans. 2022, 92, 625–630. [Google Scholar]
- Spatolisano, E.; Barbieri, C.; Pellegrini, L.; Moioli, S. Thermodynamic study and simulation of the process of separation of the IPA+water mixture by heterogeneous azeotropic distillation. In Computer-Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2023; pp. 2507–2512. [Google Scholar]
- Taylor, B.N.; Kuyatt, C.E. Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results; NIST Technical Note 1297; National Institute of Standards and Technology: Gaithersburg, MD, USA, 1994. [Google Scholar]
- Mathuni, T.; Kim, J.-I.; Park, S.-J. Phase Equilibrium and Physical Properties for the Purification of Propylene Carbonate (PC) and y-Butyrolactone (GBL). J. Chem. Eng. Data 2011, 56, 89–96. [Google Scholar] [CrossRef]
- Gardner, P.J.; Hussain, K.S. The Standard Enthalpies of Formation of Some Aliphatic Diols. J. Chem. Thermodyn. 1972, 4, 819–827. [Google Scholar] [CrossRef]
- Renon, H.; Prausnitz, J.M. Local Compositions in Thermodynamic Excesss Functions for Liquid Mixtures. AIChE J. 1968, 14, 135–144. [Google Scholar] [CrossRef]
- Luyben, W.L.; Chien, I.L. Design and Control of Distillation Systems for Separating Azeotropes; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Abrams, D.S.; Prausnitz, J.M. Statistical Thermodynamics of liquid mixtures: A new expression for the Excess Gibbs Energy of Partly or Completely Miscible Systems. AIChE J. 1964, 86, 127. [Google Scholar] [CrossRef]
Component | CAS | Supplier | Purity (Mass Fraction) | Analysis Method | Density | Molecular Weight (g∙mol−1) | TNb [°C] | |
---|---|---|---|---|---|---|---|---|
Lit. a | Exp. | |||||||
1,2-propanediol | 57-55-6 | Sigma-Aldrich | 0.99 | GC | 1.036 | 1.0372 | 76.09 | 187 a |
1,4-butanediol | 110-63-4 | Sigma-Aldrich | 0.99 | GC | 1.017 | 1.0167 | 90.12 | 230 a |
1,8-diazabicyclo(5.4.0)undec-7-ene (DBU) | 6674-22-2 | Sigma-Aldrich | 0.98 | GC | 1.018 | 1.0190 | 152.24 | 261 [31] |
(a) | |
Tb [K] | x |
424.50 | 1 |
425.11 | 0.99 |
426.41 | 0.97 |
427.56 | 0.95 |
429.01 | 0.9 |
432.74 | 0.8 |
439.24 | 0.7 |
446.44 | 0.6 |
454.63 | 0.5 |
463.48 | 0.4 |
469.51 | 0.3 |
474.71 | 0.2 |
478.63 | 0.1 |
481.55 | 0.05 |
482.73 | 0.03 |
483.59 | 0.01 |
482.94 | 0 |
The average expanded uncertainties are U(pressure) = 0.3 kPa; U(temperature) = 0.3882 K. | |
(b) | |
Tb [K] | x |
463.65 | 1 |
464.08 | 0.99 |
464.31 | 0.97 |
464.69 | 0.95 |
465.98 | 0.9 |
469.26 | 0.8 |
473.15 | 0.7 |
477.96 | 0.6 |
482.00 | 0.5 |
484.86 | 0.4 |
486.58 | 0.3 |
486.63 | 0.2 |
485.19 | 0.1 |
484.07 | 0.0501 |
483.42 | 0.0301 |
483.19 | 0.01 |
482.94 | 0 |
The average expanded uncertainties are U(pressure) = 0.3 kPa; U(temperature) = 0.2506 K. |
NRTL | Wilson | UNIQUAC | ||||
---|---|---|---|---|---|---|
Parameter | Value [/] | Std. Dev. | Value [/] | Std. Dev. | Value [/] | Std. Dev. |
a 1,4-BuOH/DBU | 5.059 | 0.440 | 0.481 | 0.009 | 0.678 | 0.002 |
a DBU/1,4-BuOH | −2.523 | 0.033 | 0.861 | 0.292 | −0.545 | 0.031 |
a 1,2-PropOH/DBU | 5.067 | 0.034 | 1.006 | 0.002 | 0.644 | 0.001 |
a DBU/1,2-PropOH | −2.641 | 0.183 | 0.536 | 0.057 | −0.398 | 0.023 |
1,4-butanediol+DBU | |||||
NRTL | Wilson | UNIQUAC | |||
AAD% | 0.095 | AAD% | 0.111 | AAD% | 0.125 |
1,2-propanediol+DBU | |||||
NRTL | Wilson | UNIQUAC | |||
AAD% | 0.187 | AAD% | 0.221 | AAD% | 0.212 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbieri, C.; Schiattarella, V.; Moioli, S.; Pellegrini, L.A.; Filippini, G.; de Angelis, A.R.; Fiori, G. Measurement and Correlation of Vapor–Liquid Equilibrium of Mixtures of 1,2-Propanediol or 1,4-Butanediol + 1,8-Diazabicyclo(5.4.0)undec-7-ene at 30 kPa. Clean Technol. 2025, 7, 3. https://doi.org/10.3390/cleantechnol7010003
Barbieri C, Schiattarella V, Moioli S, Pellegrini LA, Filippini G, de Angelis AR, Fiori G. Measurement and Correlation of Vapor–Liquid Equilibrium of Mixtures of 1,2-Propanediol or 1,4-Butanediol + 1,8-Diazabicyclo(5.4.0)undec-7-ene at 30 kPa. Clean Technologies. 2025; 7(1):3. https://doi.org/10.3390/cleantechnol7010003
Chicago/Turabian StyleBarbieri, Camilla, Valentina Schiattarella, Stefania Moioli, Laura A. Pellegrini, Giacomo Filippini, Alberto R. de Angelis, and Gianluca Fiori. 2025. "Measurement and Correlation of Vapor–Liquid Equilibrium of Mixtures of 1,2-Propanediol or 1,4-Butanediol + 1,8-Diazabicyclo(5.4.0)undec-7-ene at 30 kPa" Clean Technologies 7, no. 1: 3. https://doi.org/10.3390/cleantechnol7010003
APA StyleBarbieri, C., Schiattarella, V., Moioli, S., Pellegrini, L. A., Filippini, G., de Angelis, A. R., & Fiori, G. (2025). Measurement and Correlation of Vapor–Liquid Equilibrium of Mixtures of 1,2-Propanediol or 1,4-Butanediol + 1,8-Diazabicyclo(5.4.0)undec-7-ene at 30 kPa. Clean Technologies, 7(1), 3. https://doi.org/10.3390/cleantechnol7010003