Assessing Meteorological Drought Patterns and Forecasting Accuracy with SPI and SPEI Using Machine Learning Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. The Study Approach
2.3. Data Collection
2.4. Standardized Precipitation Index (SPI)
2.5. Standardized Precipitation Evapotranspiration Index (SPEI)
2.6. Artificial Neural Network
2.7. Support Vector Machine
2.8. Random Forest
2.9. Evaluation Parameters of the Models
3. Results and Discussion
3.1. Drought Condition Monitoring
3.2. Correlation Analysis Between SPI and SPEI
3.3. Drought Severity Categorization
3.4. Drought Prediction
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mishra, A.K.; Singh, V.P. A Review of Drought Concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- MacDonald, M.C.; Elliott, M.; Langidrik, D.; Chan, T.; Saunders, A.; Stewart-Koster, B.; Taafaki, I.J.; Bartram, J.; Hadwen, W.L. Mitigating Drought Impacts in Remote Island Atolls with Traditional Water Usage Behaviors and Modern Technology. Sci. Total Environ. 2020, 741, 140230. [Google Scholar] [CrossRef] [PubMed]
- Ekundayo, O.Y.; Abiodun, B.J.; Kalumba, A.M. Global Quantitative and Qualitative Assessment of Drought Research from 1861 to 2019. Int. J. Disaster Risk Reduct. 2022, 70, 102770. [Google Scholar] [CrossRef]
- Smoyer-Tomic, K.E.; Klaver, J.D.A.; Soskolne, C.L.; Spady, D.W. Health Consequences of Drought on the Canadian Prairies. EcoHealth 2004, 1, SU144–SU154. [Google Scholar] [CrossRef]
- Yihdego, Y.; Vaheddoost, B.; Al-Weshah, R.A. Drought Indices and Indicators Revisited. Arab J. Geosci. 2019, 12, 69. [Google Scholar] [CrossRef]
- Haile, G.G.; Tang, Q.; Li, W.; Liu, X.; Zhang, X. Drought: Progress in Broadening Its Understanding. WIREs Water 2020, 7, e1407. [Google Scholar] [CrossRef]
- Cacciamani, C.; Morgillo, A.; Marchesi, S.; Pavan, V. Monitoring and Forecasting Drought on a Regional Scale: Emilia-Romagna Region. In Methods and Tools for Drought Analysis and Management; Rossi, G., Vega, T., Bonaccorso, B., Eds.; Water Science and Technology Library; Springer: Dordrecht, The Netherlands, 2007; pp. 29–48. ISBN 978-1-4020-5924-7. [Google Scholar] [CrossRef]
- Pei, Z.; Fang, S.; Wang, L.; Yang, W. Comparative Analysis of Drought Indicated by the SPI and SPEI at Various Timescales in Inner Mongolia, China. Water 2020, 12, 1925. [Google Scholar] [CrossRef]
- Tirivarombo, S.; Osupile, D.; Eliasson, P. Drought Monitoring and Analysis: Standardised Precipitation Evapotranspiration Index (SPEI) and Standardised Precipitation Index (SPI). Phys. Chem. Earth Parts A/B/C 2018, 106, 1–10. [Google Scholar] [CrossRef]
- Kalra, A.; Parajuli, U.; Faruk, O.; Sarker, M.S.; Aryal, A.; Poudel, B.; Gupta, R. Assessing Flood Risk through GIS-Based Weighted Overlay and 1D Flood Simulation in Critical Sub-Catchment. In World Environmental and Water Resources Congress 2024; ASCE Library: Reston, VA, USA, 2024; pp. 57–70. [Google Scholar] [CrossRef]
- Beven, K. A Manifesto for the Equifinality Thesis. J. Hydrol. 2006, 320, 18–36. [Google Scholar] [CrossRef]
- Feng, P.; Wang, B.; Liu, D.L.; Yu, Q. Machine Learning-Based Integration of Remotely-Sensed Drought Factors Can Improve the Estimation of Agricultural Drought in South-Eastern Australia. Agric. Syst. 2019, 173, 303–316. [Google Scholar] [CrossRef]
- Belayneh, A.; Adamowski, J.; Khalil, B.; Quilty, J. Coupling Machine Learning Methods with Wavelet Transforms and the Bootstrap and Boosting Ensemble Approaches for Drought Prediction. Atmos. Res. 2016, 172–173, 37–47. [Google Scholar] [CrossRef]
- Tyagi, S.; Zhang, X.; Saraswat, D.; Sahany, S.; Mishra, S.K.; Niyogi, D. Flash Drought: Review of Concept, Prediction and the Potential for Machine Learning, Deep Learning Methods. Earth’s Future 2022, 10, e2022EF002723. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, Z.-Y.; Xu, L.-J.; Ou, C.-Q. Meteorological Drought Forecasting Based on a Statistical Model with Machine Learning Techniques in Shaanxi Province, China. Sci. Total Environ. 2019, 665, 338–346. [Google Scholar] [CrossRef]
- Rahmati, O.; Falah, F.; Dayal, K.S.; Deo, R.C.; Mohammadi, F.; Biggs, T.; Moghaddam, D.D.; Naghibi, S.A.; Bui, D.T. Machine Learning Approaches for Spatial Modeling of Agricultural Droughts in the South-East Region of Queensland Australia. Sci. Total Environ. 2020, 699, 134230. [Google Scholar] [CrossRef]
- Mokhtarzad, M.; Eskandari, F.; Jamshidi Vanjani, N.; Arabasadi, A. Drought Forecasting by ANN, ANFIS, and SVM and Comparison of the Models. Environ. Earth Sci. 2017, 76, 729. [Google Scholar] [CrossRef]
- Ali, Z.; Hussain, I.; Faisal, M.; Nazir, H.M.; Hussain, T.; Shad, M.Y.; Mohamd Shoukry, A.; Hussain Gani, S. Forecasting Drought Using Multilayer Perceptron Artificial Neural Network Model. Adv. Meteorol. 2017, 2017, e5681308. [Google Scholar] [CrossRef]
- Pande, C.B.; Kushwaha, N.L.; Orimoloye, I.R.; Kumar, R.; Abdo, H.G.; Tolche, A.D.; Elbeltagi, A. Comparative Assessment of Improved SVM Method under Different Kernel Functions for Predicting Multi-Scale Drought Index. Water Resour. Manag. 2023, 37, 1367–1399. [Google Scholar] [CrossRef]
- Ganguli, P.; Reddy, M.J. Ensemble Prediction of Regional Droughts Using Climate Inputs and the SVM–Copula Approach. Hydrol. Process. 2014, 28, 4989–5009. [Google Scholar] [CrossRef]
- Deo, R.C.; Şahin, M. Application of the Extreme Learning Machine Algorithm for the Prediction of Monthly Effective Drought Index in Eastern Australia. Atmos. Res. 2015, 153, 512–525. [Google Scholar] [CrossRef]
- Deo, R.C.; Tiwari, M.K.; Adamowski, J.F.; Quilty, J.M. Forecasting Effective Drought Index Using a Wavelet Extreme Learning Machine (W-ELM) Model. Stoch. Environ. Res. Risk Assess. 2017, 31, 1211–1240. [Google Scholar] [CrossRef]
- Reihanifar, M.; Danandeh Mehr, A.; Tur, R.; Ahmed, A.T.; Abualigah, L.; Dąbrowska, D. A New Multi-Objective Genetic Programming Model for Meteorological Drought Forecasting. Water 2023, 15, 3602. [Google Scholar] [CrossRef]
- Omidvar, E.; Tahroodi, Z.N. Evaluation and Prediction of Meteorological Drought Conditions Using Time-Series and Genetic Programming Models. J. Earth Syst. Sci. 2019, 128, 73. [Google Scholar] [CrossRef]
- Park, S.; Seo, E.; Kang, D.; Im, J.; Lee, M.-I. Prediction of Drought on Pentad Scale Using Remote Sensing Data and MJO Index through Random Forest over East Asia. Remote Sens. 2018, 10, 1811. [Google Scholar] [CrossRef]
- Park, H.; Kim, K.; Lee, D.K. Prediction of Severe Drought Area Based on Random Forest: Using Satellite Image and Topography Data. Water 2019, 11, 705. [Google Scholar] [CrossRef]
- Khan, N.; Sachindra, D.A.; Shahid, S.; Ahmed, K.; Shiru, M.S.; Nawaz, N. Prediction of Droughts over Pakistan Using Machine Learning Algorithms. Adv. Water Resour. 2020, 139, 103562. [Google Scholar] [CrossRef]
- Mokhtar, A.; Jalali, M.; He, H.; Al-Ansari, N.; Elbeltagi, A.; Alsafadi, K.; Abdo, H.G.; Sammen, S.S.; Gyasi-Agyei, Y.; Rodrigo-Comino, J. Estimation of SPEI Meteorological Drought Using Machine Learning Algorithms. IEEE Access 2021, 9, 65503–65523. [Google Scholar] [CrossRef]
- Docheshmeh Gorgij, A.; Alizamir, M.; Kisi, O.; Elshafie, A. Drought Modelling by Standard Precipitation Index (SPI) in a Semi-Arid Climate Using Deep Learning Method: Long Short-Term Memory. Neural Comput. Appl. 2022, 34, 2425–2442. [Google Scholar] [CrossRef]
- Almikaeel, W.; Čubanová, L.; Šoltész, A. Hydrological Drought Forecasting Using Machine Learning—Gidra River Case Study. Water 2022, 14, 387. [Google Scholar] [CrossRef]
- Speiser, J.L.; Miller, M.E.; Tooze, J.; Ip, E. A Comparison of Random Forest Variable Selection Methods for Classification Prediction Modeling. Expert Syst. Appl. 2019, 134, 93–101. [Google Scholar] [CrossRef]
- Keyantash, J. Indices for Meteorological and Hydrological Drought. In Hydrological Aspects of Climate Change; Pandey, A., Kumar, S., Kumar, A., Eds.; Springer Transactions in Civil and Environmental Engineering; Springer: Singapore, 2021; pp. 215–235. ISBN 9789811603938. [Google Scholar] [CrossRef]
- Mckee, T.; Doesken, N.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Dikshit, A.; Pradhan, B.; Huete, A. An Improved SPEI Drought Forecasting Approach Using the Long Short-Term Memory Neural Network. J. Environ. Manag. 2021, 283, 111979. [Google Scholar] [CrossRef] [PubMed]
- Gentilucci, M.; Bufalini, M.; Materazzi, M.; Barbieri, M.; Aringoli, D.; Farabollini, P.; Pambianchi, G. Calculation of Potential Evapotranspiration and Calibration of the Hargreaves Equation Using Geostatistical Methods over the Last 10 Years in Central Italy. Geosciences 2021, 11, 348. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, G.; Ali, S.; Wang, X.; Wang, G.; Pan, Z.; Zhang, J. SPI-Based Drought Simulation and Prediction Using ARMA-GARCH Model. Appl. Math. Comput. 2019, 355, 96–107. [Google Scholar] [CrossRef]
- Kubiak-Wójcicka, K.; Owczarek, M.; Chlost, I.; Olszewska, A.; Nagy, P. Assessment of Meteorological Drought Trends in a Selected Coastal Basin Area in Poland—A Case Study. Water 2023, 15, 2836. [Google Scholar] [CrossRef]
- Marj, A.F.; Meijerink, A.M.J. Agricultural Drought Forecasting Using Satellite Images, Climate Indices and Artificial Neural Network. Int. J. Remote Sens. 2011, 32, 9707–9719. [Google Scholar] [CrossRef]
- Hornik, K.; Stinchcombe, M.; White, H. Universal Approximation of an Unknown Mapping and Its Derivatives Using Multilayer Feedforward Networks. Neural Netw. 1990, 3, 551–560. [Google Scholar] [CrossRef]
- Asadollahi, A.; Magar, B.A.; Poudel, B.; Sohrabifar, A.; Kalra, A. Application of Machine Learning Models for Improving Discharge Prediction in Ungauged Watershed: A Case Study in East DuPage, Illinois. Geographies 2024, 4, 363–377. [Google Scholar] [CrossRef]
- Bre, F.; Gimenez, J.M.; Fachinotti, V.D. Prediction of Wind Pressure Coefficients on Building Surfaces Using Artificial Neural Networks. Energy Build. 2018, 158, 1429–1441. [Google Scholar] [CrossRef]
- Nwankpa, C.; Ijomah, W.; Gachagan, A.; Marshall, S. Activation Functions: Comparison of Trends in Practice and Research for Deep Learning. arXiv 2018, arXiv:1811.03378. [Google Scholar] [CrossRef]
- Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A Training Algorithm for Optimal Margin Classifiers. Proceedings of The Fifth Annual Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 27–29 July 1992; Association for Computing Machinery: New York, NY, USA, 1992; pp. 144–152. [Google Scholar] [CrossRef]
- Wang, H.; Hu, D. Comparison of SVM and LS-SVM for Regression. In Proceedings of the 2005 International Conference on Neural Networks and Brain, Beijing, China, 13–15 October 2005; IEEE: Beijing, China, 2005; Volume 1, pp. 279–283. [Google Scholar] [CrossRef]
- Sapankevych, N.; Sankar, R. Time Series Prediction Using Support Vector Machines: A Survey. IEEE Comput. Intell. Mag. 2009, 4, 24–38. [Google Scholar] [CrossRef]
- Kadam, V.; Kumar, S.; Bongale, A.; Wazarkar, S.; Kamat, P.; Patil, S. Enhancing Surface Fault Detection Using Machine Learning for 3D Printed Products. Appl. Syst. Innov. 2021, 4, 34. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Lin, X.; Blanton, R.D.S.; Thomas, D.E. Random Forest Architectures on FPGA for Multiple Applications. In Proceedings of the on Great Lakes Symposium on VLSI 2017, Banff, AB, Canada, 10–12 May 2017; ACM: New York, NY, USA, 2017; pp. 415–418. [Google Scholar] [CrossRef]
- En-Nagre, K.; Aqnouy, M.; Ouarka, A.; Ali Asad Naqvi, S.; Bouizrou, I.; Eddine Stitou El Messari, J.; Tariq, A.; Soufan, W.; Li, W.; El-Askary, H. Assessment and Prediction of Meteorological Drought Using Machine Learning Algorithms and Climate Data. Clim. Risk Manag. 2024, 45, 100630. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Moriasi, D.; Gitau, M.; Pai, N.; Daggupati, P. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Trans. ASABE (Am. Soc. Agric. Biol. Eng.) 2015, 58, 1763–1785. [Google Scholar] [CrossRef]
- Wang, R.; Bowling, L.C.; Cherkauer, K.A. Estimation of the Effects of Climate Variability on Crop Yield in the Midwest USA. Agric. For. Meteorol. 2016, 216, 141–156. [Google Scholar] [CrossRef]
- Zhang, N.; Li, Z.; Quiring, S.M. Developing Impacts-Based Drought Thresholds for Ohio. J. Hydrometeorol. 2023, 24, 1225–1240. [Google Scholar] [CrossRef]
- Labudová, L.; Labuda, M.; Takáč, J. Comparison of SPI and SPEI Applicability for Drought Impact Assessment on Crop Production in the Danubian Lowland and the East Slovakian Lowland. Theor. Appl. Clim. 2017, 128, 491–506. [Google Scholar] [CrossRef]
- Moon, J.; Kim, Y.; Son, M.; Hwang, E. Hybrid Short-Term Load Forecasting Scheme Using Random Forest and Multilayer Perceptron. Energies 2018, 11, 3283. [Google Scholar] [CrossRef]
- Başakın, E.E.; Ekmekcioğlu, Ö.; Özger, M. Drought Prediction Using Hybrid Soft-Computing Methods for Semi-Arid Region. Model. Earth Syst. Environ. 2021, 7, 2363–2371. [Google Scholar] [CrossRef]
Data | Sources |
---|---|
Precipitation | TerraClimate from Climate Engine “https://www.climateengine.org/ (accessed on 26 December 2023)” |
Boundary Shapefile | Streamstats “https://streamstats.usgs.gov/ss/ (accessed on 14 December 2023)” |
Minimum and Maximum temperature | TerraClimate from Climate Engine “https://www.climateengine.org/ (accessed on 26 December 2023)” |
INDEX | SPEI3 | SPEI6 | SPEI12 | SPI3 | SPI6 | SPI12 |
---|---|---|---|---|---|---|
SPEI3 | 1.00 | 0.72 | 0.54 | 0.81 | 0.38 | 0.42 |
SPEI6 | 1.00 | 0.74 | 0.71 | 0.84 | 0.64 | |
SPEI12 | 1.00 | 0.53 | 0.71 | 0.91 | ||
SPI3 | 1.00 | 0.72 | 0.56 | |||
SPI6 | 1.00 | 0.74 | ||||
SPI12 | 1.00 |
R2 | |||||||||
---|---|---|---|---|---|---|---|---|---|
3 months of lag data | 6 months of lag data | 12 months of lag data | |||||||
RF | ANN | SVM | RF | ANN | SVM | RF | ANN | SVM | |
SPI3 | 0.71 | 0.72 | 0.67 | 0.73 | 0.73 | 0.69 | 0.74 | 0.77 | 0.68 |
SPI6 | 0.36 | 0.54 | 0.43 | 0.64 | 0.75 | 0.66 | 0.63 | 0.80 | 0.74 |
SPI12 | 0.11 | 0.35 | 0.27 | 0.43 | 0.57 | 0.47 | 0.69 | 0.92 | 0.94 |
MAE | |||||||||
3 months of lag data | 6 months of lag data | 12 months of lag data | |||||||
RF | ANN | SVM | RF | ANN | SVM | RF | ANN | SVM | |
SPI3 | 0.46 | 0.48 | 0.47 | 0.44 | 0.46 | 0.46 | 0.44 | 0.42 | 0.47 |
SPI6 | 0.66 | 0.55 | 0.62 | 0.49 | 0.43 | 0.48 | 0.50 | 0.38 | 0.41 |
SPI12 | 0.78 | 0.66 | 0.69 | 0.62 | 0.53 | 0.57 | 0.46 | 0.22 | 0.18 |
RMSE | |||||||||
3 months of lag data | 6 months of lag data | 12 months of lag data | |||||||
RF | ANN | SVM | RF | ANN | SVM | RF | ANN | SVM | |
SPI3 | 0.57 | 0.56 | 0.61 | 0.55 | 0.55 | 0.59 | 0.54 | 0.51 | 0.60 |
SPI6 | 0.84 | 0.71 | 0.79 | 0.63 | 0.52 | 0.61 | 0.63 | 0.38 | 0.53 |
SPI12 | 0.95 | 0.81 | 0.86 | 0.76 | 0.66 | 0.73 | 0.56 | 0.28 | 0.26 |
NSE | |||||||||
3 months of lag data | 6 months of lag data | 12 months of lag data | |||||||
RF | ANN | SVM | RF | ANN | SVM | RF | ANN | SVM | |
SPI3 | 0.72 | 0.75 | 0.69 | 0.73 | 0.74 | 0.71 | 0.79 | 0.79 | 0.69 |
SPI6 | 0.46 | 0.58 | 0.53 | 0.64 | 0.79 | 0.69 | 0.69 | 0.85 | 0.76 |
SPI12 | 0.31 | 0.39 | 0.37 | 0.43 | 0.67 | 0.49 | 0.71 | 0.94 | 0.95 |
R2 | |||||||||
---|---|---|---|---|---|---|---|---|---|
3 months of lag data | 6 months of lag data | 12 months of lag data | |||||||
RF | ANN | SVM | RF | ANN | SVM | RF | ANN | SVM | |
SPEI3 | 0.88 | 0.93 | 0.93 | 0.86 | 0.93 | 0.90 | 0.84 | 0.93 | 0.87 |
SPEI6 | 0.55 | 0.69 | 0.67 | 0.69 | 0.89 | 0.85 | 0.67 | 0.91 | 0.86 |
SPEI12 | 0.31 | 0.45 | 0.40 | 0.44 | 0.60 | 0.52 | 0.67 | 0.89 | 0.91 |
MAE | |||||||||
3 months of lag data | 6 months of lag data | 12 months of lag data | |||||||
RF | ANN | SVM | RF | ANN | SVM | RF | ANN | SVM | |
SPEI3 | 0.29 | 0.22 | 0.23 | 0.31 | 0.22 | 0.25 | 0.33 | 0.23 | 0.31 |
SPEI6 | 0.61 | 0.49 | 0.50 | 0.48 | 0.28 | 0.33 | 0.50 | 0.26 | 0.34 |
SPEI12 | 0.71 | 0.63 | 0.65 | 0.62 | 0.53 | 0.57 | 0.50 | 0.27 | 0.24 |
RMSE | |||||||||
3 months of lag data | 6 months of lag data | 12 months of lag data | |||||||
RF | ANN | SVM | RF | ANN | SVM | RF | ANN | SVM | |
SPEI3 | 0.37 | 0.28 | 0.28 | 0.39 | 0.27 | 0.33 | 0.42 | 0.29 | 0.39 |
SPEI6 | 0.72 | 0.60 | 0.61 | 0.60 | 0.35 | 0.42 | 0.62 | 0.33 | 0.40 |
SPEI12 | 0.86 | 0.77 | 0.80 | 0.78 | 0.66 | 0.72 | 0.60 | 0.34 | 0.41 |
NSE | |||||||||
3 months of lag data | 6 months of lag data | 12 months of lag data | |||||||
RF | ANN | SVM | RF | ANN | SVM | RF | ANN | SVM | |
SPEI3 | 0.47 | 0.32 | 0.34 | 0.43 | 0.33 | 0.45 | 0.42 | 0.33 | 0.43 |
SPEI6 | 0.75 | 0.62 | 0.65 | 0.65 | 0.39 | 0.49 | 0.62 | 0.35 | 0.51 |
SPEI12 | 0.89 | 0.79 | 0.80 | 0.79 | 0.71 | 0.75 | 0.60 | 0.39 | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poudel, B.; Dahal, D.; Banjara, M.; Kalra, A. Assessing Meteorological Drought Patterns and Forecasting Accuracy with SPI and SPEI Using Machine Learning Models. Forecasting 2024, 6, 1026-1044. https://doi.org/10.3390/forecast6040051
Poudel B, Dahal D, Banjara M, Kalra A. Assessing Meteorological Drought Patterns and Forecasting Accuracy with SPI and SPEI Using Machine Learning Models. Forecasting. 2024; 6(4):1026-1044. https://doi.org/10.3390/forecast6040051
Chicago/Turabian StylePoudel, Bishal, Dewasis Dahal, Mandip Banjara, and Ajay Kalra. 2024. "Assessing Meteorological Drought Patterns and Forecasting Accuracy with SPI and SPEI Using Machine Learning Models" Forecasting 6, no. 4: 1026-1044. https://doi.org/10.3390/forecast6040051
APA StylePoudel, B., Dahal, D., Banjara, M., & Kalra, A. (2024). Assessing Meteorological Drought Patterns and Forecasting Accuracy with SPI and SPEI Using Machine Learning Models. Forecasting, 6(4), 1026-1044. https://doi.org/10.3390/forecast6040051