Photocatalytic Reduction of Cr(VI) and Pb(II) with Biogenically Synthesized Copper Oxide Nanoparticles Using an Extract of the Myriophyllum spicatum Plant
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Myriophyllum spicatum Leaf Extract’s Preparation
2.3. Biogenic Synthesis of CuO Nanoparticles
2.4. Characterization of the Prepared CuO Nanoparticles
2.5. Photocatalytic Reduction of Cr(VI) and Pb(II) in Water
3. Results and Discussion
3.1. X-ray Diffraction (XRD) Studies
3.2. Fourier Transform Infrared (FT-IR) Spectroscopy
3.3. Morphological Studies
3.4. Photocatalyst Reduction of Cr(VI) to Cr(III) and Pb(II) to Pb(0)
3.5. The Effects of Solution pH on the Cr(VI) and Pb(II) Reduction
3.6. Effect of Catalyst Dosage on the Metal Reduction Process
3.7. Effect of the Concentration of Metals on Their Reduction Process
3.8. Mechanism of the Biogenic CuO Photocatalytic Process in the Reduction of Cr(VI) and Pb(II)
3.9. Reusability of the Copper Oxide Nanoparticles on Cr(VI)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barnhart, J. Occurrences, Uses, and Properties of Chromium. Regul. Toxicol. Pharmacol. 1997, 26, S3–S7. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.K.; Petrusevski, B.; Amy, G. Chromium removal from water: A review. J. Water Supply Res. Technol. 2008, 57, 541–553. [Google Scholar] [CrossRef]
- Ray, R.R. Adverse hematological effects of hexavalent chromium: An overview. Interdiscip. Toxicol. 2016, 9, 55. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.D.; Costa, M. Chromium compounds. Environ. Occup. Med. 1998, 2, 799–805. [Google Scholar]
- Sharma, J.C.; Vijay, A.; Bhardwaj, S. Photocatalytic activity of a novel compound SrWO4: Removal of toxic metal lead (II) from water. World Appl. Sci. J. 2013, 23, 208–212. [Google Scholar]
- Vernay, P.; Gauthier-Moussard, C.; Hitmi, A. Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L. Chemosphere 2007, 68, 1563–1575. [Google Scholar] [CrossRef]
- Zhao, R.; Li, X.; Sun, B.; Li, Y.; Li, Y.; Yang, R.; Wang, C. Branched polyethylenimine grafted electrospun polyacrylonitrile fiber membrane: A novel and effective adsorbent for Cr (VI) remediation in wastewater. J. Mater. Chem. A 2017, 5, 1133–1144. [Google Scholar] [CrossRef]
- Sarin, V.; Pant, K. Removal of chromium from industrial waste by using eucalyptus bark. Bioresour. Technol. 2006, 97, 15–20. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2004; Volume 1.
- Rakhunde, R.; Deshpande, L.; Juneja, H.D. Chemical speciation of chromium in water: A review. Crit. Rev. Environ. Sci. Technol. 2012, 42, 776–810. [Google Scholar] [CrossRef]
- Rengaraj, S.; Yeon, K.-H.; Moon, S.-H. Removal of chromium from water and wastewater by ion exchange resins. J. Hazard. Mater. 2001, 87, 273–287. [Google Scholar] [CrossRef]
- Rengaraj, S.; Joo, C.K.; Kim, Y.; Yi, J. Kinetics of removal of chromium from water and electronic process wastewater by ion exchange resins: 1200H, 1500H and IRN97H. J. Hazard. Mater. 2003, 102, 257–275. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.P.; Wu, M.H. Chromium removal by carbon adsorption. Water Pollut. Control Fed. 1975, 47, 2437–2446. [Google Scholar]
- Khalifa, E.B.; Rzig, B.; Chakroun, R.; Nouagui, H.; Hamrouni, B. Application of response surface methodology for chromium removal by adsorption on low-cost biosorbent. Chemom. Intell. Lab. Syst. 2019, 189, 18–26. [Google Scholar] [CrossRef]
- Kongsricharoern, N.; Polprasert, C. Chromium removal by a bipolar electro-chemical precipitation process. Water Sci. Technol. 1996, 34, 109–116. [Google Scholar] [CrossRef]
- Ramakrishnaiah, C.R.; Prathima, B. Hexavalent chromium removal from industrial wastewater by chemical precipitation method. Int. J. Eng. Res. Appl. 2012, 2, 599–603. [Google Scholar]
- Zhao, Z.; An, H.; Lin, J.; Feng, M.; Murugadoss, V.; Ding, T.; Liu, H.; Shao, Q.; Mai, X.; Wang, N.; et al. Progress on the photocatalytic reduction removal of chromium contamination. Chem. Rec. 2019, 19, 873–882. [Google Scholar] [CrossRef]
- Kongsricharoern, N.; Polprasert, C. Electrochemical precipitation of chromium (Cr6+) from an electroplating wastewater. Water Sci. Technol. 1995, 31, 109–117. [Google Scholar] [CrossRef]
- Mohan, D.; Pittman, C.U., Jr. Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J. Hazard. Mater. 2006, 137, 762–811. [Google Scholar] [CrossRef]
- Pakade, V.E.; Tavengwa, N.T.; Madikizela, L.M. Recent advances in hexavalent chromium removal from aqueous solutions by adsorptive methods. RSC Adv. 2019, 9, 26142–26164. [Google Scholar] [CrossRef]
- Gupta, V.; Agarwal, S.; Saleh, T.A. Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Res. 2011, 45, 2207–2212. [Google Scholar] [CrossRef]
- Peng, H.; Guo, J. Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: A review. Environ. Chem. Lett. 2020, 18, 2055–2068. [Google Scholar] [CrossRef]
- Joshi, K.M.; Shrivastava, V.S. Photocatalytic degradation of Chromium (VI) from wastewater using nanomaterials like TiO2, ZnO, and CdS. Appl. Nanosci. 2011, 1, 147–155. [Google Scholar] [CrossRef]
- Litter, M.I. Last advances on TiO2-photocatalytic removal of chromium, uranium and arsenic. Curr. Opin. Green Sustain. Chem. 2017, 6, 150–158. [Google Scholar] [CrossRef]
- Gupta, V.K.; Chandra, R.; Tyagi, I.; Verma, M. Removal of hexavalent chromium ions using CuO nanoparticles for water purification applications. J. Colloid Interface Sci. 2016, 478, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, L.; Zuo, Y.; He, G.; Chen, Q.; Meng, Q.; Chen, H. Reduced graphene oxide supported ZnO/CdS heterojunction enhances photocatalytic removal efficiency of hexavalent chromium from aqueous solution. Chemosphere 2022, 286, 131738. [Google Scholar] [CrossRef]
- Sukumar, S.; Rudrasenan, A.; Nambiar, D.P. Green-Synthesized Rice-Shaped Copper Oxide Nanoparticles Using Caesalpinia bonducella Seed Extract and Their Applications. ACS Omega 2020, 5, 1040–1051. [Google Scholar] [CrossRef]
- Hong, Z.S.; Cao, Y.; Deng, J.F. A convenient alcohothermal approach for low temperature synthesis of CuO nanoparticles. Mater. Lett. 2002, 52, 34–38. [Google Scholar] [CrossRef]
- Li, Z.; Lv, H.; Wang, Z.; Gu, A.; He, X.; Wang, L. In situ growth of CuCo2S4 nanocrystals on N, S-codoped reduced graphene oxide nanosheets for supercapacitors. Mater. Res. Express 2019, 6, 085523. [Google Scholar] [CrossRef]
- Wang, H.; Xu, J.-Z.; Zhu, J.-J.; Chen, H.-Y. Preparation of CuO nanoparticles by microwave irradiation. J. Cryst. Growth 2002, 244, 88–94. [Google Scholar] [CrossRef]
- Phiwdang, K.; Suphankij, S.; Mekprasart, W.; Pecharapa, W. Synthesis of CuO nanoparticles by precipitation method using different precursors. Energy Procedia 2013, 34, 740–745. [Google Scholar] [CrossRef]
- Saif, S.; Tahir, A.; Asim, T.; Chen, Y. Plant mediated green synthesis of CuO nanoparticles: Comparison of toxicity of engineered and plant mediated CuO nanoparticles towards Daphnia magna. Nanomaterials 2016, 6, 205. [Google Scholar] [CrossRef] [PubMed]
- Bouafia, A.; Laouini, S.E.; Ouahrani, M.R. A review on green synthesis of CuO nanoparticles using plant extract and evaluation of antimicrobial activity. Asian J. Res. Chem. 2020, 13, 65–70. [Google Scholar] [CrossRef]
- Devi, H.S.; Singh, T.D. Synthesis of copper oxide nanoparticles by a novel method and its application in the degradation of methyl orange. Adv. Electron. Electr. Eng. 2014, 4, 83–88. [Google Scholar]
- Dabhane, H.; Ghotekar, S.; Zate, M.; Lin, K.-Y.A.; Rahdar, A.; Ravindran, B.; Bahiram, D.; Ingale, C.; Khairnar, B.; Sali, D.; et al. A novel approach toward the bio-inspired synthesis of CuO nanoparticles for phenol degradation and antimicrobial applications. Biomass Convers. Biorefinery 2023, 1–16. [Google Scholar] [CrossRef]
- Chandra, P.; Sinha, S.; Rai, U.N. Bioremediation of Chromium from Water and Soil by Vascular Aquatic Plants, in Phytoremediation of Soil and Water Contaminants; American Chemical Society: Washington, DC, USA, 1997; pp. 274–282. [Google Scholar]
- Vattikuti, S.P.; Reddy, B.P.; Byon, C.; Shim, J. Carbon/CuO nanosphere-anchored g-C3N4 nanosheets as ternary electrode material for supercapacitors. J. Solid State Chem. 2018, 262, 106–111. [Google Scholar] [CrossRef]
- Weyl, P.; Coetzee, J. The invasion status of Myriophyllum spicatum L. in southern Africa. Manag. Aquat. Invasions 2014, 5, 31–37. [Google Scholar]
- Tejaswini, G. A Systematic Investigation on Elaeocarpus Sylvestris Leaf Extract Capped Cuo Nanoparticles as Reducing Agent and Their Antioxidant Activity. Colloid Polym. Sci. 2023, 1–12. [Google Scholar]
- Chauhan, M.; Sharma, B.; Kumar, R.; Chaudhary, G.R.; Hassan, A.A.; Kumar, S. Green synthesis of CuO nanomaterials and their proficient use for organic waste removal and antimicrobial application. Environ. Res. 2019, 168, 85–95. [Google Scholar] [CrossRef]
- Hassan, S.E.-D.; Fouda, A.; Radwan, A.A.; Salem, S.S.; Barghoth, M.G.; Awad, M.A.; Abdo, A.M.; El-Gamal, M.S. Endophytic actinomycetes Streptomyces spp. mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications. JBIC J. Biol. Inorg. Chem. 2019, 24, 377–393. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, V.; Kim, K.H.; Rawat, M. Biogenic synthesis of copper oxide nanoparticles using plant extract and its prodigious potential for photocatalytic degradation of dyes. Environ. Res. 2019, 177, 108569. [Google Scholar] [CrossRef]
- Kasi, S.D.; Ramasamy, J.M.; Nagaraj, D.; Santiyagu, V.; Ponraj, J.S. Biogenic synthesis of copper oxide nanoparticles using leaf extracts of Cissus quadrangularis and Piper betle and its antibacterial effects. Micro Nano Lett. 2021, 16, 419–424. [Google Scholar] [CrossRef]
- Ethiraj, A.S.; Kang, D.J. Synthesis and characterization of CuO nanowires by a simple wet chemical method. Nanoscale Res. Lett. 2012, 7, 70. [Google Scholar] [CrossRef] [PubMed]
- Döring, G.; Sternemann, C.; Kaprolat, A.; Mattila, A.; Hämäläinen, K.; Schülke, W. Shake-up valence excitations in CuO by resonant inelastic X-ray scattering. Phys. Rev. B 2004, 70, 085115. [Google Scholar] [CrossRef]
- Su, D.; Xie, X.; Dou, S.; Wang, G. CuO single crystal with exposed {001} facets-A highly efficient material for gas sensing and Li-ion battery applications. Sci. Rep. 2014, 4, 5753. [Google Scholar] [CrossRef] [PubMed]
- Arunkumar, B.; Jeyakumar, S.J.; Jothibas, M. A sol-gel approach to the synthesis of CuO nanoparticles using Lantana camara leaf extract and their photo catalytic activity. Optik 2019, 183, 698–705. [Google Scholar] [CrossRef]
- Sulaiman, G.M.; Tawfeeq, A.T.; Jaaffer, M.D. Biogenic synthesis of copper oxide nanoparticles using olea europaea leaf extract and evaluation of their toxicity activities: An in vivo and in vitro study. Biotechnol. Prog. 2018, 34, 218–230. [Google Scholar] [CrossRef]
- Waris, A.; Din, M.; Ali, A.; Ali, M.; Afridi, S.; Baset, A.; Khan, A.U. A comprehensive review of green synthesis of copper oxide nanoparticles and their diverse biomedical applications. Inorg. Chem. Commun. 2021, 123, 108369. [Google Scholar] [CrossRef]
- Joshi, N.C.; Prakash, Y.A. Leaves extract-based biogenic synthesis of cupric oxide nanoparticles, characterizations, and antimicrobial activity. Asian J. Pharm. Clin. Res. 2019, 12, 288–291. [Google Scholar]
- Usha, V.; Kalyanaraman, S.; Thangavel, R.; Vettumperumal, R. Effect of catalysts on the synthesis of CuO nanoparticles: Structural and optical properties by sol–gel method. Superlattices Microstruct. 2015, 86, 203–210. [Google Scholar] [CrossRef]
- Zaman, M.B.; Poolla, R.; Singh, P.; Gudipati, T. Biogenic synthesis of CuO nanoparticles using Tamarindus indica L. and a study of their photocatalytic and antibacterial activity. Environmental Nanotechnology. Monit. Manag. 2020, 14, 100346. [Google Scholar]
- Kumar, R.; Kaur, J.; Rawat, M.; Alarfaj, A.A.; Acevedo, R.; Cascione, M.; De Matteis, V.; Singh, J. Biogenic synthesis of CuO nanoparticles for efficient photocatalytic degradation of industrial pollutants. Hum. Ecol. Risk Assess. Int. J. 2023, 29, 927–937. [Google Scholar] [CrossRef]
- Singh, P.; Singh, K.R.; Singh, J.; Singh, R.P. Biogenic synthesis of copper oxide nanoparticles: Characterization and biosensing application. ECS Trans. 2022, 107, 20127. [Google Scholar] [CrossRef]
- Felix, S.; Chakkravarthy, R.B.; Grace, A.N. Microwave assisted synthesis of copper oxide and its application in electrochemical sensing. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Kerala, India, 2015. [Google Scholar]
- Vaseem, M.; Umar, A.; Hahn, Y.; Kim, D.; Lee, K.; Jang, J.; Lee, J. Flower-shaped CuO nanostructures: Structural, photocatalytic and XANES studies. Catal. Commun. 2008, 10, 11–16. [Google Scholar] [CrossRef]
- Liu, Q.; Liang, Y.; Liu, H.; Hong, J.; Xu, Z. Solution phase synthesis of CuO nanorods. Mater. Chem. Phys. 2006, 98, 519–522. [Google Scholar] [CrossRef]
- Sagadevan, S.; Pal, K.; Chowdhury, Z.Z. Fabrication of CuO nanoparticles for structural, optical and dielectric analysis using chemical precipitation method. J. Mater. Sci. Mater. Electron. 2017, 28, 12591–12597. [Google Scholar] [CrossRef]
- Boltaev, G.S.; Ganeev, R.A.; Krishnendu, P.S.; Zhang, K.; Guo, C. Nonlinear optical characterization of copper oxide nanoellipsoids. Sci. Rep. 2019, 9, 11414. [Google Scholar] [CrossRef] [PubMed]
- Anandan, S.; Yang, S. Emergent methods to synthesize and characterize semiconductor CuO nanoparticles with various morphologies—An overview. J. Exp. Nanosci. 2007, 2, 23–56. [Google Scholar] [CrossRef]
- Poornaprakash, B.; Chalapathi, U.; Suh, Y.; Vattikuti, S.P.; Reddy, M.S.P.; Park, S.-H. Terbium-doped ZnS quantum dots: Structural, morphological, optical, photoluminescence, and photocatalytic properties. Ceram. Int. 2018, 44, 11724–11729. [Google Scholar] [CrossRef]
- Reddy, K.R. Green synthesis, morphological and optical studies of CuO nanoparticles. J. Mol. Struct. 2017, 1150, 553–557. [Google Scholar] [CrossRef]
- Anthony, E.T.; Oladoja, N.A. Process enhancing strategies for the reduction of Cr (VI) to Cr (III) via photocatalytic pathway. Environ. Sci. Pollut. Res. 2022, 29, 8026–8053. [Google Scholar] [CrossRef]
- Shao, D.; Wang, X.; Fan, Q. Photocatalytic reduction of Cr (VI) to Cr (III) in solution containing ZnO or ZSM-5 zeolite using oxalate as model organic compound in environment. Microporous Mesoporous Mater. 2009, 117, 243–248. [Google Scholar] [CrossRef]
- Liu, W.; Ni, J.; Yin, X. Synergy of photocatalysis and adsorption for simultaneous removal of Cr (VI) and Cr (III) with TiO2 and titanate nanotubes. Water Res. 2014, 53, 12–25. [Google Scholar] [CrossRef] [PubMed]
- Idris, A.; Majidnia, Z.; Kamarudin, K.S.B.N. Photocatalyst treatment for lead (II) using titanium oxide nanoparticles embedded in PVA-alginate beads. Water Treat. 2016, 57, 5035–5044. [Google Scholar] [CrossRef]
- Murruni, L.; Leyva, G.; Litter, M.I. Photocatalytic removal of Pb (II) over TiO2 and Pt–TiO2 powders. Catal. Today 2007, 129, 127–135. [Google Scholar] [CrossRef]
- Litter, M.I. Mechanisms of removal of heavy metals and arsenic from water by TiO2-heterogeneous photocatalysis. Pure Appl. Chem. 2015, 87, 557–567. [Google Scholar] [CrossRef]
- Umadevi, M.; Christy, A.J. Synthesis, characterization and photocatalytic activity of CuO nanoflowers. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 109, 133–137. [Google Scholar] [CrossRef]
- Sibhatu, A.K.; Weldegebrieal, G.K.; Sagadevan, S.; Tran, N.N.; Hessel, V. Photocatalytic activity of CuO nanoparticles for organic and inorganic pollutants removal in wastewater remediation. Chemosphere 2022, 200, 134623. [Google Scholar] [CrossRef]
- Saravanakumar, K.; Karthik, R.; Chen, S.M.; Kumar, J.V.; Prakash, K.; Muthuraj, V. Construction of novel Pd/CeO2/g-C3N4 nanocomposites as efficient visible-light photocatalysts for hexavalent chromium detoxification. J. Colloid Interface Sci. 2017, 504, 514–526. [Google Scholar] [CrossRef]
- Lin, Z.; Zheng, Y.; Deng, F.; Luo, X.; Zou, J.; Shao, P.; Zhang, S.; Tang, H. Target-directed design of dual-functional Z-scheme AgIn5S8/SnS2 heterojunction for Pb (II) capture and photocatalytic reduction of Cr (VI): Performance and mechanism insight. Sep. Purif. Technol. 2021, 277, 119430. [Google Scholar] [CrossRef]
- Samuel, M.S.; Ravikumar, M.; John, J.A.; Selvarajan, E.; Patel, H.; Chander, P.S.; Soundarya, J.; Vuppala, S.; Balaji, R.; Chandrasekar, N. A Review on Green Synthesis of Nanoparticles and Their Diverse Biomedical and Environmental Applications. Catalysts 2022, 12, 459. [Google Scholar] [CrossRef]
- Dulta, K.; Ağçeli, G.K.; Chauhan, P.; Jasrotia, R.; Ighalo, J.O. Multifunctional CuO nanoparticles with enhanced photocatalytic dye degradation and antibacterial activity. Sustain. Environ. Res. 2022, 32, 2. [Google Scholar] [CrossRef]
- Hossain, S.S.; Tarek, M.; Munusamy, T.D.; Karim, K.M.; Roopan, S.M.; Sarkar, S.M.; Cheng, C.K.; Khan, M.M. Facile synthesis of CuO/CdS heterostructure photocatalyst for the effective degradation of dye under visible light. Environ. Res. 2020, 188, 109803. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, M. CuO as efficient photo catalyst for photocatalytic decoloration of wastewater containing Azo dyes. Water Pract. Technol. 2021, 16, 1078–1090. [Google Scholar] [CrossRef]
- Ravele, M.P.; Oyewo, O.A.; Ramaila, S.; Mavuru, L.; Onwudiwe, D.C. Photocatalytic Degradation of Tetracycline in Aqueous Solution Using Copper Sulfide Nanoparticles. Catalysts 2021, 11, 1238. [Google Scholar] [CrossRef]
- Xu, L.; Su, J.; Zheng, G.; Zhang, L. Enhanced photocatalytic performance of porous ZnO thin films by CuO nanoparticles surface modification. Mater. Sci. Eng. B 2019, 248, 114405. [Google Scholar] [CrossRef]
- Kumar, P.S.; Selvakumar, M.; Babu, S.G.; Jaganathan, S.K.; Karuthapandian, S.; Chattopadhyay, S. Novel CuO/chitosan nanocomposite thin film: Facile hand-picking recoverable, efficient and reusable heterogeneous photocatalyst. RSC Adv. 2015, 5, 57493–57501. [Google Scholar] [CrossRef]
- Mohagheghian, A.; Besharati-Givi, N.; Godini, K.; Dewil, R.; Shirzad-Siboni, M. Photocatalytic reduction of Cr(VI) from aqueous solution by visible light/CuO-Kaolin: Optimization and modeling of key parameters using central composite design (CCD). Sep. Sci. Technol. 2021, 56, 1253–1271. [Google Scholar] [CrossRef]
- Yan, X.; Song, M.; Zhou, M.; Ding, C.; Wang, Z.; Wang, Y.; Yang, W.; Yang, Z.; Liao, Q.; Shi, Y. Response of Cupriavidus basilensis B-8 to CuO nanoparticles enhances Cr(VI) reduction. Sci. Total Environ. 2019, 688, 46–55. [Google Scholar] [CrossRef]
- Choudhury, P.; Mondal, P.; Majumdar, S.; Saha, S.; Sahoo, G.C. Preparation of ceramic ultrafiltration membrane using green synthesized CuO nanoparticles for chromium (VI) removal and optimization by response surface methodology. J. Clean. Prod. 2018, 203, 511–520. [Google Scholar] [CrossRef]
- Koysuren, O.; Koysuren, H.N. Application of CuO and its composite with polyaniline on the photocatalytic degradation of methylene blue and the Cr(VI) photoreduction under visible light. J. Sol-Gel Sci. Technol. 2023, 106, 131–148. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oyewo, O.A.; Makgato, S.S. Photocatalytic Reduction of Cr(VI) and Pb(II) with Biogenically Synthesized Copper Oxide Nanoparticles Using an Extract of the Myriophyllum spicatum Plant. J 2023, 6, 564-578. https://doi.org/10.3390/j6040037
Oyewo OA, Makgato SS. Photocatalytic Reduction of Cr(VI) and Pb(II) with Biogenically Synthesized Copper Oxide Nanoparticles Using an Extract of the Myriophyllum spicatum Plant. J. 2023; 6(4):564-578. https://doi.org/10.3390/j6040037
Chicago/Turabian StyleOyewo, Opeyemi A., and Seshibe S. Makgato. 2023. "Photocatalytic Reduction of Cr(VI) and Pb(II) with Biogenically Synthesized Copper Oxide Nanoparticles Using an Extract of the Myriophyllum spicatum Plant" J 6, no. 4: 564-578. https://doi.org/10.3390/j6040037
APA StyleOyewo, O. A., & Makgato, S. S. (2023). Photocatalytic Reduction of Cr(VI) and Pb(II) with Biogenically Synthesized Copper Oxide Nanoparticles Using an Extract of the Myriophyllum spicatum Plant. J, 6(4), 564-578. https://doi.org/10.3390/j6040037