Radiocarbon Dating of Anthropogenic Carbonates: What Is the Benchmark for Sample Selection?
Abstract
:1. Introduction
2. Formation and Dissolution Processes of Anthropogenic Carbonates
2.1. Lime Plaster and Lime Mortar
2.2. Hydraulic Mortar
2.3. Wood Ash
2.4. Dissolution and Recrystallization Process
3. Characterization Methods
3.1. Crystal Structure
3.2. Isotopic Signature
4. Assessing the State of Preservation
4.1. Initial Screening
4.2. Purified Fractions
4.3. Defining the Benchmark
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Artioli, G. Scientific Methods and Cultural Heritage: An Introduction to the Application of Materials Science to Archaeometry and Conservation Science; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Weiner, S. Microarchaeology. Beyond the Visible Archeological Record; Cambridge University Press: New York, NY, USA, 2010. [Google Scholar]
- Artioli, G.; Secco, M.; Addis, A. The Vitruvian legacy: Mortars and binders before and after the Roman world. EMU Notes Mineral. 2019, 20, 151–202. [Google Scholar]
- Canti, M.G. Aspects of the chemical and microscopic characteristics of plant ashes found in archeological soils. Catena 2003, 54, 339–361. [Google Scholar] [CrossRef]
- Sandgathe, D.M.; Berna, F. Fire and the Genus Homo. Curr. Anthropol. 2017, 58, 165–174. [Google Scholar] [CrossRef]
- Boaretto, E.; Poduska, K.M. Materials Science Challenges in Radiocarbon Dating: The Case of Archeological Plasters. J. Miner. Met. Mater. Soc. (TMS) 2013, 65, 481–488. [Google Scholar] [CrossRef] [Green Version]
- Labeyrie, J.; Delibrias, G. Dating of Old Mortars by the Carbon-14 Method. Nature 1964, 201, 742. [Google Scholar] [CrossRef]
- Delibrias, G.; Labeyrie, J. The dating of mortars by the carbon-14 method. In Proceedings of the 6th International Conference on Radiocarbon and Tritium Dating, Pullman, WA, USA, 7–11 June 1965; pp. 344–347. [Google Scholar]
- Stuiver, M.; Smith, C.S. Radiocarbon dating of ancient mortar and plaster. In Proceedings of the 6th International Conference on Radiocarbon and Tritium Dating, Pullman, WA, USA, 7–11 June 1965; pp. 338–343. [Google Scholar]
- Baxter, M.S.; Walton, A. Radiocarbon dating of mortars. Nature 1970, 225, 937–938. [Google Scholar] [CrossRef]
- Folk, R.L.; Valastro, S. Successful Technique for Dating of Lime Mortar by Carbon-14. J. Field Archaeol. 1976, 3, 203–208. [Google Scholar] [CrossRef]
- Heinemeier, J.; Jungner, H.; Lindroos, A.; Ringbom, Å.; von Konow, T.; Rud, N. AMS 14C dating of lime mortar. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1997, 123, 487–495. [Google Scholar] [CrossRef]
- Heinemeier, J.; Ringbom, Å.; Lindroos, A.; Sveinbjörndóttir, Á. Successful AMS 14C dating of non-hydraulic lime mortars from the medieval churches of the Åland Islands, Finland. Radiocarbon 2010, 52, 171–204. [Google Scholar] [CrossRef] [Green Version]
- Lindroos, A.; Heinemeier, J.; Ringbom, Å.; Braskén, M.; Sveinbjörndóttir, Á. Mortar dating using AMS 14C and sequential dissolution: Examples from medieval, non-hydraulic lime mortars from the Åland Islands, SW Finland. Radiocarbon 2007, 49, 47–67. [Google Scholar] [CrossRef] [Green Version]
- van Strydonck, M.J.Y.; van der Borg, K.; de Jong, A.F.M.; Keppens, E. Radiocarbon dating of lime fractions and organic material from buildings. Radiocarbon 1992, 34, 873–879. [Google Scholar] [CrossRef] [Green Version]
- Nawrocka, D.; Michniewicz, J.; Pawlyta, J.; Pazdur, A. Application of radiocarbon method for dating of lime mortars. Geochronometria 2005, 24, 109–115. [Google Scholar]
- Pesce, G.; Quarta, G.; Calcagnile, L.; D’Elia, M.; Cavaciocchi, P.; Lastrico, C.; Guastella, R. Radiocarbon dating of lumps from aerial lime mortars and plasters: Methodological issues and results from San Nicolò of Capodimonte church (Camogli, Genoa, Italy). Radiocarbon 2009, 51, 867–872. [Google Scholar] [CrossRef] [Green Version]
- Sonninen, E.; Jungner, H. An improvement in preparation of mortar for radiocarbon dating. Radiocarbon 2001, 43, 271–273. [Google Scholar] [CrossRef] [Green Version]
- Ricci, G.; Secco, M.; Marzaioli, F.; Terrasi, F.; Passariello, I.; Addis, A.; Lampugnani, P.; Artioli, G. The Cannero Castle (Italy): Development of radiocarbon dating methodologies in the framework of the layered double hydroxide mortars. Radiocarbon 2020, 62, 617–631. [Google Scholar] [CrossRef]
- Addis, A.; Secco, M.; Marzaioli, F.; Artioli, G.; Chavarria Arnau, A.; Passariello, I.; Terrasi, F.; Brogiolo, G.P. Selecting the most reliable 14C dating material inside mortars: The origin of the Padua Cathedral. Radiocarbon 2019, 61, 375–393. [Google Scholar] [CrossRef]
- Toffolo, M.B.; Regev, L.; Mintz, E.; Poduska, K.M.; Shahack-Gross, R.; Berthold, C.; Miller, C.E.; Boaretto, E. Accurate radiocarbon dating of archeological ash using pyrogenic aragonite. Radiocarbon 2017, 59, 231–249. [Google Scholar] [CrossRef]
- Regev, L.; Eckmeier, E.; Mintz, E.; Weiner, S.; Boaretto, E. Radiocarbon concentrations of wood ash calcite: Potential for dating. Radiocarbon 2011, 53, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Toffolo, M.B.; Regev, L.; Mintz, E.; Kaplan-Ashiri, I.; Berna, F.; Dubernet, S.; Xin, Y.; Regev, J.; Boaretto, E. Structural characterization and thermal decomposition of lime binders allow accurate radiocarbon age determinations of aerial lime plaster. Radiocarbon 2020, 62, 633–655. [Google Scholar] [CrossRef]
- Marzaioli, F.; Lubritto, C.; Nonni, S.; Passariello, I.; Capano, M.; Terrasi, F. Mortar Radiocarbon Dating: Preliminary Accuracy Evaluation of a Novel Methodology. Anal. Chem. 2011, 83, 2038–2045. [Google Scholar] [CrossRef]
- Michalska, D.; Czernik, J. Carbonates in leaching reactions in context of 14C dating. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2015, 361, 431–439. [Google Scholar] [CrossRef]
- Ortega, L.A.; Zuluaga, M.C.; Alonso-Olazabal, A.; Murelaga, X.; Insausti, M.; Ibañez-Exteberria, A. Historic lime-mortar 14C dating of Santa Maria La Real (Zarautz, northern Spain): Extraction of suitable grain size for reliable 14C dating. Radiocarbon 2012, 54, 23–36. [Google Scholar] [CrossRef]
- van Strydonck, M. Radiocarbon dating of lime mortars: A historic overview. In Proceedings of the 4th Historic Mortars Conference, Santorini, Greece, 10–12 October 2016; pp. 648–655. [Google Scholar]
- Marzaioli, F.; Nonni, S.; Passariello, I.; Capano, M.; Ricci, P.; Lubritto, C.; De Cesare, N.; Eramo, G.; Quiros Castillo, J.A.; Terrasi, F. Accelerator mass spectrometry 14C dating of lime mortars: Methodological aspects and field study applications at CIRCE (Italy). Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2013, 294, 246–251. [Google Scholar] [CrossRef]
- Hayen, R.; Van Strydonck, M.; Fontaine, L.; Boudin, M.; Lindroos, A.; Heinemeier, J.; Ringbom, Å.; Michalska, D.; Hajdas, I.; Hueglin, S.; et al. Mortar dating methodology: Assessing recurrent issues and needs for future research. Radiocarbon 2017, 59, 1859–1871. [Google Scholar] [CrossRef]
- Hajdas, I.; Lindroos, A.; Heinemeier, J.; Ringbom, Å.; Marzaioli, F.; Terrasi, F.; Passariello, I.; Capano, M.; Artioli, G.; Addis, A.; et al. Preparation and dating of mortar samples-Mortar Dating Intercomparison Study (MODIS). Radiocarbon 2017, 59, 1–14. [Google Scholar] [CrossRef]
- Urbanová, P.; Boaretto, E.; Artioli, G. The state-of-the-art of dating techniques applied to ancient mortars and binders: A review. Radiocarbon 2020, 62, 503–525. [Google Scholar] [CrossRef]
- Michalska, D. Influence of different pretreatments on mortar dating results. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2019, 456, 236–246. [Google Scholar] [CrossRef]
- Hayen, R.; Van Strydonck, M.; Boaretto, E.; Lindroos, A.; Heinemeier, J.; Ringbom, Å.; Hueglin, S.; Michalska, D.; Hajdas, I.; Marzaioli, F.; et al. Analysis and characterisation of historic mortars for aboslute dating. In Proceedings of the 4th Historic Mortars Conference, Santorini, Greece, 10–12 October 2016; pp. 656–664. [Google Scholar]
- Addis, A.; Secco, M.; Preto, N.; Marzaioli, F.; Passariello, I.; Brogiolo, G.P.; Chavarria Arnau, A.; Artioli, G.; Terrasi, F. New strategies for radiocarbon dating of mortars: Multi-step purification of the lime binder. In Proceedings of the 4th Historic Mortars Conference, Santorini, Greece, 10–12 October 2016; pp. 665–672. [Google Scholar]
- Murakami, T.; Hodgins, G.; Simon, A.W. Characterization of lime carbonates in plasters from Teotihuacan, Mexico: Preliminary results of cathodoluminescence and carbon isotope analyses. J. Archeol. Sci. 2013, 40, 960–970. [Google Scholar] [CrossRef]
- Nonni, S.; Marzaioli, F.; Mignardi, S.; Passariello, I.; Capano, M.; Terrasi, F. Radiocarbon dating of mortars with a pozzolana aggregate using the Cryo2SoniC protocol to isolate the binder. Radiocarbon 2018, 60, 617–637. [Google Scholar] [CrossRef]
- Al-Bashaireh, K.; Hodgins, G.W. Lime mortar and plaster: A radiocarbon dating tool for dating Nabatean structures in Petra, Jordan. Radiocarbon 2012, 54, 905–914. [Google Scholar] [CrossRef] [Green Version]
- Lindroos, A.; Regev, L.; Oinonen, M.; Ringbom, Å.; Heinemeier, J. 14C dating of fire-damaged mortars from medieval Finland. Radiocarbon 2012, 54, 915–932. [Google Scholar] [CrossRef] [Green Version]
- Ponce-Antón, G.; Ortega, L.A.; Zuluaga, M.C.; Alonso-Olazabal, A.; Solaun, J.L. Hydrotalcite and Hydrocalumite in Mortar Binders from the Medieval Castle of Portilla (Álava, North Spain): Accurate Mineralogical Control to Achieve More Reliable Chronological Ages. Minerals 2018, 8, 326. [Google Scholar] [CrossRef] [Green Version]
- Marzaioli, F.; Terrasi, F.; Passariello, I.; D’Onofrio, A.; Di Rienzo, B.; Stellato, L.; Artioli, G.; Addis, A.; Secco, M.; Nonni, S.; et al. Investigation of pre-screening and cost-effective tools for mortar dating at CIRCE and CIRCe: Data from the usage of 13C in the framework of synthetic samples. Archeol. dell’Architettura 2019, XXIV, 73–79. [Google Scholar]
- Lubritto, C.; Ricci, P.; Germinario, C.; Izzo, F.; Mercurio, M.; Langella, A.; Salvatierra Cuenca, V.; Montilla Torres, I.; Fedi, M.; Grifa, C. Radiocarbon dating of mortars: Contamination effects and sample characterisation. The case-study of Andalusian medieval castles (Jaén, Spain). Measurement 2018, 118, 362–371. [Google Scholar] [CrossRef]
- Ponce-Antón, G.; Lindroos, A.; Ringbom, Å.; Ortega, L.A.; Zuluaga, M.C.; Hajdas, I.; Olsen, J.; Mauleon, J.A. Comparison of sample preparation procedures for mortar radiocarbon dating. Case study of Irulegi Castle (Navarre, Spain). Quat. Geochronol. 2020, 60, 101110. [Google Scholar] [CrossRef]
- Poduska, K.M.; Regev, L.; Berna, F.; Mintz, E.; Milevski, I.; Khalaily, H.; Weiner, S.; Boaretto, E. Plaster characterization at the PPNB site of Yiftahel (Israel) including the use of 14C: Implications for plaster production, preservation, and dating. Radiocarbon 2012, 54, 887–896. [Google Scholar] [CrossRef] [Green Version]
- Asscher, Y.; van Zuiden, A.; Elimelech, C.; Gendelman, P.; ‘Ad, U.; Sharvit, J.; Secco, M.; Ricci, G.; Artioli, G. Prescreening hydraulic lime-binders for disordered calcite in Caesarea Maritima: Characterizing the chemical environment using FTIR. Radiocarbon 2020, 62, 527–543. [Google Scholar] [CrossRef]
- Yizhaq, M.; Mintz, G.; Cohen, I.; Khalaily, H.; Weiner, S.; Boaretto, E. Quality controlled radiocarbon dating of bones and charcoal from the early Pre-Pottery Neolitic B (PPNB) of Motza (Israel). Radiocarbon 2005, 47, 193–206. [Google Scholar] [CrossRef] [Green Version]
- DeNiro, M.J.; Weiner, S. Chemical, enzymatic and spectroscopic characterization of "collagen" and other organic fractions from prehistoric bones. Geochim. Cosmochim. Acta 1988, 52, 2197–2206. [Google Scholar] [CrossRef]
- Alon, D.; Mintz, G.; Cohen, I.; Weiner, S.; Boaretto, E. The use of Raman spectroscopy to monitor the removal of humic substances from charcoal: Quality control for 14C dating of charcoal. Radiocarbon 2002, 44, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Boynton, R.S. Chemistry and Technology of Lime and Limestone; John Wiley & Sons, Inc.: New York, NY, USA, 1980. [Google Scholar]
- Toffolo, M.B.; Boaretto, E. Nucleation of aragonite upon carbonation of calcium oxide and calcium hydroxide at ambient temperatures and pressures: A new indicator of fire-related human activities. J. Archeol. Sci. 2014, 49, 237–248. [Google Scholar] [CrossRef]
- Eliyahu-Behar, A.; Yahalom-Mack, N.; Ben-Shlomo, D. Excavation and Analysis of an Early Iron Age Lime Kiln. Isr. Explor. J. 2017, 67, 14–31. [Google Scholar]
- Toffolo, M.B.; Regev, L.; Dubernet, S.; Lefrais, Y.; Boaretto, E. FTIR-Based Crystallinity Assessment of Aragonite–Calcite Mixtures in Archeological Lime Binders Altered by Diagenesis. Minerals 2019, 9, 121. [Google Scholar] [CrossRef] [Green Version]
- Lindroos, A.; Ringbom, Å.; Heinemeier, J.; Hajdas, I.; Olsen, J. Delayed hardening and reactivation of binder calcite: Common problems in radiocarbon dating of lime mortars. Radiocarbon 2020, 62, 565–577. [Google Scholar] [CrossRef]
- Artioli, G.; Secco, M.; Addis, A.; Bellotto, M. Role of hydrotalcite-type layered double hydroxides in delayed pozzolanic reactions and their bearing on mortar dating. In Cementitious Materials: Composition, Properties, Application; Pöllmann, H., Ed.; De Gruyter: Berlin, Germany, 2017; pp. 147–158. [Google Scholar]
- Caroselli, M.; Hajdas, I.; Cassitti, P. Radiocarbon dating of dolomitic mortars from the convent of Saint John, Müstair (Switzerland): First results. Radiocarbon 2020, 62, 601–615. [Google Scholar] [CrossRef]
- Regev, L.; Zukerman, A.; Hitchcock, L.; Maeir, A.M.; Weiner, S.; Boaretto, E. Iron Age hydraulic plaster from Tell es-Safi/Gath, Israel. J. Archeol. Sci. 2010, 37, 3000–3009. [Google Scholar] [CrossRef]
- Secco, M.; Previato, C.; Addis, A.; Zago, G.; Kamsteeg, A.; Dilaria, S.; Canovaro, C.; Artioli, G.; Bonetto, J. Mineralogical clustering of the structural mortars from the Sarno Baths, Pompeii: A tool to interpret construction techniques and relative chronologies. J. Cult. Herit. 2019, 40, 265–273. [Google Scholar] [CrossRef]
- Mills, S.J.; Christy, A.G.; Génin, J.-M.R.; Kameda, T.; Colombo, F. Nomenclature of the hydrotalcite supergroup: Natural layered double hydroxides. Mineral. Mag. 2012, 76, 1289–1336. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, P.; Ishihara, S.; Yamada, K.; Deguchi, K.; Ohki, S.; Tansho, M.; Shimizu, T.; Eisaku, N.; Sasai, R.; Labuta, J.; et al. Rapid Exchange between Atmospheric CO2 and Carbonate Anion Intercalated within Magnesium Rich Layered Double Hydroxide. Appl. Mater. Interfaces 2014, 6, 18352–18359. [Google Scholar] [CrossRef]
- Ishihara, S.; Sahoo, P.; Deguchi, K.; Ohki, S.; Tansho, M.; Shimizu, T.; Labuta, J.; Hill, J.P.; Ariga, K.; Watanabe, K.; et al. Dynamic Breathing of CO2 by Hydrotalcite. J. Am. Chem. Soc. 2013, 135, 18040–18043. [Google Scholar] [CrossRef]
- Secco, M.; Dilaria, S.; Bonetto, J.; Addis, A.; Tamburini, S.; Preto, N.; Ricci, G.; Artioli, G. Technological transfers in the Mediterranean on the verge of Romanization: Insights from the waterproofing renders of Nora (Sardinia, Italy). J. Cult. Herit. 2020, 44, 63–82. [Google Scholar] [CrossRef]
- Frost, R.L.; Weier, M.L. Thermal treatment of whewellite—A thermal analysis and Raman spectroscopic study. Thermochim. Acta 2004, 409, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Frost, R.L.; Weier, M.L. Thermal treatment of weddellite—A Raman and infrared emission spectroscopic study. Thermochim. Acta 2003, 406, 221–232. [Google Scholar] [CrossRef] [Green Version]
- Shahack-Gross, R.; Ayalon, A. Stable carbon and oxygen isotopic compositions of wood ash: An experimental study with archeological implications. J. Archeol. Sci. 2013, 40, 570–578. [Google Scholar] [CrossRef]
- Asscher, Y.; Lehmann, G.; Rosen, S.A.; Weiner, S.; Boaretto, E. Absolute dating of the Late Bronze to Iron Age transition and the appearance of Philistine culture in Qubur el-Walaydah, southern Levant. Radiocarbon 2015, 57, 77–97. [Google Scholar] [CrossRef]
- Regev, L.; Cabanes, D.; Homsher, R.; Kleiman, A.; Weiner, S.; Finkelstein, I.; Shahack-Gross, R. Geoarcheological Investigation in a Domestic Iron Age Quarter, Tel Megiddo, Israel. Bull. Am. Sch. Orient. Res. 2015, 374, 135–157. [Google Scholar] [CrossRef]
- Karkanas, P. Chemical alteration. In Encyclopedia of Geoarchaeology; Gilbert, A.S., Ed.; Springer: Dordrecht, The Netherlands, 2016; pp. 129–138. [Google Scholar]
- Karkanas, P.; Bar-Yosef, O.; Goldberg, P.; Weiner, S. Diagenesis in Prehistoric Caves: The Use of Minerals that Form In Situ to Assess the Completeness of the Archeological Record. J. Archeol. Sci. 2000, 27, 915–929. [Google Scholar] [CrossRef]
- Ostwald, W.Z. Studien über die Bildung und Umwandlung fester Körper. Z. Phys. Chem. 1897, 22, 289–330. [Google Scholar] [CrossRef]
- Koumouzelis, M.; Ginter, B.; Kozlowski, J.K.; Pawlikowski, M.; Bar-Yosef, O.; Albert, R.M.; Litynska-Zajac, M.; Stworzewicz, E.; Wojtal, P.; Lipecki, G.; et al. The early Upper Palaeolithic in Greece: The excavations in Klisoura Cave. J. Archeol. Sci. 2001, 28, 515–539. [Google Scholar] [CrossRef]
- Borges, C.; Santos Silva, A.; Veiga, R. Durability of ancient lime mortars in humid environment. Constr. Build. Mater. 2014, 66, 606–620. [Google Scholar] [CrossRef]
- Hughes, J.J.; Cuthbert, S.J. The petrography and microstructure of medieval lime mortars from the west of Scotland: Implications for the formulation of repair and replacement mortars. Mater. Struct. 2000, 33, 594–600. [Google Scholar] [CrossRef]
- Moropoulou, A.; Bakolas, A.; Bisbikou, K. Investigation of the technology of historic mortars. J. Cult. Herit. 2000, 1, 45–58. [Google Scholar] [CrossRef]
- Pingitore, N.E. Vadose and phreatic diagenesis: Processes, products and their recognition in corals. J. Sediment. Petrol. 1976, 46, 985–1006. [Google Scholar]
- Xu, B.; Toffolo, M.B.; Regev, L.; Boaretto, E.; Poduska, K.M. Structural differences in archeologically relevant calcite. Anal. Methods 2015, 7, 9304–9309. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Toffolo, M.B.; Boaretto, E.; Poduska, K.M. Assessing local and long-range structural disorder in aggregate-free lime binders. Ind. Eng. Chem. Res. 2016, 55, 8334–8340. [Google Scholar] [CrossRef]
- Chu, V.; Regev, L.; Weiner, S.; Boaretto, E. Differentiating between anthropogenic calcite in plaster, ash and natural calcite using infrared spectroscopy: Implications in archaeology. J. Archeol. Sci. 2008, 35, 905–911. [Google Scholar] [CrossRef]
- Gueta, R.; Natan, A.; Addadi, L.; Weiner, S.; Refson, K.; Kronik, L. Local Atomic Order and Infrared Spectra of Biogenic Calcite. Angew. Chem. 2006, 45, 1–5. [Google Scholar]
- Regev, L.; Poduska, K.M.; Addadi, L.; Weiner, S.; Boaretto, E. Distinguishing between calcites formed by different mechanisms using infrared spectrometry: Archeological applications. J. Archeol. Sci. 2010, 37, 3022–3029. [Google Scholar] [CrossRef] [Green Version]
- Poduska, K.M.; Regev, L.; Boaretto, E.; Addadi, L.; Weiner, S.; Kronik, L.; Curtarolo, S. Decoupling Local Disorder and Optical Effects in Infrared Spectra: Differentiating Between Calcites with Different Origins. Adv. Mater. 2011, 23, 550–554. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, M.; Dauphin, Y.; Addadi, L.; Weiner, S. Atomic order of aragonite crystals formed by mollusks. Cryst. Eng. Comm. 2011, 13, 6780–6786. [Google Scholar] [CrossRef]
- Campbell, S.; Poduska, K.M. Incorporating Far-Infrared Data into Carbonate Mineral Analysis. Minerals 2020, 10, 628. [Google Scholar] [CrossRef]
- Elsen, J. Microscopy of historic mortars—A review. Cem. Concr. Res. 2006, 36, 1416–1424. [Google Scholar] [CrossRef]
- Karkanas, P. Identification of lime plaster in prehistory using petrographic methods: A review and reconsideration of the data on the basis of experimental and case studies. Geoarchaeology 2007, 22, 775–796. [Google Scholar] [CrossRef]
- Thibodeau, M.L. Identifying 1 Mya Fire in Wonderwerk Cave with Micromorphology and Fourier-Transform Infrared Microspectroscopy. Master’s Thesis, Simon Fraser University, Burnaby, BC, Canada, 2016. [Google Scholar]
- Toffolo, M.B.; Ullman, M.; Caracuta, V.; Weiner, S.; Boaretto, E. A 10,400-year-old sunken lime kiln from the Early Pre-Pottery Neolithic B at the Nesher-Ramla quarry (el-Khirbe), Israel. J. Archeol. Sci. Rep. 2017, 14, 353–364. [Google Scholar] [CrossRef]
- Toffolo, M.B.; Ricci, G.; Chapoulie, R.; Caneve, L.; Kaplan-Ashiri, I. Cathodoluminescence and laser-induced fluorescence of calcium carbonate: A review of screening methods for radiocarbon dating of ancient lime mortars. Radiocarbon 2020, 62, 545–564. [Google Scholar] [CrossRef]
- Toffolo, M.B.; Ricci, G.; Caneve, L.; Kaplan-Ashiri, I. Luminescence reveals variations in local structural order of calcium carbonate polymorphs formed by different mechanisms. Sci. Rep. 2019, 9, 16170. [Google Scholar] [CrossRef]
- Pachiaudi, C.; Marechal, J.; Van Strydonck, M.; Dupas, M.; Dauchot-Dehon, M. Isotopic fractionation of carbon during CO2 absorption by mortar. Radiocarbon 1986, 28, 691–697. [Google Scholar] [CrossRef] [Green Version]
- Ambers, J. Stable carbon isotope ratios and their relevance to the determination of accurate radiocarbon dates for lime mortars. J. Archeol. Sci. 1987, 14, 569–576. [Google Scholar] [CrossRef]
- van Strydonck, M.; Dupas, M.; Keppens, E. Isotopic fractionation of oxygen and carbon in lime mortar under natural environmental conditions. Radiocarbon 1989, 31, 610–618. [Google Scholar] [CrossRef] [Green Version]
- van Strydonck, M.; Dupas, M.; Dauchot-Dehon, M.; Pachiaudi, C.; Marechal, J. The influence of contaminating (fossil) carbnate and the variations of δ13C in mortar dating. Radiocarbon 1986, 28, 702–710. [Google Scholar] [CrossRef] [Green Version]
- Kosednar-Legenstein, B.; Dietzel, M.; Leis, A.; Stingl, K. Stable carbon and oxygen isotope investigation in historical lime mortar and plaster—Results from field and experimental study. Appl. Geochem. 2008, 23, 2425–2437. [Google Scholar] [CrossRef]
- Biasin, A.; Segre, C.U.; Strumendo, M. CaCO3 Crystallite Evolution during CaO Carbonation: Critical Crystallite Size and Rate Constant Measurement by In-Situ Synchrotron Radiation X-Ray Powder Diffraction. Cryst. Growth Des. 2015, 15, 5188–5201. [Google Scholar] [CrossRef]
- Bowman, S. Radiocarbon Dating; British Museum Press: London, UK, 1990. [Google Scholar]
- Wendler, J.E.; Wendler, I.; Rose, T.; Huber, B.T. Using Cathodoluminescence Spectroscopy of Cretaceous Calcareous Microfossils to Distinguish Biogenic from Early-Diagenetic Calcite. Microsc. Microanal. 2012, 18, 1313–1321. [Google Scholar] [CrossRef] [PubMed]
- Moropoulou, A.; Bakolas, A.; Bisbikou, K. Characterization of ancient, byzantine and later historic mortars by thermal and X-ray diffraction techniques. Thermochim. Acta 1995, 269–270, 779–795. [Google Scholar] [CrossRef]
- Yeman, C.; Christl, M.; Hattendorf, B.; Wacker, L.; Welte, C.; Brehm, N.; Synal, H.-A. Unravelling quasi-continuous 14C profiles by laser ablation AMS. Radiocarbon 2020, 62, 453–465. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toffolo, M.B. Radiocarbon Dating of Anthropogenic Carbonates: What Is the Benchmark for Sample Selection? Heritage 2020, 3, 1416-1432. https://doi.org/10.3390/heritage3040079
Toffolo MB. Radiocarbon Dating of Anthropogenic Carbonates: What Is the Benchmark for Sample Selection? Heritage. 2020; 3(4):1416-1432. https://doi.org/10.3390/heritage3040079
Chicago/Turabian StyleToffolo, Michael B. 2020. "Radiocarbon Dating of Anthropogenic Carbonates: What Is the Benchmark for Sample Selection?" Heritage 3, no. 4: 1416-1432. https://doi.org/10.3390/heritage3040079
APA StyleToffolo, M. B. (2020). Radiocarbon Dating of Anthropogenic Carbonates: What Is the Benchmark for Sample Selection? Heritage, 3(4), 1416-1432. https://doi.org/10.3390/heritage3040079