Climate Change Effects on Carbonation Process: A Scenario-Based Study
Abstract
:1. Introduction
2. Review on Climate Change Scenarios
2.1. Atmospheric Pollution: Emission Levels
- SSP1
- Sustainability—Taking the Green Road (Low challenges to mitigation and adaptation);
- SSP2
- Middle of the Road (Medium challenges to mitigation and adaptation);
- SSP3
- Regional Rivalry–A Rocky Road (High challenges to mitigation and adaptation);
- SSP4
- Inequality—A Road Divided (Low challenges to mitigation, high challenges to adaptation);
- SSP5
- Fossil-fueled Development—Taking the Highway (High challenges to mitigation, low challenges to adaptation).
2.2. Global Warming: Changes in Temperatures and Relative Humidity
3. The Mathematical-Based Simulation Algorithm
- Calcium hydroxide reacts with carbonate ions to form calcium carbonate; this process reduces porosity.
- Calcium carbonate dissolves; this process increases porosity.
- is the porosity of the non-carbonated concrete;
- is the porosity of (totally) carbonated concrete;
- represents how porosity varies when calcium carbonate dissolves.
3.1. Initial and Boundary Conditions
3.2. Numerical Algorithm
4. Model Validation and Calibration
- Carbon dioxide a (magenta line) enters within the pores and is rapidly consumed;
- Water w (blue line) is consumed by the reaction, as expected;
- The carbonate ion b described by the yellow curve is the sum of two reactions, i.e., the dissolution of carbon dioxide in water and the reaction with calcium hydroxide to form ;
- Calcium hydroxide i shows an “S” shape (green line): near the face in contact with carbon dioxide, calcium hydroxide dissolves by the chemical reaction with carbonate ion; far from there, it is still close to the initial datum since the calcium ion has not yet penetrated sufficiently within the stone;
- On the other hand, the calcium carbonate c (red line) reaches its maximum at the left end of the specimen (in contact with ) and decreases towards the other end, where the concentration of carbonate ions is very low; moreover, the dissolution of calcium carbonate has already started;
- The calcium ion e (black line), due to the rapid dissolution of calcium hydroxide, only participates in the dissociation reaction of calcium carbonate and it is consequently consumed.
5. Mathematical-Based Forecasting Algorithm: Damage Scenarios
5.1. Scenario 1. Laboratory Setting VS. Real Environmental Conditions
5.2. Scenario 2. Effects of Pollution Growth on Porosity
A Theoretical Estimate on the Effect of Changes in Levels on the Carbonation Front
- Carbonated region defined by ;
- Uncarbonated region , .
5.3. Scenario 3. Global Warming Effects on Porosity
A Theoretical Study of the Effect of Temperature on Carbonation Front
6. Conclusions
- A qualitative validation and fine tuning of model parameters against laboratory data;
- A numerical simulation of different damage scenarios quantifying the modification of the front position;
- A theoretical verification of experimental and numerical findings for the analyzed scenarios.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
1 | https://www.ipcc.ch/ (accessed on 1 October 2022). |
References
- Fatorić, S.; Seekamp, E. Are cultural heritage and resources threatened by climate change? A systematic literature review. Clim. Chang. 2017, 142, 227–254. [Google Scholar] [CrossRef]
- Orr, S.A.; Richards, J.; Fatorić, S. Climate change and cultural heritage: A systematic literature review (2016–2020). Hist. Environ. Policy Pract. 2021, 12, 434–477. [Google Scholar] [CrossRef]
- Byrne, M.P.; O’Gorman, P.A. Trends in continental temperature and humidity directly linked to ocean warming. Proc. Natl. Acad. Sci. USA 2018, 115, 4863–4868. [Google Scholar] [CrossRef] [Green Version]
- Douville, H.; Qasmi, S.; Ribes, A.; Bock, O. Global warming at near-constant tropospheric relative humidity is supported by observations. Commun. Earth Environ. 2022, 3, 237. [Google Scholar] [CrossRef]
- Pasqui, M.; Di Giuseppe, E. Climate change, future warming, and adaptation in Europe. Anim. Front. 2019, 9, 6–11. [Google Scholar] [CrossRef] [Green Version]
- Ballard, C.; Baron, N.; Bourgès, A.; Bucher, B.; Cassar, M.; Daire, M.Y.; Daly, C.; Egusquiza, A.; Fatoric, S.; Holtorf, C.; et al. Cultural Heritage and Climate Change: New Challenges and Perspectives for Research. Available online: https://digital.csic.es/bitstream/10261/279867/1/White-Paper-March-2022.pdf (accessed on 8 November 2022).
- Cassar, J.; Galdies, C.; Muscat Azzopardi, E. A New Approach to Studying Traditional Roof Behaviour in a Changing Climate—A Case Study from the Mediterranean Island of Malta. Heritage 2021, 4, 3543–3571. [Google Scholar] [CrossRef]
- Doehne, E. Salt weathering: A selective review. Geol. Soc. London Spec. Publ. 2002, 205, 51–64. [Google Scholar] [CrossRef]
- Scherer, G.W.; Valenza, J. Mechanisms of frost damage. Mater. Sci. Concr. 2005, 7, 209–246. [Google Scholar]
- Franzoni, E.; Sassoni, E. Correlation between microstructural characteristics and weight loss of natural stones exposed to simulated acid rain. Sci. Total. Environ. 2011, 412, 278–285. [Google Scholar] [CrossRef]
- Sesana, E.; Gagnon, A.S.; Ciantelli, C.; Cassar, J.; Hughes, J.J. Climate change impacts on cultural heritage: A literature review. Wiley Interdiscip. Rev. Clim. Chang. 2021, 12, e710. [Google Scholar] [CrossRef]
- Sardella, A.; Palazzi, E.; von Hardenberg, J.; Del Grande, C.; De Nuntiis, P.; Sabbioni, C.; Bonazza, A. Risk mapping for the sustainable protection of cultural heritage in extreme changing environments. Atmosphere 2020, 11, 700. [Google Scholar] [CrossRef]
- Bonazza, A.; Sardella, A.; Kaiser, A.; Cacciotti, R.; De Nuntiis, P.; Hanus, C.; Maxwell, I.; Drdáckỳ, T.; Drdáckỳ, M. Safeguarding cultural heritage from climate change related hydrometeorological hazards in Central Europe. Int. J. Disaster Risk Reduct. 2021, 63, 102455. [Google Scholar] [CrossRef]
- Rodrigues, F.; Cotella, V.; Rodrigues, H.; Rocha, E.; Freitas, F.; Matos, R. Application of Deep Learning Approach for the Classification of Buildings’ Degradation State in a BIM Methodology. Appl. Sci. 2022, 12, 7403. [Google Scholar] [CrossRef]
- Bracciale, M.; Bretti, G.; Broggi, A.; Ceseri, M.; Marrocchi, A.; Natalini, R.; Russo, C. Mathematical modelling of experimental data for crystallization inhibitors. Appl. Math. Model. 2017, 48, 21–38. [Google Scholar] [CrossRef]
- Giavarini, C.; Santarelli, M.; Natalini, R.; Freddi, F. A non-linear model of sulphation of porous stones: Numerical simulations and preliminary laboratory assessments. J. Cult. Herit. 2008, 9, 14–22. [Google Scholar] [CrossRef]
- Bretti, G.; Filippo, B.D.; Natalini, R.; Goidanich, S.; Roveri, M.; Toniolo, L. Modelling the effects of protective treatments in porous materials. In Mathematical Modeling in Cultural Heritage; Springer: Berlin/Heidelberg, Germany, 2021; pp. 73–83. [Google Scholar]
- Saba, M.; Quiñones-Bolaños, E.; López, A.L.B. A review of the mathematical models used for simulation of calcareous stone deterioration in historical buildings. Atmos. Environ. 2018, 180, 156–166. [Google Scholar] [CrossRef]
- Meyer, C. Concrete as a green building material. In Proceedings of the Construction Materials Mindess Symposium, Vancouver, BC, Canada, 22–24 August 2005; Volume 10. [Google Scholar]
- Pedeferri, P. Corrosione e Protezione Dei Materiali Metallici. Vol. 1 e 2; Polipress: Milan, Italy, 2010. [Google Scholar]
- Chang, C.F.; Chen, J.W. The experimental investigation of concrete carbonation depth. Cem. Concr. Res. 2006, 36, 1760–1767. [Google Scholar] [CrossRef]
- Pan, G.; Shen, Q.; Li, J. Microstructure of cement paste at different carbon dioxide concentrations. Mag. Concr. Res. 2018, 70, 154–162. [Google Scholar] [CrossRef]
- Villain, G.; Thiery, M. Gammadensimetry: A method to determine drying and carbonation profiles in concrete. Ndt E Int. 2006, 39, 328–337. [Google Scholar] [CrossRef]
- Thiery, M.; Villain, G.; Dangla, P.; Platret, G. Investigation of the carbonation front shape on cementitious materials: Effects of the chemical kinetics. Cem. Concr. Res. 2007, 37, 1047–1058. [Google Scholar] [CrossRef]
- Villain, G.; Thiery, M.; Platret, G. Measurement methods of carbonation profiles in concrete: Thermogravimetry, chemical analysis and gammadensimetry. Cem. Concr. Res. 2007, 37, 1182–1192. [Google Scholar] [CrossRef]
- Ashraf, W. Carbonation of cement-based materials: Challenges and opportunities. Constr. Build. Mater. 2016, 120, 558–570. [Google Scholar] [CrossRef]
- Bretti, G.; Ceseri, M.; Natalini, R. A moving boundary problem for reaction and diffusion processes in concrete: Carbonation advancement and carbonation shrinkage. Discret. Contin. Dyn. Syst.-S 2022, 15, 2033–2052. [Google Scholar] [CrossRef]
- Chapwanya, M.; Stockie, J.M.; Liu, W. A model for reactive porous transport during re-wetting of hardened concrete. J. Eng. Math. 2009, 65, 53–73. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Gao, X.; Qin, L. Mathematical modeling of accelerated carbonation curing of Portland cement paste at early age. Cem. Concr. Res. 2019, 120, 187–197. [Google Scholar] [CrossRef]
- Freddi, F.; Mingazzi, L. Phase-field simulations of cover cracking in corroded RC beams. Procedia Struct. Integr. 2021, 33, 371–384. [Google Scholar] [CrossRef]
- Kashef-Haghighi, S.; Shao, Y.; Ghoshal, S. Mathematical modeling of CO2 uptake by concrete during accelerated carbonation curing. Cem. Concr. Res. 2015, 67, 1–10. [Google Scholar] [CrossRef]
- Peng, J.; Tang, H.; Zhang, J.; Cai, S. Numerical simulation on carbonation depth of concrete structures considering time-and temperature-dependent carbonation process. Adv. Mater. Sci. Eng. 2018, 2018, 2326017. [Google Scholar] [CrossRef] [Green Version]
- Peter, M.A.; Muntean, A.; Meier, S.A.; Böhm, M. Competition of several carbonation reactions in concrete: A parametric study. Cem. Concr. Res. 2008, 38, 1385–1393. [Google Scholar] [CrossRef] [Green Version]
- Torgal, F.P.; Miraldo, S.; Labrincha, J.; De Brito, J. An overview on concrete carbonation in the context of eco-efficient construction: Evaluation, use of SCMs and/or RAC. Constr. Build. Mater. 2012, 36, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Bretti, G.; Ceseri, M.; Natalini, R.; Ciacchella, M.C.; Santarelli, M.L.; Tiracorrendo, G. A forecasting model for the porosity variation during the carbonation process. Gem-Int. J. Geomath. 2022, 13, 13. [Google Scholar] [CrossRef]
- Riahi, K.; Van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Meinshausen, M.; Nicholls, Z.R.; Lewis, J.; Gidden, M.J.; Vogel, E.; Freund, M.; Beyerle, U.; Gessner, C.; Nauels, A.; Bauer, N.; et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 2020, 13, 3571–3605. [Google Scholar] [CrossRef]
- Friedlingstein, P.; Houghton, R.A.; Marland, G.; Hackler, J.; Boden, T.A.; Conway, T.J.; Canadell, J.; Raupach, M.; Ciais, P.; Le Quéré, C. Update on CO2 emissions. Nat. Geosci. 2010, 3, 811–812. [Google Scholar] [CrossRef]
- Solomon, S.; Qin, D.; Manning, M.; Averyt, K.; Marquis, M. Climate Change 2007-the Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of The IPCC; Cambridge University Press: Cambridge, UK, 2007; Volume 4. [Google Scholar]
- Climate Change: Global Temperature Projections. Available online: https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature-projections (accessed on 8 November 2022).
- Papadakis, V.G.; Vayenas, C.G.; Fardis, M. A reaction engineering approach to the problem of concrete carbonation. AIChE J. 1989, 35, 1639–1650. [Google Scholar] [CrossRef]
- Alì, G.; Furuholt, V.; Natalini, R.; Torcicollo, I. A mathematical model of sulphite chemical aggression of limestones with high permeability. Part I. Modeling and qualitative analysis. Transp. Porous Media 2007, 69, 109–122. [Google Scholar] [CrossRef]
- Zeebe, R.E. On the molecular diffusion coefficients of dissolved CO2, HCO3−, and CO32− and their dependence on isotopic mass. Geochim. Cosmochim. Acta 2011, 75, 2483–2498. [Google Scholar] [CrossRef]
- Ball, P. Water—an enduring mystery. Nature 2008, 452, 291–292. [Google Scholar]
- Shriver, D.; Atkins, P.; Cooper, H. Inorganic Chemistry; Freeman: New York, NY, USA, 1990. [Google Scholar]
- Arpa Lazio. Available online: https://www.arpalazio.it/web/guest/base-dati. (accessed on 8 November 2022).
- Leemann, A.; Moro, F. Carbonation of concrete: The role of CO2 concentration, relative humidity and CO2 buffer capacity. Mater. Struct. 2017, 50, 30. [Google Scholar] [CrossRef]
SSP1-1.9 | SSP4-6.0 | SSP5-8.5 |
---|---|---|
0.041973 | 0.060695 | 0.080169 |
Description | Units | Value | Ref. | |
---|---|---|---|---|
h | Specimen’s height | cm | 2 | datum |
Space step | cm | 0.1 | - | |
Time step | s | 4 | - | |
A | Shape coefficient of water diffusivity | cm2/s | [28] | |
B | Shape coefficient of water diffusivity | - | 100 | [28] |
Porosity of the unperturbed material | - | 0.2 | [41] | |
Porosity after complete consumption of | - | 0.08 | hypothesis/[42] | |
Porosity change due to dissolution | - | 0.025 | hypothesis/[42] | |
Diffusivity of in water at 20 °C | cm2/s | 4.8 | calibrated against data | |
Diffusivity of in water at 20 °C | cm2/s | 0.81 | [43] | |
Density of water | g/cm3 | 1 | [44] | |
Coefficient of reaction between and water at 20 °C and 1 atm | s−1 | 1 | calibrated against data | |
Coefficient of reaction between and at 20 °C and 1 atm | cm3/(mol s) | calibrated against data | ||
Dissolution rate of at 20 °C and 1 atm | s−1 | calibrated against data | ||
Molecular mass of | g/mol | 44.01 | [45] | |
Molecular mass of | g/mol | 60.01 | [45] | |
Molecular mass of | g/mol | 100.09 | [45] | |
Molecular mass of | g/mol | 40.08 | [45] | |
Molecular mass of | g/mol | 74.10 | [45] | |
Molecular mass of water | g/mol | 18.01 | [45] | |
Initial water content | g/cm3 | 0.622 | [22] | |
Initial concentration of | - | 0.03% | [22] | |
Initial concentration of | g/cm3 | hypothesis | ||
Initial concentration of | g/cm3 | [22] | ||
Initial concentration of | g/cm3 | hypothesis | ||
Initial concentration of | g/cm3 | [22] | ||
Moisture content of the ambient air for | g/cm3 | datum | ||
Concentration of at the boundary | g/cm3 | derived with Formula (5) for {0.03%, 0.04%, 0.06%, 0.08%} | scenarios | |
Penetration rate of in the medium | cm−1 | calibrated against data |
SSP1-1.9 | SSP4-6.0 | SSP5-8.5 | |
---|---|---|---|
(1 year) | 0.3882 | 0.4668 | 0.5365 |
SSP1-1.9 | SSP4-6.0 | SSP5-8.5 | |
---|---|---|---|
(1 year) | 18.2836 | 42.2381 | 63.4717 |
SSP1-1.9 | SSP4-6.0 | SSP5-8.5 | |
---|---|---|---|
(1 year) | 0.4417 | 0.5311 | 0.6104 |
20 °C | 30 °C | |
---|---|---|
1.1734 | 1.5126 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bretti, G.; Ceseri, M. Climate Change Effects on Carbonation Process: A Scenario-Based Study. Heritage 2023, 6, 236-257. https://doi.org/10.3390/heritage6010012
Bretti G, Ceseri M. Climate Change Effects on Carbonation Process: A Scenario-Based Study. Heritage. 2023; 6(1):236-257. https://doi.org/10.3390/heritage6010012
Chicago/Turabian StyleBretti, Gabriella, and Maurizio Ceseri. 2023. "Climate Change Effects on Carbonation Process: A Scenario-Based Study" Heritage 6, no. 1: 236-257. https://doi.org/10.3390/heritage6010012
APA StyleBretti, G., & Ceseri, M. (2023). Climate Change Effects on Carbonation Process: A Scenario-Based Study. Heritage, 6(1), 236-257. https://doi.org/10.3390/heritage6010012