Exposure to Gas Flaring Among Residents of Oil-Producing Communities in Bayelsa State, Niger Delta Region of Nigeria: A Cross-Sectional Study of Haematological Indices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Blood Cell Count and Measurements
2.3. Statistical Analysis
2.4. Human Subject Protection
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giwa, S.O.; Nwaokocha, C.N.; Kuye, S.I.; Adama, K.O. Gas flaring attendant impacts of criteria and particulate pollutants: A case of Niger Delta region of Nigeria. J. King Saud Univ. Eng. Sci. 2019, 31, 209–217. [Google Scholar] [CrossRef]
- Motte, J.; Alvarenga, R.A.F.; Thybaut, J.W.; Dewulf, J. Quantification of the global and regional impacts of gas flaring on human health via spatial differentiation. Environ. Pollut. 2021, 291, 118213. [Google Scholar] [CrossRef] [PubMed]
- Giammona, A.; Remedia, S.; Porro, D.; Lo Dico, A.; Bertoli, G. The biological interplay between air pollutants and miRNAs regulation in cancer. Front. Cell Dev. Biol. 2024, 12, 1343385. [Google Scholar] [CrossRef] [PubMed]
- WHO. Ambient (Outdoor) Air Pollution; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Bank, W. Seven Countries Account for Two-Thirds of Global Gas Flaring; 2021/2143/EEX. 2021. Available online: https://www.worldbank.org/en/news/press-release/2021/04/28/seven-countries-account-for-two-thirds-of-global-gas-flaring (accessed on 21 October 2024).
- Toledano, P.; Dietrich Brauch, M.; Mebratu-Tsegaye, T.; Pardinas Favela, F.J. Equipping the Nigerian National Petroleum Corporation for the Low-Carbon Transition: How Are Other National Oil Companies Adapting; Columbia Center on Sustainable Investment: New York, NY, USA, 2020. [Google Scholar]
- McEwen, J.D.N.; Johnson, M.R. Black carbon particulate matter emission factors for buoyancy-driven associated gas flares. J. Air Waste Manag. Assoc. 2012, 62, 307–321. [Google Scholar] [CrossRef] [PubMed]
- IARC. Outdoor Air Pollution. IARC Monogr. Eval. Carcinog. Risks Hum. 2016, 109, 9–444. [Google Scholar]
- IARC. List of Classifications by Cancer Sites with Sufficient or Limited Evidence in Humans; IARC: Lyon, France, 2019; pp. 1–25. [Google Scholar]
- McKenzie, L.M.; Allshouse, W.B.; Byers, T.E.; Bedrick, E.J.; Serdar, B.; Adgate, J.L. Childhood hematologic cancer and residential proximity to oil and gas development. PLoS ONE 2017, 12, e0170423. [Google Scholar] [CrossRef]
- D’Andrea, M.A.; Reddy, G.K. Hematological and hepatic alterations in nonsmoking residents exposed to benzene following a flaring incident at the British petroleum plant in Texas City. Environ. Health 2014, 13, 115. [Google Scholar] [CrossRef]
- George-Gay, B.; Parker, K. Understanding the complete blood count with differential. J. Perianesth Nurs. 2003, 18, 96–114, quiz 115–117. [Google Scholar] [CrossRef]
- Abia, K.; Nwaogu, L.A.; Onyeze, G.O.C.; Ogu, C.C. Alteration of haematological and renal function parameters of men native to Ebocha, Niger Delta, Nigeria due to chronic exposure to gas flaring. Int. Res. J. Public Environ. Health 2019, 6, 59–71. [Google Scholar]
- Egwurugwu, J.N.; Nwafor, A.; Ezekwe, S.A. Impacts of prolonged exposure to gas flares on some blood indices in humans in the Niger Delta Region, Nigeria. Arch. Appl. Sci. Res. 2013, 5, 98–104. [Google Scholar]
- Adienbo, O.; Nwafor, A. Effect of Prolong Exposure to Effects of Prolonged Exposure to Gas Flaring on Some Haematological Parameters of Humans in The Niger Delta Region of Nigeria. J. Appl. Sci. Environ. Manag. 2010, 14, 13–15. [Google Scholar]
- Ike, S.O.; Nubila, T.; Ukaejiofo, E.O.; Nubila, I.N.; Shu, E.N.; Ezema, I. Comparison of haematological parameters determined by the Sysmex KX—2IN automated haematology analyzer and the manual counts. BMC Clin. Pathol. 2010, 10, 3. [Google Scholar] [CrossRef] [PubMed]
- Miri-Dashe, T.; Osawe, S.; Tokdung, M.; Daniel, N.; Choji, R.P.; Mamman, I.; Deme, K.; Damulak, D.; Abimiku, A. Comprehensive reference ranges for hematology and clinical chemistry laboratory parameters derived from normal Nigerian adults. PLoS ONE 2014, 9, e93919. [Google Scholar] [CrossRef] [PubMed]
- Cuk, V.; Karamarkovic, A.; Juloski, J.; Arbutina, D.; Radulovic, R.; Milic, L.; Kovacevic, B.; De Luka, S.; Grahovac, J. Prognostic Value of Combined Hematological/Biochemical Indexes and Tumor Clinicopathologic Features in Colorectal Cancer Patients—A Pilot Single Center Study. Cancers 2023, 15, 1761. [Google Scholar] [CrossRef] [PubMed]
- Badheeb, A.M.; Ahmed, F.; Badheeb, M.A.; Obied, H.Y.; Seada, I.A.; Al Jumman, A.; Alyami, N.H.; Elhadi, M.; Almakrami, A.H.; Mokhtar, I. Anemia Profiles in Cancer Patients: Prevalence, Contributing Factors, and Insights From a Retrospective Study at a Single Cancer Center in Saudi Arabia. Cureus 2023, 15, e42400. [Google Scholar] [CrossRef] [PubMed]
- Shahid, S. Review of hematological indices of cancer patients receiving combined chemotherapy & radiotherapy or receiving radiotherapy alone. Crit. Rev. Oncol. Hematol. 2016, 105, 145–155. [Google Scholar] [CrossRef]
- Littlewood, T.; Mandelli, F. The effects of anemia in hematologic malignancies: More than a symptom. Semin. Oncol 2002, 29, 40–44. [Google Scholar] [CrossRef]
- Naoum, F.A. Iron deficiency in cancer patients. Rev. Bras. Hematol. Hemoter. 2016, 38, 325–330. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, E.; Marley, A.; Samaan, M.A.; Brookes, M.J. Iron deficiency anaemia: Pathophysiology, assessment, practical management. BMJ Open Gastroenterol. 2022, 9, e000759. [Google Scholar] [CrossRef]
- Wang, F.; Lv, H.; Zhao, B.; Zhou, L.; Wang, S.; Luo, J.; Liu, J.; Shang, P. Iron and leukemia: New insights for future treatments. J. Exp. Clin. Cancer Res. 2019, 38, 406. [Google Scholar] [CrossRef]
- Hung, N.; Shen, C.C.; Hu, Y.W.; Hu, L.Y.; Yeh, C.M.; Teng, C.J.; Kuan, A.S.; Chen, S.C.; Chen, T.J.; Liu, C.J. Risk of cancer in patients with iron deficiency anemia: A nationwide population-based study. PLoS ONE 2015, 10, e0119647. [Google Scholar] [CrossRef] [PubMed]
- Killeen, R.B.; Tambe, A. Acute Anemia; StatPearls: Tampa, FL, USA, 2024. [Google Scholar]
- Ihekwoaba, E.N.; Chukwu, K.E.; Okwu-Delunzu, U.V.; Ogbuene, E.G.; Dike, C.C.; Ezeokafor, E. Assessing Haematological Effects of Gas Flaring in Oil Producing Areas in Delta State of Nigeria. J. Environ. Sci. Toxicol. Food Technol. 2020, 14, 37–42. [Google Scholar]
- Ferrucci, L.; Balducci, L. Anemia of aging: The role of chronic inflammation and cancer. Semin. Hematol. 2008, 45, 242–249. [Google Scholar] [CrossRef]
- Quay, J.L.; Reed, W.; Samet, J.; Devlin, R.B. Air pollution particles induce IL-6 gene expression in human airway epithelial cells via NF-kappaB activation. Am. J. Respir. Cell Mol. Biol. 1998, 19, 98–106. [Google Scholar] [CrossRef]
- Bárány, P. Inflammation, serum C-reactive protein, and erythropoietin resistance. Nephrol. Dial. Transpl. 2001, 16, 224–227. [Google Scholar] [CrossRef]
- Honda, T.; Pun, V.C.; Manjourides, J.; Suh, H. Anemia prevalence and hemoglobin levels are associated with long-term exposure to air pollution in an older population. Environ. Int. 2017, 101, 125–132. [Google Scholar] [CrossRef]
- Loomis, D.; Guyton, K.Z.; Grosse, Y.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Vilahur, N.; Mattock, H.; Straif, K. Carcinogenicity of benzene. Lancet Oncol. 2017, 18, 1574–1575. [Google Scholar] [CrossRef] [PubMed]
- Onyije, F.M.; Hosseini, B.; Togawa, K.; Schüz, J.; Olsson, A. Cancer Incidence and Mortality among Petroleum Industry Workers and Residents Living in Oil Producing Communities: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 4343. [Google Scholar] [CrossRef]
- Watts, E.L.; Perez-Cornago, A.; Kothari, J.; Allen, N.E.; Travis, R.C.; Key, T.J. Hematologic Markers and Prostate Cancer Risk: A Prospective Analysis in UK Biobank. Cancer Epidemiol. Biomark. Prev. 2020, 29, 1615–1626. [Google Scholar] [CrossRef]
- Wong, J.Y.Y.; Bassig, B.A.; Loftfield, E.; Hu, W.; Freedman, N.D.; Ji, B.T.; Elliott, P.; Silverman, D.T.; Chanock, S.J.; Rothman, N.; et al. White Blood Cell Count and Risk of Incident Lung Cancer in the UK Biobank. JNCI Cancer Spectr. 2019, 4, pkz102. [Google Scholar] [CrossRef]
- Mitus, A.J.; Schafer, A.I. Thrombocytosis and thrombocythemia. Hematol. Oncol. Clin. N. Am. 1990, 4, 157–178. [Google Scholar] [CrossRef]
- Stockklausner, C.; Duffert, C.M.; Cario, H.; Knöfler, R.; Streif, W.; Kulozik, A.E. Thrombocytosis in children and adolescents-classification, diagnostic approach, and clinical management. Ann. Hematol. 2021, 100, 1647–1665. [Google Scholar] [CrossRef] [PubMed]
- Fahdrin, A.; Sampepajung, E.; Pieter, J.; Kasim, F.; Smaradhania, N.; Prihantono, P.; Mariana, N.; Sampepajung, D.; Faruk, M. Platelet count and breast cancer stage. Breast Dis. 2022, 41, 489–493. [Google Scholar] [CrossRef] [PubMed]
Distance β | Test Statistics | ||||
---|---|---|---|---|---|
Overall (N = 80) | 5 Km (n = 40) | 10 Km (n = 40) | t-Ratio | Prob > |t| | |
Parameter | Mean ± SEM | Mean ± SEM | Mean ± SEM | ||
Age (Years) | 40.33 ± 1.34 | 46.23 ± 1.82 | 34.43 ± 1.47 | 5.054 | <0.001 *** |
RBCs (×1012/L) | 5.44 ± 0.16 | 4.74 ± 0.09 | 6.13 ± 0.26 | 4.965 | <0.001 *** |
PCV (%) | 37.56 ± 0.45 | 35.75 ± 0.50 | 39.40 ± 0.64 | 4.524 | <0.001 *** |
MCH (%) | 29.06 ± 0.36 | 27.13 ± 0.43 | 30.99 ± 0.39 | 6.649 | <0.001 *** |
WBCs (×109/L) | 6.62 ± 0.28 | 8.68 ± 0.30 | 4.57 ± 0.08 | −13.115 | <0.001 *** |
Neutrophil (%) | 42.98 ± 1.17 | 40.28 ± 1.60 | 45.68 ± 1.62 | 2.370 | 0.020 * |
Lymphocytes (%) | 46.88 ± 1.06 | 44.98 ± 1.17 | 48.78 ± 1.75 | 1.810 | 0.037 * |
MXD (%) | 7.25 ± 0.30 | 7.88 ± 0.38 | 6.63 ± 0.46 | −2.094 | 0.039 * |
PLT (×109/L) | 165.62 ± 10.19 | 241.33 ± 11.15 | 89.92 ± 1.53 | −13.449 | <0.001 *** |
Parameter | 5 Km | 10 Km | Test Statistics | |||
---|---|---|---|---|---|---|
Female | Male | Female | Male | |||
Mean ± SEM | Mean ± SEM | Mean ± SEM | Mean ± SEM | F-Ratio | p-Value | |
RBC (×1012/L) | 4.84 ± 0.15 | 4.64 ± 0.10 | 6.26 ± 0.38 | 6.01 ± 0.38 | 0.0113 | 0.915 ns |
PCV (%) | 34.20 ± 0.65 a | 37.25 ± 0.59 b | 36.40 ± 0.73 b | 42.40 ± 0.46 c | 5.7358 | <0.001 *** |
MCH (%) | 27.58 ± 0.71 | 26.68 ± 0.47 | 31.15 ± 0.61 | 30.83 ± 0.51 | 0.2521 | 0.617 ns |
WBC (×109/L) | 8.92 ± 0.43 | 8.44 ± 0.43 | 4.38 ± 0.13 | 4.75 ± 0.08 | 1.8428 | 0.178 ns |
Neutrophil (%) | 46.35 ± 1.62 | 34.20 ± 2.01 | 48.55 ± 2.37 | 42.80 ± 2.07 | 2.4738 | 0.119 ns |
Lymphocytes (%) | 43.10 ± 1.89 | 46.85 ± 1.28 | 45.75 ± 2.13 | 51.80 ± 2.65 | 0.3156 | 0.575 ns |
MXD (%) | 9.35 ± 0.39 a | 6.40 ± 0.47 b | 5.85 ± 0.63 b | 7.40 ± 0.63 ab | 17.3038 | <0.001 *** |
PLT (×109/L) | 272.55 ± 16.86 a | 210.10 ± 11.13 b | 88.42 ± 2.93 c | 91.41 ± 0.86 c | 10.2578 | 0.002 ** |
Females | Males | ||||||||
---|---|---|---|---|---|---|---|---|---|
Trichotomized | N (%) | 5 Km | 10 Km | χ2 Value | Trichotomized | 5 Km | 10 Km | χ2 Value | |
Parameter | Measure | n (%) | n (%) | (p-Value) | Measure | n (%) | n (%) | (p-Value) | |
RBCs (×1012/L) | Low (<4.5) | 32 (40.0) | 6 (15.0) | 3 (7.5) | Low (<5.1) | 17 (42.50) | 6 (15.0) | ||
Reference (4.5–5.3) | 19 (23.8) | 11 (27.5) | 3 (7.5) | 12.689 | Reference (5.1–5.3) | 2 (5.0) | 3 (7.5) | 13.794 | |
High (>5.3) | 29 (36.3) | 3 (7.5) | 14 (35.0) | (0.0018) ** | High (>5.3) | 1 (2.5) | 11 (27.5) | (0.0010) *** | |
PCV (%) | Low (<36) | 42 (52.5) | 15 (37.5) | 9 (22.5) | 3.75 | Low (<40) | 17 (42.5) | 1 (2.5) | 25.859 |
Reference (36–46) | 38 (47.5) | 5 (12.5) | 11 (27.5) | (0.0528) * | Reference (40–50) | 3 (7.5) | 19 (47.5) | (<0.0001) **** | |
High (>46) | 0 (0.0) | 0 (0.0) | 0 (0.0) | High (>46) | 0 (0.0) | 0 (0.0) | |||
HB (g/dl) | Low (<12.4) | 73 (91.3) | 20 (50.0) | 16 (40.0) | Low (<14.0) | 20 (50.0) | 17 (42.5) | ||
Reference (12.4–13.1) | 7 (8.8) | 0 (0.0) | 4 (10.0) | f (0.1060) ns | Reference (14.0–14.4) | 0 (0.00) | 3 (7.5) | f (0.2308) ns | |
High (>13.1) | 0 (0.0) | 0 (0.0) | 0 (0.0) | High (>14.4) | 0 (0.00) | 0 (0.00) | |||
MCH (%) | Low (<27.1) | 21 (26.3) | 9 (22.5) | 0 (0.0) | Low (<27.2) | 11 (27.5) | 1 (2.5) | ||
Reference (27.1–28.9) | 12 (15.0) | 2 (5.0) | 5 (12.5) | 11.786 | Reference (27.2–28.1) | 4 (10.0) | 1 (2.5) | 17.481 | |
High (>28.9) | 47 (58.8) | 9 (22.5) | 15 (37.5) | (0.0028) ** | High (>28.1) | 5 (12.5) | 18 (45.0) | (0.0002) *** | |
WBCs (×109/L) | Low (<4.4) | 14 (17.5) | 0 (0.0) | 11 (27.5) | Low (<4.3) | 0 (0.0) | 3 (7.5) | ||
Reference (4.4–4.8) | 12 (15.0) | 0 (0.0) | 5 (12.5) | 26.667 | Reference (4.3–4.6) | 0 (0.0) | 7 (17.5) | 13.333 | |
High (>4.8) | 54 (67.5) | 20 (50.0) | 4 (10.0) | (<0.001) *** | High (>4.6) | 20 (50.0) | 10 (25.0) | (0.0013) *** | |
NEU (%) | Low <49.1 | 59 (73.8) | 16 (40.0) | 8 (20.0) | Low (<52.6) | 19 (47.5) | 16 (40.0) | ||
Reference (49.1–52.3) | 8 (10.00) | 1 (2.5) | 4 (10.0) | 6.739 | Reference (52.6–55.2) | 0 (0.0) | 3 (7.5) | 3.257 | |
High >52.3 | 13 (16.25) | 3 (7.5) | 8 (20.0) | (0.0344) * | High (>55.2) | 1 (2.5) | 1 (2.5) | (0.1962) ns | |
LYMPHs (%) | Low (<39.0) | 8 (10.0) | 5 (12.5) | 2 (5.0) | Low (<37.4) | 0 (0.0) | 1 (2.5) | ||
Reference (39.0–42.1) | 12 (15.0) | 1 (2.5) | 7 (17.5) | 6.146 | Reference (37.4–40.2) | 2 (5.0) | 2 (5.0) | 1.029 | |
High (>42.1) | 60 (75.0) | 14 (35.0) | 11 (27.5) | (0.0463) * | High (>40.2) | 18 (45.0) | 17 (42.5) | (0.5979) ns | |
PLT (×109/L) | Low (>251.2) | 51 (63.8) | 5 (12.5) | 20 (50.0) | Low (<206.8) | 6 (15.0) | 20 (50.0) | ||
Reference (229.3–251.2) | 8 (10.0) | 4 (10.0) | 0 (0.0) | 24.000 | Reference (206.8–226.8) | 4 (10.0) | 0 (0.0) | 21.538 | |
High (<229.3) | 21 (26.3) | 11 (27.5) | 0 (0.0) | (<0.0001) **** | High (>226.8) | 10 (25.0) | 0 (0.0) | (<0.0001) **** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jato, D.J.; Onyije, F.M.; Mgbere, O.O.; Avwioro, G.O. Exposure to Gas Flaring Among Residents of Oil-Producing Communities in Bayelsa State, Niger Delta Region of Nigeria: A Cross-Sectional Study of Haematological Indices. J 2024, 7, 472-481. https://doi.org/10.3390/j7040028
Jato DJ, Onyije FM, Mgbere OO, Avwioro GO. Exposure to Gas Flaring Among Residents of Oil-Producing Communities in Bayelsa State, Niger Delta Region of Nigeria: A Cross-Sectional Study of Haematological Indices. J. 2024; 7(4):472-481. https://doi.org/10.3390/j7040028
Chicago/Turabian StyleJato, Domotimi James, Felix M. Onyije, Osaro O. Mgbere, and Godwin Ovie Avwioro. 2024. "Exposure to Gas Flaring Among Residents of Oil-Producing Communities in Bayelsa State, Niger Delta Region of Nigeria: A Cross-Sectional Study of Haematological Indices" J 7, no. 4: 472-481. https://doi.org/10.3390/j7040028
APA StyleJato, D. J., Onyije, F. M., Mgbere, O. O., & Avwioro, G. O. (2024). Exposure to Gas Flaring Among Residents of Oil-Producing Communities in Bayelsa State, Niger Delta Region of Nigeria: A Cross-Sectional Study of Haematological Indices. J, 7(4), 472-481. https://doi.org/10.3390/j7040028