Non-Destructive Discrimination of Blue Inks on Suspected Documents through the Combination of Raman Spectroscopy and Chemometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Raman Spectroscopy
2.3. Principal Component Analysis (PCA)
2.4. Pearson’s Correlation
3. Results and Discussion
3.1. Principal Component Analysis
3.2. Pearson’s Correlation Coefficient
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ranga, P.D.; Singh, Y. Expert Opinion at Crime Scene: An Overview. Indian J. Forensic Med. Toxicol. 2021, 15, 3863–3867. [Google Scholar]
- Gannetion, L.; Noor, S.N.M.M.; Lim, P.Y.; Chang, K.H.; Abdullah, A.F.L. Forensic discrimination of blue pen inks: Emergence of hybrid pen inks. Malays. J. Anal. Sci. 2021, 25, 584–595. [Google Scholar]
- Shankar, C. The Analytical, Technical Processes behind the Evaluation of Forensic Evidence through Questioned Document Examination. Undergraduate Honors College theses 2016-. 76, 1-71. 2021. Available online: https://digitalcommons.liu.edu/post_honors_theses/76 (accessed on 10 July 2023).
- Mengi, M.; Malhotra, D. S p S i S b: The Technique to Identify Forgery in Legal Handwritten Documents. In Rising Threats in Expert Applications and Solutions; Springer: Berlin/Heidelberg, Germany, 2021; pp. 739–748. [Google Scholar]
- Asri, M.N.M.; Nestrgan, N.F.; Nor, N.A.M.; Verma, R. On the discrimination of inkjet, laser and photocopier printed documents using Raman spectroscopy and chemometrics: Application in forensic science. Microchem. J. 2021, 165, 106136. [Google Scholar] [CrossRef]
- Sharma, A.; Chauhan, R.; Kumar, R.; Mankotia, P.; Verma, R.; Sharma, V. A rapid and non-destructive ATR-FTIR spectroscopy method supported by chemometrics for discriminating between facial creams and the classification into herbal and non-herbal brands. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 258, 119803. [Google Scholar] [CrossRef]
- Lakshmanan, K.; Thirumalraj, B.; Karuppiah, C. Surface Enhanced Raman Scattering Spectroscopy (SERS) Analysis of Ink Pens in Forensic Usage. Biomed. J. Sci. Tech. Res. 2019, 16, 11978–11980. [Google Scholar]
- Arora, T.; Verma, R.; Kumar, R.; Chauhan, R.; Kumar, B.; Sharma, V. Chemometrics based ATR-FTIR spectroscopy method for rapid and non-destructive discrimination between eyeliner and mascara traces. Microchem. J. 2021, 164, 106080. [Google Scholar] [CrossRef]
- Lee, L.C.; Jemain, A.A. On overview of PCA application strategy in processing high dimensionality forensic data. Microchem. J. 2021, 169, 106608. [Google Scholar] [CrossRef]
- Sauzier, G.; van Bronswijk, W.; Lewis, S.W. Chemometrics in forensic science: Approaches and applications. Analyst 2021, 146, 2415–2448. [Google Scholar] [CrossRef]
- Deviterne-Lapeyre, C.M. Interpol review of questioned documents 2016–2019. Forensic Sci. Int. Synerg. 2020, 2, 429–441. [Google Scholar] [CrossRef]
- Kumar, R.; Samkaria, A.; Sharma, V. On the spectroscopic cum chemometric approach for differentiation and classification of inkjet, laser and photocopier printed documents. Sci. Justice 2020, 60, 347–357. [Google Scholar] [CrossRef]
- Kaye, D.H. Forensic statistics in the courtroom. In Handbook of Forensic Statistics; CRC Press: Boca Raton, FL, USA, 2020; p. 225. [Google Scholar]
- Mazzella, W.D.; Buzzini, P. Raman spectroscopy of blue gel pen inks. Forensic Sci. Int. 2005, 152, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Lynn, K.S.; Fairgrieve, S.I. Macroscopic analysis of axe and hatchet trauma in fleshed and defleshed mammalian long bones. J. Forensic Sci. 2009, 54, 786–792. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.C.; Lee, W.W.; Bell, S.E. Investigation of the chemical origin and evidential value of differences in the SERS spectra of blue gel inks. Analyst 2016, 141, 5152–5158. [Google Scholar] [CrossRef] [PubMed]
- Alyami, A.; Barton, K.; Lewis, L.; Mirabile, A.; Iacopino, D. Identification of dye content in colored BIC ballpoint pen inks by Raman spectroscopy and surface-enhanced Raman scattering. J. Raman Spectrosc. 2019, 50, 115–126. [Google Scholar] [CrossRef]
- Asri, M.N.M.; Verma, R.; Ibrahim, M.H.; Sharma, V.; Nor, N.A.M. Rapid non-destructive techniques to identify the traces of Kajal using chemometrics; A comparison of ATR-FTIR and Raman spectroscopy. Microchem. J. 2021, 169, 106556. [Google Scholar] [CrossRef]
- Borba, F.d.S.L.; Honorato, R.S.; de Juan, A. Use of Raman spectroscopy and chemometrics to distinguish blue ballpoint pen inks. Forensic Sci. Int. 2015, 249, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Mohamad Asri, M.N.; Mat Desa, W.N.S.; Ismail, D. Raman spectroscopy of ballpoint-pen inks using chemometric techniques. Aust. J. Forensic Sci. 2017, 49, 175–185. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, V. Chemometrics in forensic science. TrAC Trends Anal. Chem. 2018, 105, 191–201. [Google Scholar] [CrossRef]
- Asri, M.M.; Desa, W.M.; Ismail, D. Combined Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA): An efficient chemometric approach in aged gel inks discrimination. Aust. J. Forensic Sci. 2018, 52, 1–22. [Google Scholar]
- Sharif, M.; Batool, M.; Chand, S.; Farooqi, Z.H.; Tirmazi, S.A.A.S.; Athar, M. Forensic discrimination potential of Blue, Black, Green, and Red colored fountain pen inks commercially used in Pakistan, by UV/Visible spectroscopy, thin layer chromatography, and Fourier transform infrared spectroscopy. Int. J. Anal. Chem. 2019, 2019, 1–10. [Google Scholar] [CrossRef]
- Weyermann, C.; Bucher, L.; Majcherczyk, P.; Mazzella, W.; Roux, C.; Esseiva, P. Statistical discrimination of black gel pen inks analysed by laser desorption/ionization mass spectrometry. Forensic Sci. Int. 2012, 217, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Weyermann, C.; Bucher, L.; Majcherczyk, P. A statistical methodology for the comparison of blue gel pen inks analyzed by laser desorption/ionization mass spectrometry. Sci. Justice 2011, 51, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Samuel, A.Z.; Mukojima, R.; Horii, S.; Ando, M.; Egashira, S.; Nakashima, T.; Iwatsuki, M.; Takeyama, H. On selecting a suitable spectral matching method for automated analytical applications of Raman spectroscopy. ACS Omega 2021, 6, 2060–2065. [Google Scholar] [CrossRef] [PubMed]
- Asri, M.N.M.; Ismail, D.; Verma, R.; Desa, W.N.S.M.; Mahat, N.A. Source Attribution of Blue Gel Pen Inks Using Raman Spectroscopy and Chemometric Methods of Umap and Pls-Da. SSRN 2023, 1–35. [Google Scholar] [CrossRef]
- Su, D.; Li, K. Micro Raman spectroscopy combined with chromatographic effect and OPLS-DA for time-resolved detection of stamp inks. Microchem. J. 2023, 190, 108727. [Google Scholar] [CrossRef]
Group A | Group B | Group C | |||
---|---|---|---|---|---|
Sample Name | Sample Code | Sample Name | Sample Code | Sample Name | Sample Code |
FAXION BS | BS | FAXION B | FB | PIOLET | PT |
FAXION BL | BL | SIGNO | SN | DISNEY | DY |
PENROTE | PE | UNI ONE | UN | SARASA | SA |
UNI BALL | US | JETSTREAM | JM | ENERG | EG |
SANDER | SR | CLASSIC | CL | ||
TEMPO | TO |
Variables | FB | SN | UN | JM | CL | TO | UK |
---|---|---|---|---|---|---|---|
FB | 1 | 0.907 | 0.542 | 0.463 | 0.340 | 0.729 | 0.617 |
SN | 0.907 | 1 | 0.711 | 0.563 | 0.461 | 0.907 | 0.907 |
UN | 0.542 | 0.711 | 1 | 0.830 | 0.805 | 0.542 | 0.542 |
JM | 0.463 | 0.563 | 0.830 | 1 | 0.837 | 0.463 | 0.463 |
CL | 0.340 | 0.461 | 0.805 | 0.837 | 1 | 0.340 | 0.340 |
TO | 0.729 | 0.907 | 0.542 | 0.463 | 0.340 | 1 | 1.000 |
UK | 0.617 | 0.907 | 0.542 | 0.463 | 0.340 | 1.000 | 1 |
Variables | PT | DY | SA | EG | UK |
---|---|---|---|---|---|
PT | 1 | 0.777 | 0.778 | 0.934 | 0.778 |
DY | 0.777 | 1 | 0.832 | 0.529 | 0.914 |
SA | 0.778 | 0.954 | 1 | 0.619 | 0.731 |
EG | 0.934 | 0.631 | 0.148 | 1 | 1.000 |
UK | 0.778 | 0.954 | 0.609 | 1.000 | 1 |
Variables | Var1 | BL | BS | PE | US | SR | UK |
---|---|---|---|---|---|---|---|
Var1 | 1 | 0.542 | 0.631 | 0.721 | 0.911 | 0.973 | 0.157 |
BL | 0.542 | 1 | 0.814 | 0.316 | 0.892 | 0.715 | 0.681 |
BS | 0.631 | 0.659 | 1 | 0.701 | 0.502 | 0.691 | 0.606 |
PE | 0.721 | 0.532 | 0.911 | 1 | 0.722 | 0.472 | 0.192 |
US | 0.911 | 0.695 | 0.853 | 0.621 | 1 | 0.481 | 0.265 |
SR | 0.973 | 0.490 | 0.195 | 0.819 | 0.501 | 1 | 1.000 |
UK | 0.157 | 0.780 | 0.184 | 0.519 | 0.744 | 1.000 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saravanan, S.T.; Ganesamurthi, J.; Chen, S.-M.; Chen, T.-W.; Chen, C.-J.; Lakshmanan, K.; Chinnamuthu, P.; Liu, X.; Balaji, R. Non-Destructive Discrimination of Blue Inks on Suspected Documents through the Combination of Raman Spectroscopy and Chemometric Analysis. J 2023, 6, 536-543. https://doi.org/10.3390/j6040035
Saravanan ST, Ganesamurthi J, Chen S-M, Chen T-W, Chen C-J, Lakshmanan K, Chinnamuthu P, Liu X, Balaji R. Non-Destructive Discrimination of Blue Inks on Suspected Documents through the Combination of Raman Spectroscopy and Chemometric Analysis. J. 2023; 6(4):536-543. https://doi.org/10.3390/j6040035
Chicago/Turabian StyleSaravanan, Sruthi Thiraviam, Jaysiva Ganesamurthi, Shen-Ming Chen, Tse-Wei Chen, Chun-Jung Chen, Keseven Lakshmanan, Partheeban Chinnamuthu, Xiaoheng Liu, and Ramachandran Balaji. 2023. "Non-Destructive Discrimination of Blue Inks on Suspected Documents through the Combination of Raman Spectroscopy and Chemometric Analysis" J 6, no. 4: 536-543. https://doi.org/10.3390/j6040035
APA StyleSaravanan, S. T., Ganesamurthi, J., Chen, S. -M., Chen, T. -W., Chen, C. -J., Lakshmanan, K., Chinnamuthu, P., Liu, X., & Balaji, R. (2023). Non-Destructive Discrimination of Blue Inks on Suspected Documents through the Combination of Raman Spectroscopy and Chemometric Analysis. J, 6(4), 536-543. https://doi.org/10.3390/j6040035