Acute Toxicity and Stress Behaviour of Heterobranchus bidorsalis Exposed to the Detergent Nittol® NTL
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Fish and Nittol Detergent
2.2. Acute Toxicity Test
2.3. Haematological Assay
2.4. Statistical Analysis
3. Results
Haematology
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yazar, K.; Johnsson, S.; Lind, M.L.; Boman, A.; Liden, C. Preservatives and fragrances in selected consumer-available cosmetics and detergents. Contact Dermat. 2011, 64, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Markwell, J.P.; Thornber, J.P.; Skrdla, M.P. Effect of detergents on the reliability of a chemical assay for P-700. Biochim. Biophys. Acta Bioenerg. 1980, 591, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Hidalgo, E.; Sottas, V.; von Goetz, N.; Hauri, U.; Bogdal, C.; Hungerbühler, K. Occurrence and concentrations of isothiazolinones in detergents and cosmetics in Switzerland. Contact Dermat. 2017, 76, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zhao, J.; Bayly, A.E. Development of surfactants and builders in detergent formulations. Chin. J. Chem. Eng. 2008, 16, 517–527. [Google Scholar] [CrossRef]
- Scheibel, J.J. The evolution of anionic surfactant technology to meet the requirements of the laundry detergent industry. J. Surfactants Deterg. 2004, 7, 319–328. [Google Scholar] [CrossRef]
- Smulders, E.; Rähse, W. Laundry Detergents; Wiley-Vch: Weinheim, Germany, 2002; p. 52. [Google Scholar]
- Kundu, S.; Coumar, M.V.; Rajendiran, S.; Rao, A.; Rao, A.S. Phosphates from detergents and eutrophication of surface water ecosystem in India. Curr. Sci. 2015, 108, 1320–1325. [Google Scholar]
- Mousavi, S.A.; Khodadoost, F. Effects of detergents on natural ecosystems and wastewater treatment processes: A review. Environ. Sci. Pollut. Res. 2019, 26, 26439–26448. [Google Scholar] [CrossRef]
- Wind, T. The Role of Detergents in the Phosphate-Balance of European Surface Waters; Official Publication of the European Water Association (EWA); European Water Association (EWA): Munich, Germany, 2007. [Google Scholar]
- Adewumi, A.A.; Olaleye, V.F. Catfish culture in Nigeria: Progress, prospects and problems. Afr. J. Agric. Res. 2011, 6, 1281–1285. [Google Scholar]
- Owodeinde, F.G.; Ndimele, P.E. Survival, growth and feed utilization of two clariid catfish (Clarias gariepinus, Burchell 1822 and Heterobranchus bidorsalis, Geoffroy, 1809) and their reciprocal hybrids. J. Appl. Ichthyol. 2011, 27, 1249–1253. [Google Scholar] [CrossRef]
- Adamu, K.M. Sublethal effects of tobacco (Nicotiana tobaccum) leaf dust on enzymatic activities of Heteroclarias (a hybrid of Heterobranchus bidorsalis and Clarias gariepinus). Jordan J. Biol. Sci. 2009, 2, 151–158. [Google Scholar]
- Mnkandla, S.M.; Basopo, N.; Siwela, A.H. The effect of persistent heavy metal exposure on some antioxidant enzyme activities and lipid peroxidation of the freshwater snail, Lymnaea Natalensis. Bull. Environ. Contam. Toxicol. 2019, 103, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Ivon, E.A.; Etangetuk, N.A.; Ubi, G.M.; Anyanwu, C.O.; Nkang, A.N.; Ekanem, A.P. Assessment of histopathological damages in African catfish (Clarias garienpinus) as Influenced by Nittol Detergent Aquatic Pollution in Nigeria. Annu. Res. Rev. Biol. 2020, 35, 1–11. [Google Scholar] [CrossRef]
- APHA (American Public Health Association, American Waterworks Association and Water Environmental Federation). Standard Methods of Examination of Water and Wastewater, 21st ed.; APHA: Washington, DC, USA, 2005; pp. 20001–23710. [Google Scholar]
- Little, E.E.; Archeski, R.D.; Flerov, B.A.; Kozlovskaya, V.I. Behavioural indicators of sublethal toxicity in rainbow trout. Arch. Environ. Contam. Toxicol. 1990, 19, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Finney, D.J. Probit Analysis; Cambridge University Press: London, UK, 1971; pp. 123–125. [Google Scholar]
- CCREM (Canadian Council of Resources and Environmental Ministry). Canadian Water Quality Guidelines; Inland Waters Directorate, Environment, Canadian Council of Resources and Environmental Ministry: Ottawa, ON, Canada, 1991. [Google Scholar]
- Zutshi, B.; Prasad, S.G.; Nagaraja, R. Alteration in haematology of Labeo rohita under the stress of pollution from Lakes of Bangalore, Karnataka, India. Environ. Monit. Assess. 2010, 168, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Farag, M.R.; Alagawany, M. Erythrocytes as a biological model for screening of xenobiotics toxicity. Chem. Biol. Interact. 2018, 279, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, M.; Pesaresi, M.G.; Amori, I.; Crosio, C.; Ferri, A.; Nencini, M.; Carri, M.T. Oligomerization of mutant SOD1 in mitochondria of motoneuronal cells drives mitochondrial damage and cell toxicity. Antioxid. Redox Signal. 2009, 11, 1547–1558. [Google Scholar] [CrossRef] [Green Version]
- Oyoroko, E.; Ogamba, E.N. Effects of detergent containing linear alkyl benzene sulphonate on the behavioural response of Heterobranchus bidorsalis, Clarias gariepinus and Heteroclarias. Biotechnol. Res. 2017, 3, 59–64. [Google Scholar]
- Mekuleyi, G.O.; Faleti, B.E. Effect of detergent surfactant on some selected electrolytes and metabolites of juvenile Heterobranchus bidorsalis. Braz. J. Biol. Sci. 2018, 5, 339–345. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, N.A.; Muhammed, F.; Muhhamed, F.; Eteng, A.O.; Zainab, M.; Bayero, U.; Adesakin, T.; Yusuf, A.; Abubaka, M. Pathologic Lesions and Antioxidant Response in the Liver of African Catfish Clarias Gariepinus (Burchell, 1822) Juvenile Exposed to Commercial-Grade Detergent. Biosci. J. 2022, 10, 292–305. [Google Scholar]
- Gabriel, U.U.; Jack, I.R.; Edori, O.S.; Egobueze, E. Electrolytes in selected tissues of Heterobranchus bidorsalis treated with sub-lethal levels of cypermethrin. Ethiop. J. Environ. Stud. Manag. 2009, 2, 83–87. [Google Scholar] [CrossRef] [Green Version]
- Uedeme-Naa, B.; Deekae, S.N. Organosomatic index and condition factors of Clarias gariepinus juvenile exposed to chronic levels of linear alkyl benzene sulphonate. Scientia 2016, 16, 104–107. [Google Scholar]
- Isyaku, B.; Solomon, J.R. Effects of detergents and the growth of the African catfish Clarias gariepinus. Trop. J. Zool. 2016, 19, 198–204. [Google Scholar]
- Biggers, W.J.; Pires, A.; Pechenik, J.A.; Johns, E.; Patel, P.; Polson, T.; Polson, J. Inhibitors of nitric oxide synthase induce larval settlement and metamorphosis of the polychaete annelid Capitella teleta. Invertebr. Reprod. Dev. 2012, 56, 1–13. [Google Scholar] [CrossRef]
- Hooper, C.; Day, R.; Slocombe, R.; Handlinger, J.; Benkendorff, K. Stress and immune responses in abalone: Limitations in current knowledge and investigative methods based on other models. Fish Shellfish Immunol. 2007, 22, 363–379. [Google Scholar] [CrossRef]
- Esenowo, I.K.; Ugwumba, O.A. Growth response of catfish (Clarias gariepinus) exposed to water-soluble fraction of detergent and diesel oil. Environ. Res. J. 2010, 4, 298–301. [Google Scholar] [CrossRef]
- Nkpondion, N.N.; Ugwumba, O.A.; Esenowo, I.K. The toxicity effect of detergent on enzymatic and protein activities of African mud catfish (Clarias gariepinus). J. Environ. Anal. Toxicol. 2016, 6, 361. [Google Scholar]
- Ettah, I.; Bassey, A.; Ibor, O.; Akaninyene, J.; Christopher, N. Toxicological and Histopathological Responses of African Clariid Mud Catfish, Clarias gariepinus (Buchell, 1822) Fingerlings Expose to Detergents (Zip and Omo). Annu. Res. Rev. Biol. 2017, 13, 1–9. [Google Scholar] [CrossRef] [Green Version]
- George, A.; Uedeme-Naa, B. Muscle, blood plasma and liver electrolytes of juvenile and adult freshwater catfish, Clarias gariepinus in response to treatment with detergent (Linear alkylbenzene sulfonate). Int. J. Fish Aquat. Stud. 2020, 8, 285–292. [Google Scholar]
- Sobrino-Figueroa, A. Toxic effect of commercial detergents on organisms from different trophic levels. Environ. Sci. Pollut. Res. 2018, 25, 13283–13291. [Google Scholar] [CrossRef]
- Bardach, J.E.; Fujiya, M.; Holl, A. Detergents: Effects on the chemical senses of the fish Ictalurus natalis (le Sueur). Science 1965, 148, 1605–1607. [Google Scholar] [CrossRef]
- Qayoom, I.; Balkhi, M.H.; Shah, F.A.; Bhat, B.A. Toxicological evaluation and effects of organophosphate compounds on haematological profile of juvenile common carps (Cyprinus carpio var. Communis). Indian J. Anim. Res. 2018, 52, 1469–1475. [Google Scholar]
- Akter, R.; Pervin, M.A.; Jahan, H.; Rakhi, S.F.; Reza, A.H.M.; Hossain, Z. Toxic effects of an organophosphate pesticide, envoy 50 SC on the histopathological, haematological, and brain acetylcholinesterase activities in stinging catfish (Heteropneustes fossilis). J. Basic Appl. Zool. 2020, 81, 47. [Google Scholar] [CrossRef]
- Owolabi, O.D.; Omojasola, P.F.; Abioye, F.J.; Aina, O.P. Physiological and bacteriological profile of the fish Clarias gariepinus (Siluriformes: Clariidae) chronically exposed to different concentrations of municipal waste leachate in Nigeria. Cuad. Investig. UNED 2019, 11, 182–197. [Google Scholar] [CrossRef] [Green Version]
- George, A.D.I.; Akinrotimi, O.A.; Nwokoma, U.K. Haematological changes in African catfish (Clarias gariepinus) exposed to a mixture of atrazine and metolachlor in the laboratory. J. FisheriesSciences.com 2017, 11, 48–54. [Google Scholar]
- Burgos-Aceves, M.A.; Lionetti, L.; Faggio, C. Multidisciplinary haematology as a prognostic device in environmental and xenobiotic stress-induced response in fish. Sci. Total Environ. 2019, 670, 1170–1183. [Google Scholar] [CrossRef] [PubMed]
- Athira, N.; Jaya, D.S. The Use of Fish Biomarkers for Assessing Textile Effluent Contamination of Aquatic Ecosystems: A Review. Nat. Environ. Pollut. Technol. 2018, 17, 25–43. [Google Scholar]
- Saxena, P.; Sharma, S.; Suryavathi, V.; Grover, R.; Soni, P.; Kumar, S.; Sharma, K.P. Effect of acute and chronic toxicity of four commercial detergents on the freshwater fish Gambusia affinis Baird & Gerard. J. Environ. Sci. Eng. 2005, 47, 119–124. [Google Scholar]
Behavioural Parameters | Period (h) | ||||
---|---|---|---|---|---|
Concentration mg/L | 24 | 48 | 72 | 96 | |
Rapid swimming | 1.60 | ++++ | ++++ | +++ | ++ |
1.40 | +++ | ++ | ++ | + | |
1.20 | - | ++ | + | + | |
1.00 | - | - | + | + | |
0.80 | - | - | - | + | |
0.00 | - | - | - | - | |
Air gulping | 1.60 | ++ | ++ | ++++ | ++++ |
1.40 | + | + | ++ | +++ | |
1.20 | - | + | + | ++ | |
1.00 | - | - | + | ++ | |
0.80 | - | - | - | + | |
0.00 | - | - | - | - | |
Loss of balance | 1.60 | ++ | ++ | ++++ | ++++ |
1.40 | + | + | ++ | +++ | |
1.20 | - | + | + | ++ | |
1.00 | - | - | + | ++ | |
0.80 | - | - | - | + | |
0.00 | - | - | - | - | |
Period of convulsion | 1.60 | ++ | ++ | ++++ | ++++ |
1.40 | + | + | ++ | +++ | |
1.20 | - | + | + | ++ | |
1.00 | - | - | + | ++ | |
0.80 | - | - | - | + | |
0.00 | - | - | - | - |
Concentration mgL−1 | Log Concentration | No Exposed Fish | Replicate1 | Replicate2 | Replicate3 | Cumulative Mortality | % Mortality | Probit Mortality |
---|---|---|---|---|---|---|---|---|
0 | 0 | 30 | 0 | 0 | 0 | 0 | 0 | 0 |
0.8 | −0.09 | 30 | 1 | 2 | 2 | 5 | 16.67 | 4.01 |
1 | 0 | 30 | 2 | 2 | 3 | 7 | 23.33 | 4.23 |
1.2 | 0.07 | 30 | 3 | 4 | 4 | 10 | 33.33 | 4.56 |
1.4 | 0.14 | 30 | 4 | 5 | 4 | 13 | 43.33 | 4.82 |
1.6 | 0.2 | 30 | 6 | 7 | 7 | 20 | 66.66 | 5.41 |
Parameters | Toxicant Concentration (mgL−1) | |||||
---|---|---|---|---|---|---|
1.6 | 1.4 | 1.2 | 1.0 | 0.8 | 0.0 | |
Temp. (°C) | 27.50 ± 0.50 b | 27.50 ± 0.35 | 26.75 ± 0.32 | 26.50 ± 0.54 | 26.75 ± 0.48 | 26.38 ± 0.50 a |
DO (mgL−1) | 4.99 ± 0.06 a | 5.98 ± 0.05 b | 5.94 ± 0.05 b | 6.99 ± 0.09 c | 6.96 ± 0.07 c | 8.03 ± 0.07 d |
pH | 9.88 ± 0.18 c | 9.70 ± 0.15 c | 9.60 ± 0.15 c | 7.48 ± 0.13 b | 7.43 ± 0.17 b | 6.19 ± 0.32 a |
Parameters | Toxicant Concentration (mgL−1) | |||||
---|---|---|---|---|---|---|
1.6 | 1.4 | 1.2 | 1.0 | 0.8 | 0.0 | |
RBC 106/mm6 | 5.2 ± 0.07 e | 6.4 ± 0.08 d | 7.2 ± 0.06 c | 7.4 ± 0.05 c | 8.0 ± 0.2 b | 10.5 ± 0.1 a |
WBC 103/mm3 | 51.80 ± 1.9 b | 50.15 ± 1.4 c | 45.58 ± 0.75 c | 38.30 ± 0.16 a | 23.72 ± 0.14 a | 11.00 ± 0.1 a |
Haemoglobin (g/dl) | 7.53 ± 0.5 e | 8.24 ± 40.3 d | 8.95 ± 0.25 c | 9.32 ± 0.16 c | 10.72 ± 0.14 b | 11.00 ± 0.1 a |
PCV(%) | 13.2 ± 8.5 d | 15.4 ± 1.2 c | 16.5 ± 1.01 c | 17.1 ± 1.01 b | 18.0 ± 0.44 b | 23.48 ± 2.6 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ezike, C.O.; Uwadiegwu, C.; Agbo, A.N. Acute Toxicity and Stress Behaviour of Heterobranchus bidorsalis Exposed to the Detergent Nittol® NTL. J 2023, 6, 172-179. https://doi.org/10.3390/j6010013
Ezike CO, Uwadiegwu C, Agbo AN. Acute Toxicity and Stress Behaviour of Heterobranchus bidorsalis Exposed to the Detergent Nittol® NTL. J. 2023; 6(1):172-179. https://doi.org/10.3390/j6010013
Chicago/Turabian StyleEzike, Christopher Onyemaechi, Chinwe Uwadiegwu, and Aderonke N. Agbo. 2023. "Acute Toxicity and Stress Behaviour of Heterobranchus bidorsalis Exposed to the Detergent Nittol® NTL" J 6, no. 1: 172-179. https://doi.org/10.3390/j6010013
APA StyleEzike, C. O., Uwadiegwu, C., & Agbo, A. N. (2023). Acute Toxicity and Stress Behaviour of Heterobranchus bidorsalis Exposed to the Detergent Nittol® NTL. J, 6(1), 172-179. https://doi.org/10.3390/j6010013