Projecting Climate Change Impacts on Channel Depletion in the Sacramento–San Joaquin Delta of California in the 21st Century
Abstract
:1. Introduction
1.1. Background of Analysis
1.2. Motivation and Scope
2. Materials and Methods
2.1. Study Area
2.2. DCD Simulation Model
- IAN: Irrigation calculated by DETAW;
- Sr: Contribution rate of the subsurface water (in lowlands) or groundwater (in uplands);
- η: Irrigation efficiency factor;
- LWA: Applied leach water;
- RO: Runoff;
- LWD: Drained leach water;
- S: Total seepage;
- SD: Drained seepage;
- SE: Effective seepage;
- DP: Deep percolation rate;
- PPT: Precipitation;
- PPTE: Effective precipitation;
2.3. Climate Change
3. Results
3.1. Historical Baseline
3.2. Projected Changes
3.3. Spatial Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
No. | GCM Name | Institution | Atmospheric Horizontal Resolution (Km) [71] |
---|---|---|---|
1 | ACCESS-CM2 | Commonwealth Scientific and Industrial Research Organization and Bureau of Meteorology, Australia | 140 |
2 | ACCESS-ESM1-5 | Commonwealth Scientific and Industrial Research Organization and Bureau of Meteorology, Australia | 140 |
3 | AWI-CM-1-1-MR | Alfred Wegener Institute Climate Model (AWI-CM3) | 80 |
4 | BCC-CSM2-MR | Beijing Climate Center of China Meteorological Administration (BCC-CMA), China | 100 |
5 | CanESM5 | Canadian Centre for Climate Modelling and Analysis (CCCMA), Canada | 250 |
6 | EC-Earth3 | European Centre for Medium-Range Weather Forecasts (ECWMF), Europe | 80 |
7 | EC-Earth3-Veg | European Centre for Medium-Range Weather Forecasts (ECWMF), Europe | 80 |
8 | FGOALS-g3 | Institute of Atmospheric Physics (IAP), China | 190 |
9 | GFDL-CM4 | NOAA Geophysical Fluid Dynamics Laboratory (NOAA GFDL), USA | 100 |
10 | GFDL-ESM4 | NOAA Geophysical Fluid Dynamics Laboratory (NOAA GFDL), USA | 100 |
11 | INM-CM4-8 | Institute of Numerical Mathematics (INM) of the Russian Academy of Sciences, Russia | 150 |
12 | INM-CM5-0 | Institute of Numerical Mathematics (INM) of the Russian Academy of Sciences, Russia | 150 |
13 | IPSL-CM6A-LR | Institute Pierre Simon Laplace (IPSL), France | 160 |
14 | KACE-1-0-G | National Institute of Meteorological Sciences/Korea | 140 |
15 | MIROC6 | Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute, National Institute for Environmental Studies (MIROC), Japan | 120 |
16 | MPI-ESM1-2-HR | Max Planck Institute for Meteorology, Germany | 80 |
17 | MPI-ESM1-2-LR | Max Planck Institute for Meteorology, Germany | 170 |
18 | MRI-ESM2-0 | Meteorological Research Institute (MRI), Japan | 100 |
19 | NorESM2-LM | Norwegian Climate Centre (NCC), Norway | 190 |
20 | NorESM2-MM | Norwegian Climate Centre (NCC), Norway | 100 |
21 | TaiESM1 | Research Center for Environmental Changes, Academia Sinica (Taiwan) | 100 |
References
- Jeffrey Mount, D.S.; Ullrich, U. Climate Change and California’s Water. In FACT SHEET; Public Policy Institute of California: San Francisco, CA, USA, 2019. [Google Scholar]
- Public Policy Institute of California. Managing Drought in a Changing Climate: Four Essential Reforms; Public Policy Institute of California: San Francisco, CA, USA, 2018. [Google Scholar]
- Lund, J.; Medellin-Azuara, J.; Durand, J.; Stone, K. Lessons from California’s 2012–2016 drought. J. Water Resour. Plan. Manag. 2018, 144, 04018067. [Google Scholar] [CrossRef]
- Ullrich, P.; Xu, Z.; Rhoades, A.; Dettinger, M.; Mount, J.; Jones, A.; Vahmani, P. California’s drought of the future: A midcentury recreation of the exceptional conditions of 2012–2017. Earth’s Future 2018, 6, 1568–1587. [Google Scholar] [CrossRef] [PubMed]
- Lund, J.R. California’s agricultural and urban water supply reliability and the Sacramento–San Joaquin Delta. San Fr. Estuary Watershed Sci. 2016, 14. [Google Scholar] [CrossRef]
- Ingebritsen, S.; Ikehara, M.E. Sacramento-San Joaquin Delta: The sinking heart of the state. Land Subsid. United States. Circ. 1999, 1182, 83–94. [Google Scholar]
- Gartrell, G.; Mount, J.; Hanak, E.; Sencan, G. Tracking Where Water Goes in a Changing Sacramento–San Joaquin Delta Technical Appendix: Methods and Detailed Results for 1980–2021; Public Policy Institute of California: San Francisco, CA, USA, 2022. [Google Scholar]
- Gartrell, G.; Mount, J.; Hanak, E. Policy Brief: Tracking Where Water Goes in a Changing Sacramento–San Joaquin Delta. Available online: https://www.ppic.org/publication/policy-brief-tracking-where-water-goes-in-a-changing-sacramento-san-joaquin-delta/ (accessed on 13 December 2023).
- Hutton, P.H.; Rath, J.S.; Ateljevich, E.S.; Roy, S.B. Apparent Seasonal Bias in Delta Outflow Estimates as Revealed in the Historical Salinity Record of the San Francisco Estuary: Implications for Delta Net Channel Depletion Estimates. San Fr. Estuary Watershed Sci. 2021, 19. [Google Scholar] [CrossRef]
- He, M. Assessing Changes in 21st Century Mean and Extreme Climate of the Sacramento–San Joaquin Delta in California. Climate 2022, 10, 16. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Moyle, P.B.; Brown, L.R.; Durand, J.R.; Hobbs, J.A. Delta smelt: Life history and decline of a once-abundant species in the San Francisco Estuary. San Fr. Estuary Watershed Sci. 2016, 14. [Google Scholar] [CrossRef]
- California. Department of Water Resources. Division of Planning. Estimation of Delta Island Diversions and Return Flows; State of California, Department of Water Resources, Division of Planning: Sacramento, CA, USA, 1995.
- Sandhu, N.; Suits, B.; Ateljevich, E.; Zhong, L.; Kadir, T. On Estimating Net Delta Outflow (NDO) Approaches to estimating NDO in the Sacramento-San Joaquin Delta; California Department of Water Resources: Sacramento, CA, USA, 2016.
- Polade, S.D.; Gershunov, A.; Cayan, D.R.; Dettinger, M.D.; Pierce, D.W. Precipitation in a warming world: Assessing projected hydro-climate changes in California and other Mediterranean climate regions. Sci. Rep. 2017, 7, 10783. [Google Scholar] [CrossRef]
- Mariotti, A.; Pan, Y.; Zeng, N.; Alessandri, A. Long-term climate change in the Mediterranean region in the midst of decadal variability. Clim. Dyn. 2015, 44, 1437–1456. [Google Scholar] [CrossRef]
- Polade, S.D.; Pierce, D.W.; Cayan, D.R.; Gershunov, A.; Dettinger, M.D. The key role of dry days in changing regional climate and precipitation regimes. Sci. Rep. 2014, 4, 4364. [Google Scholar] [CrossRef] [PubMed]
- Vicuna, S.; Maurer, E.P.; Joyce, B.; Dracup, J.A.; Purkey, D. The sensitivity of California water resources to climate change scenarios 1. JAWRA J. Am. Water Resour. Assoc. 2007, 43, 482–498. [Google Scholar] [CrossRef]
- Schwarz, A.; Ray, P.; Wi, S.; Brown, C.; He, M.; Correa, M. Climate change risks faced by the California Central Valley water resource system. In California’s Fourth Climate Change Assessment; Publication Number: CCCA4-EXT-2018-001; State o California: Sacramento, CA, USA, 2018. [Google Scholar]
- Alam, S.; Gebremichael, M.; Li, R.; Dozier, J.; Lettenmaier, D.P. Climate change impacts on groundwater storage in the Central Valley, California. Clim. Chang. 2019, 157, 387–406. [Google Scholar] [CrossRef]
- Mallakpour, I.; AghaKouchak, A.; Sadegh, M. Climate-induced changes in the risk of hydrological failure of major dams in California. Geophys. Res. Lett. 2019, 46, 2130–2139. [Google Scholar] [CrossRef]
- Liu, Z.; Herman, J.D.; Huang, G.; Kadir, T.; Dahlke, H.E. Identifying climate change impacts on surface water supply in the southern Central Valley, California. Sci. Total Environ. 2021, 759, 143429. [Google Scholar] [CrossRef]
- Ishida, K.; Ercan, A.; Trinh, T.; Kavvas, M.; Ohara, N.; Carr, K.; Anderson, M. Analysis of future climate change impacts on snow distribution over mountainous watersheds in Northern California by means of a physically-based snow distribution model. Sci. Total Environ. 2018, 645, 1065–1082. [Google Scholar] [CrossRef]
- Li, D.; Wrzesien, M.L.; Durand, M.; Adam, J.; Lettenmaier, D.P. How much runoff originates as snow in the western United States, and how will that change in the future? Geophys. Res. Lett. 2017, 44, 6163–6172. [Google Scholar] [CrossRef]
- Dettinger, M.D.; Anderson, M.L. Storage in California’s reservoirs and snowpack in this time of drought. San Fr. Estuary Watershed Sci. 2015, 13. [Google Scholar] [CrossRef]
- Dettinger, M.; Anderson, J.; Anderson, M.; Brown, L.R.; Cayan, D.; Maurer, E. Climate change and the Delta. San Fr. Estuary Watershed Sci. 2016, 14. [Google Scholar] [CrossRef]
- Monismith, S.G. A note on Delta outflow. San Fr. Estuary Watershed Sci. 2016, 14. [Google Scholar] [CrossRef]
- Dayflow. Available online: https://water.ca.gov/Programs/Integrated-Science-and-Engineering/Compliance-Monitoring-And-Assessment/Dayflow-Data (accessed on 20 December 2023).
- Siegfried, L.J. Physically Based Modeling of Delta Island Consumptive Use A Case Study of Fabian Tract and Staten Island; University of California: Davis, CA, USA, 2012. [Google Scholar]
- Medellín-Azuara, J.; Paw UK, T.; Jin, Y.; Jankowski, J.; Bell, A.; Kent, E.; Clay, J.; Wong, A.; Santos, N.; Badillo, J.; et al. A Comparative Study for Estimating Crop Evapotranspiration in the Sacramento-San Joaquin Delta; Center for Watershed Sciences, University of California: Davis, CA, USA, 2018. [Google Scholar]
- Kadir, T. Estimates for consumptive water demands in the Delta using DETAW, methodology for flow and salinity estimates in the Sacramento–San Joaquin Delta and Suisun Marsh. In 27th Annual Progress Report to the CSWRCB; California Department of Water Resources: Sacramento, CA, USA, 2006; Chapter 7. [Google Scholar]
- Snyder, R.; Orang, M.; Matyac, J.; Sarreshteh, S.; Kadir, T. Delta Evapotranspiration of Applied Water–DETAW. Calif. Water Plan Update 2009 2009, 4, 489–501. [Google Scholar]
- Liang, L.; Suits, B. Implementing DETAW in Modeling Hydrodynamics and Water Quality in the Sacramento-San Joaquin Delta, Methodology for Flow and Salinity Estimates in the Sacramento-San Joaquin Delta and Suisun Marsh; California Department of Water Resources: Sacramento, CA, USA, 2017.
- Liang, L.; Suits, B. Calibrating and Validating Delta Channel Depletion Estimates; California Department of Water Resources Sacramento: Sacramento, CA, USA, 2018.
- Owen, L.W.; Nance, D.H. Hydrology of the Sacramento-San Joaquin Delta; Department of Water Resources, Resources Agency of California: Sacramento, CA, USA, 1962.
- Masson-Delmotte, V.; Zhai, P.; Pirani, S.; Connors, C.; Péan, S.; Berger, N.; Caud, Y.; Chen, L.; Goldfarb, M.; Scheel Monteiro, P.M. Ipcc, 2021: Summary for policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group i to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; 2021. [Google Scholar]
- Swain, D.L.; Langenbrunner, B.; Neelin, J.D.; Hall, A. Increasing precipitation volatility in twenty-first-century California. Nat. Clim. Chang. 2018, 8, 427–433. [Google Scholar] [CrossRef]
- Pathak, T.B.; Maskey, M.L.; Dahlberg, J.A.; Kearns, F.; Bali, K.M.; Zaccaria, D. Climate change trends and impacts on California agriculture: A detailed review. Agronomy 2018, 8, 25. [Google Scholar] [CrossRef]
- Feldman, D.R.; Tadić, J.M.; Arnold, W.; Schwarz, A. Establishing a range of extreme precipitation estimates in California for planning in the face of climate change. J. Water Resour. Plan. Manag. 2021, 147, 04021056. [Google Scholar] [CrossRef]
- Gartrell, G.; Mount, J.; Hanak, E.; Gray, B. A New Approach to Accounting for Environmental Water; Public Policy Institute of California: San Francisco, CA, USA, 2017. [Google Scholar]
- Zhang, S.; Chen, J. Uncertainty in projection of climate extremes: A comparison of CMIP5 and CMIP6. J. Meteorol. Res. 2021, 35, 646–662. [Google Scholar] [CrossRef]
- MacVean, L.J.; Thompson, S.; Hutton, P.; Sivapalan, M. Reconstructing early hydrologic change in the California Delta and its watersheds. Water Resour. Res. 2018, 54, 7767–7790. [Google Scholar] [CrossRef]
- Monsen, N.E.; Cloern, J.E.; Burau, J.R. Effects of flow diversions on water and habitat quality: Examples from California’s highly manipulated Sacramento–San Joaquin Delta. San Fr. Estuary Watershed Sci. 2007, 5. [Google Scholar] [CrossRef]
- Orang, M.; Snyder, R.L.; Sarreshteh, S. Historical Estimates of Agricultural and Wetland Water Use in the San Joaquin Sacramento River Delta. CA Water Plan Update 2009 2009, 4. [Google Scholar]
- Qi, S.; He, M.; Bai, Z.; Ding, Z.; Sandhu, P.; Chung, F.; Namadi, P.; Zhou, Y.; Hoang, R.; Tom, B.; et al. Novel Salinity Modeling Using Deep Learning for the Sacramento–San Joaquin Delta of California. Water 2022, 14, 3628. [Google Scholar] [CrossRef]
- Chen, Z.E.D.; Hillaire, T.; Lui, M.; Polsinelli, J.; Reyes, E.; Wang, J.; Yin, H.; Zhong, L.; Sumer, D.; Parker, N.; et al. CalSim 3 Report: A Water Resources System Planning Model for State Water Project & Central Valley Project; California Department of Water Resources: Sacramento, CA, USA, 2022.
- Livneh, B.; Rosenberg, E.A.; Lin, C.; Nijssen, B.; Mishra, V.; Andreadis, K.M.; Maurer, E.P.; Lettenmaier, D.P. A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States: Update and extensions. J. Clim. 2013, 26, 9384–9392. [Google Scholar] [CrossRef]
- GoogleEarth, Sacramento-San joaquin Delta. Google, 2024. Available online: https://www.google.com/earth (accessed on 20 December 2023).
- Delta Channel Depletion Model (DCD) User Guide; California Department of Water Resources: Sacramento, CA, USA. Available online: https://water.ca.gov/Library/Modeling-and-Analysis/Bay-Delta-Region-models-and-tools/DCD (accessed on 22 October 2024).
- Liang, L.B.S.A.N.S. Delta Evapotranspiration of Applied Water (DETAW v2.1)-User’s Manual; 2020. Available online: https://water.ca.gov/Library/Modeling-and-Analysis/Bay-Delta-Region-models-and-tools/DETAW (accessed on 22 October 2024).
- Jayasundara, N.C.; Seneviratne, S.A.; Reyes, E.; Chung, F.I. Artificial neural network for Sacramento–San Joaquin Delta flow–salinity relationship for CalSim 3.0. J. Water Resour. Plan. Manag. 2020, 146, 04020015. [Google Scholar] [CrossRef]
- DSM2: Delta Simulation Model II. Available online: https://water.ca.gov/Library/Modeling-and-Analysis/Bay-Delta-Region-models-and-tools/Delta-Simulation-Model-II (accessed on 2 June 2024).
- Kabakov, S. Investigation of the Sacramento-San Joaquin Delta, Report No. 4, Quantity and Quality of Waters Applied to and Drained from the Delta Lowlands; California Department of Water Resources: Sacramento, CA, USA, 1956.
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Hayhoe, K.; Edmonds, J.; Kopp, R.; LeGrande, A.; Sanderson, B.; Wehner, M.; Wuebbles, D. Fourth National Climate Assessment-Chapter 4: Climate Models, Scenarios, and Projections; U.S. Global Change Research Program: Washington, DC, USA, 2017.
- Pierce, D.W.; Cayan, D.R.; Dehann, L. Creating Climate Projections to Support the 4th California Climate Assessment; University of California at San Diego, Scripps Institution of Oceanography: La Jolla, CA, USA, 2016. [Google Scholar]
- Pierce, D.W.; Cayan, D.R.; Thrasher, B.L. Statistical downscaling using localized constructed analogs (LOCA). J. Hydrometeorol. 2014, 15, 2558–2585. [Google Scholar] [CrossRef]
- Livneh, B.; Bohn, T.J.; Pierce, D.W.; Munoz-Arriola, F.; Nijssen, B.; Vose, R.; Cayan, D.R.; Brekke, L. A spatially comprehensive, hydrometeorological data set for Mexico, the US, and Southern Canada 1950–2013. Sci. Data 2015, 2, 150042. [Google Scholar] [CrossRef]
- Pierce, D.W.; Su, L.; Cayan, D.R.; Risser, M.D.; Livneh, B.; Lettenmaier, D.P. An extreme-preserving long-term gridded daily precipitation dataset for the conterminous United States. J. Hydrometeorol. 2021, 22, 1883–1895. [Google Scholar]
- Pierce, D.W.; Cayan, D.R.; Feldman, D.R.; Risser, M.D. Future Increases in North American Extreme Precipitation in CMIP6 Downscaled with LOCA. J. Hydrometeorol. 2023, 24, 951–975. [Google Scholar] [CrossRef]
- Pierce, D.W. (Ed.) LOCA Version 2 for North America, Available online: https://loca.ucsd.edu/loca-version-2-for-north-america-ca-jan-2023/ (accessed on 1 December 2023).
- Yu, M. Delta Channel Depletion (DCD) and Suisun Marsh Channel Depletion (SMCD) Models; California Department of Water Resources: Sacramento, CA, USA; California Natural Resources Agency Open Data: Sacramento, CA, USA, 2021.
- Knutti, R. The end of model democracy? An editorial comment. Clim. Chang. 2010, 102, 395–404. [Google Scholar] [CrossRef]
- Hausfather, Z.; Marvel, K.; Schmidt, G.A.; Nielsen-Gammon, J.W.; Zelinka, M. Climate simulations: Recognize the ‘hot model’problem. Nature 2022, 605, 26–29. [Google Scholar] [CrossRef]
- Salehi, S.; Neyshabouri, S.A.A.S. Extreme Climate Trends in California Central Valley: Insights from CMIP6. Authorea Preprints 2024, 11. [Google Scholar]
- Griggs, G.; Cayan, D.; Tebaldi, C.; Amanda Fricker, H.; Arvai, J.; DeConto, R.; Knopp, R.E.; Whiteman, L.; Moser, S.; Fox, J. Rising Seas in California-An Update on Sea-Level Rise Science; California Ocean Science Trust, 2017. Available online: https://www.opc.ca.gov/webmaster/ftp/pdf/docs/rising-seas-in-california-an-update-on-sea-level-rise-science.pdf (accessed on 22 October 2024).
- Najibi, N.; Perez, A.J.; Arnold, W.; Schwarz, A.; Maendly, R.; Steinschneider, S. A statewide, weather-regime based stochastic weather generator for process-based bottom-up climate risk assessments in California–Part I: Model evaluation. Clim. Serv. 2024, 34, 100489. [Google Scholar] [CrossRef]
- Ray, P.; Wi, S.; Schwarz, A.; Correa, M.; He, M.; Brown, C. Vulnerability and risk: Climate change and water supply from California’s Central Valley water system. Clim. Chang. 2020, 161, 177–199. [Google Scholar] [CrossRef]
- Marchau, V.A.; Walker, W.E.; Bloemen, P.J.; Popper, S.W. Decision Making Under Deep Uncertainty: From Theory to Practice; Springer Nature: Cham, Switzerland, 2019. [Google Scholar]
- Shipman, P.; Rayej, M. From Climate Traces to Climate Insights:Future Scenarios Analysis for the California Central Valley; California Department of Water Resources: Sacramento, CA, USA, 2023.
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M. Climate change 2021: The physical science basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change, 2021; Volume 2, Available online: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_FrontMatter.pdf (accessed on 22 October 2024).
Statistics | Average | Standard Deviation | Minimum | Median | Maximum | |
---|---|---|---|---|---|---|
Variable | ||||||
Net Channel Depletion | 1045.7 | 205.4 | 452.8 | 1064.1 | 1418.3 | |
Diversion | 1374.4 | 87.2 | 1167.0 | 1380.3 | 1539.4 | |
Drainage | 1170.1 | 137.8 | 919.7 | 1141.3 | 1553.8 | |
Seepage | 841.4 | 8.9 | 811.1 | 842.9 | 863.2 |
Variable | Drainage | Channel Depletion | Seepage | Diversion (Irrigation) | |
---|---|---|---|---|---|
Statistics | |||||
Maximum | 1274.8 | 1255.1 | 877.6 | 1555.9 | |
3rd quantile | 1233.1 | 1151.9 | 867.9 | 1491.1 | |
Median | 1209.7 | 1129.6 | 863.5 | 1472.9 | |
1st quantile | 1189.5 | 1092.2 | 859.9 | 1456.3 | |
Minimum | 1161.7 | 1048.9 | 853.1 | 1419.6 | |
Nr. of data points | 61 | 61 | 61 | 61 | |
Historical Annual Average | 1170.1 | 1045.7 | 841.4 | 1374.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salehi, S.; Salehi Neyshabouri, S.A.A.; Schwarz, A.; He, M. Projecting Climate Change Impacts on Channel Depletion in the Sacramento–San Joaquin Delta of California in the 21st Century. Forecasting 2024, 6, 1098-1123. https://doi.org/10.3390/forecast6040055
Salehi S, Salehi Neyshabouri SAA, Schwarz A, He M. Projecting Climate Change Impacts on Channel Depletion in the Sacramento–San Joaquin Delta of California in the 21st Century. Forecasting. 2024; 6(4):1098-1123. https://doi.org/10.3390/forecast6040055
Chicago/Turabian StyleSalehi, Sohrab, Seyed Ali Akbar Salehi Neyshabouri, Andrew Schwarz, and Minxue He. 2024. "Projecting Climate Change Impacts on Channel Depletion in the Sacramento–San Joaquin Delta of California in the 21st Century" Forecasting 6, no. 4: 1098-1123. https://doi.org/10.3390/forecast6040055
APA StyleSalehi, S., Salehi Neyshabouri, S. A. A., Schwarz, A., & He, M. (2024). Projecting Climate Change Impacts on Channel Depletion in the Sacramento–San Joaquin Delta of California in the 21st Century. Forecasting, 6(4), 1098-1123. https://doi.org/10.3390/forecast6040055