Forecasting Container Throughput of Singapore Port Considering Various Exogenous Variables Based on SARIMAX Models
Abstract
:1. Introduction
2. Time Series Analysis and External Influences on Container Throughput
3. Methodology
3.1. SARIMA Model
3.2. SARIMAX Model
4. Empirical Analysis
4.1. Stationarity and Seasonality Test
4.2. Model Identification for SARIMA
4.3. Selecting Exogenous Variables for SARIMAX
4.4. Comparative Experiments
5. Conclusions and Future Research Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, J.; Chu, C.-W.; Hsu, H.-L. A Comparative Study of Univariate Models for Container Throughput Forecasting of Major Ports in Asia. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2022, 236, 160–173. [Google Scholar] [CrossRef]
- Munim, Z.H.; Fiskin, C.S.; Nepal, B. Forecasting Container Throughput of Major Asian Ports Using Various Time Series Methods. Asian J. Shipp. Logist. 2023, 39, 67–77. [Google Scholar] [CrossRef]
- Lloyd’s List, One Hundred Container Port. 2023. Available online: https://lloydslist.com/one-hundred-container-ports-2023 (accessed on 12 July 2024).
- Lee, G.-C.; Lee, H.; Koo, H.-Y. Forecasting Container Throughput of Busan Port Using SARIMAX. Korean Manag. Sci. Rev. 2023, 40, 1–13. [Google Scholar] [CrossRef]
- Huang, D.; Grifoll, M.; Sanchez-Espigares, J.A.; Zheng, P.; Feng, H. Hybrid Approaches for Container Traffic Forecasting in the Context of Anomalous Events: The Case of the Yangtze River Delta Region in the COVID-19 Pandemic. Transp. Policy 2022, 128, 1–12. [Google Scholar] [CrossRef]
- Huang, A.; Liu, X.; Rao, C.; Zhang, Y.; He, Y. A New Container Throughput Forecasting Paradigm under COVID-19. Sustainability 2022, 14, 2990. [Google Scholar] [CrossRef]
- Koyuncu, K.; Tavacioglu, L.; Gökmen, N.; Arican, U. Forecasting COVID-19 Impact on RWI/ISL Container Throughput Index by Using SARIMA Models. Marit. Policy Manag. 2021, 48, 1096–1108. [Google Scholar] [CrossRef]
- Tan, N.D.; Yu, H.C.; Long, L.N.B.; You, S.-S. Time Series Forecasting for Port Throughput Using Recurrent Neural Network Algorithm. J. Int. Marit. Saf. Environ. Aff. Shipp. 2021, 5, 175–183. [Google Scholar] [CrossRef]
- Shankar, S.; Ilavarasan, P.V.; Punia, S.; Singh, S.P. Forecasting Container Throughput with Long Short-Term Memory Networks. Ind. Manag. Data Syst. 2020, 120, 425–441. [Google Scholar] [CrossRef]
- Farhan, J.; Ong, G.P. Forecasting Seasonal Container Throughput at International Ports Using SARIMA Models. Marit. Econ. Logist. 2018, 20, 131–148. [Google Scholar] [CrossRef]
- Shankar, S.; Punia, S.; Ilavarasan, P. Deep Learning-Based Container Throughput Forecasting: A Triple Bottom Line Approach. Ind. Manag. Data Syst. 2021, 121, 2100–2117. [Google Scholar] [CrossRef]
- Intihar, M.; Kramberger, T.; Dragan, D. Container Throughput Forecasting Using Dynamic Factor Analysis and ARIMAX Model. Promet-Traffic Transp. 2017, 29, 529–542. [Google Scholar] [CrossRef]
- Kim, D.; Lee, K. Forecasting the Container Volumes of Busan Port Using LSTM. J. Korea Port Econ. Assoc. 2020, 36, 53–62. [Google Scholar] [CrossRef]
- Li, H.; Bai, J.; Li, Y. A Novel Secondary Decomposition Learning Paradigm with Kernel Extreme Learning Machine for Multi-Step Forecasting of Container Throughput. Phys. A Stat. Mech. Appl. 2019, 534, 122025. [Google Scholar] [CrossRef]
- Port of Singapore 2015 Container Throughput Falls to 4-Year Low. gCaptain. Available online: https://gcaptain.com/port-of-singapore-2015-container-throughput-falls-to-4-year-low/ (accessed on 15 July 2024).
- Weak Trade Curtails 2016 Volume Growth at Singapore Port. PortCalls Asia. Available online: https://www.portcalls.com/weak-trade-curtails-2016-volume-growth-singapore-port/ (accessed on 15 July 2024).
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C. Time Series Analysis Forecasting and Control, 4th ed.; John Wiley and Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Said, S.E.; Dickey, D.A. Testing for Unit Roots in Autoregressive-Moving Average Models of Unknown Order. Biometrika 1984, 71, 599–607. [Google Scholar] [CrossRef]
- Ollech, D.; Webel, K. A Random Forest-Based Approach to Identifying the Most Informative Seasonality Tests. Deutsche Bundesbank Discussion Paper No. 55/2020. SSRN J. 2020. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice, 2nd ed.; OTexts: Melbourne, Australia, 2018. [Google Scholar]
- Winters, P.R. Forecasting Sales by Exponentially Weighted Moving Averages. Manag. Sci. 1960, 6, 324–342. [Google Scholar] [CrossRef]
- Engle, R.F.; Granger, C.W.J. Co-Integration and Error Correction: Representation, Estimation, and Testing. Econometrica 1987, 55, 251–276. [Google Scholar] [CrossRef]
- Smola, A.J.; Schölkopf, B. A Tutorial on Support Vector Regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’16, San Francisco, CA, USA, 13–17 August 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Taylor, S.J.; Letham, B. Forecasting at Scale. PeerJ 2017. preprint. [Google Scholar] [CrossRef]
(p,d,q)(P,D,Q)s | AIC | BIC | (p,d,q)(P,D,Q)s | AIC | BIC |
---|---|---|---|---|---|
(0,1,0)(1,1,0)12 | 1595.49 | 1601.24 | (1,1,0)(1,1,0)12 | 1588.825 | 1597.451 |
(0,1,0)(1,1,1)12 | 1578.906 | 1587.532 | (1,1,0)(1,1,1)12 | 1572.067 | 1583.568 |
(0,1,0)(2,1,0)12 | 1593.5 | 1602.125 | (1,1,0)(2,1,0)12 | 1586.274 | 1597.775 |
(0,1,0)(2,1,1)12 | 1580.87 | 1592.371 | (1,1,0)(2,1,1)12 | 1573.979 | 1588.355 |
(0,1,1)(1,1,0)12 | 1587.391 | 1596.016 | (1,1,1)(1,1,0)12 | 1589.361 | 1600.861 |
(0,1,1)(1,1,1)12 | 1570.063 | 1581.564 | (1,1,1)(1,1,1)12 | 1571.929 | 1586.305 |
(0,1,1)(2,1,0)12 | 1584.401 | 1595.902 | (1,1,1)(2,1,0)12 | 1586.329 | 1600.705 |
(0,1,1)(2,1,1)12 | 1571.916 | 1586.292 | (1,1,1)(2,1,1)12 | 1573.762 | 1591.013 |
Exogenous Variables | AIC | BIC |
---|---|---|
WTI price (W) | 1568.763 | 1583.139 |
China’s export volume (E) | 1585.055 | 1599.431 |
COVID-19 cases (C) | 1588.809 | 1603.185 |
W, E | 1583.720 | 1600.971 |
W, C | 1587.682 | 1604.933 |
E, C | 1587.634 | 1604.885 |
W, E, C | 1586.357 | 1606.483 |
Forecasting Models | MAPE (%) | MAE | RMSE | |
---|---|---|---|---|
Proposed Models | SARIMA(0,1,1)(1,1,1)12 | 3.02 | 91.97 | 117.21 |
SARIMAX(0,1,1)(1,1,1)12 with W 1 | 3.66 | 111.82 | 135.33 | |
SARIMAX(0,1,1)(1,1,1)12 with E 2 | 2.71 | 84.44 | 99.41 | |
SARIMAX(0,1,1)(1,1,1)12 with W & E | 2.34 | 72.27 | 92.99 | |
Benchmarks | Holt–Winter Method | 3.83 | 117.32 | 144.23 |
Linear Regression | 4.74 | 145.65 | 155.77 | |
LASSO Regression | 4.31 | 131.40 | 152.80 | |
Ridge Regression | 5.40 | 165.22 | 188.41 | |
ECM | 4.06 | 128.20 | 156.84 | |
SVR | 3.79 | 115.41 | 140.09 | |
Random Forest | 2.91 | 89.27 | 114.14 | |
XGBoost | 4.19 | 131.67 | 159.97 | |
LightGBM | 2.98 | 91.17 | 108.15 | |
LSTM | 3.75 | 116.34 | 153.22 | |
Prophet | 2.94 | 89.36 | 117.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, G.-C.; Bang, J.-Y. Forecasting Container Throughput of Singapore Port Considering Various Exogenous Variables Based on SARIMAX Models. Forecasting 2024, 6, 748-760. https://doi.org/10.3390/forecast6030038
Lee G-C, Bang J-Y. Forecasting Container Throughput of Singapore Port Considering Various Exogenous Variables Based on SARIMAX Models. Forecasting. 2024; 6(3):748-760. https://doi.org/10.3390/forecast6030038
Chicago/Turabian StyleLee, Geun-Cheol, and June-Young Bang. 2024. "Forecasting Container Throughput of Singapore Port Considering Various Exogenous Variables Based on SARIMAX Models" Forecasting 6, no. 3: 748-760. https://doi.org/10.3390/forecast6030038
APA StyleLee, G. -C., & Bang, J. -Y. (2024). Forecasting Container Throughput of Singapore Port Considering Various Exogenous Variables Based on SARIMAX Models. Forecasting, 6(3), 748-760. https://doi.org/10.3390/forecast6030038