Preliminary Identification of Mixtures of Pigments Using the paletteR Package in R—The Case of Six Paintings by Andreina Rosa (1924–2019) from the International Gallery of Modern Art Ca’ Pesaro, Venice
Abstract
:1. Introduction
1.1. Challenges in the Analysis of Modern and Contemporary Painting Materials
1.2. Andreina Rosa’s Paintings Included in this Study
1.3. The Aim of the Research
2. Materials and Methods
2.1. The Multi-Analytical Investigations for the Identification of Painting Materials
2.1.1. Fiber-Optics Reflectance Spectroscopy (FORS)
2.1.2. Raman Spectroscopy
2.1.3. External Reflection FTIR Spectroscopy (ER-FTIR)
2.1.4. Energy Dispersive X-ray Fluorescence Spectrometry (XRF)
2.2. The Computational Approach for the Identification of Mixtures
2.2.1. Camera, Lenses, and Color Target
2.2.2. Spectro-Colorimetry
2.2.3. Image Correction
2.2.4. The Application of K-Means Clustering Using the PaletteR Package
2.2.5. Simulation of Mixtures
2.2.6. The Measurement of the Color Difference
2.2.7. Summarized Workflow
3. Results and Discussion
3.1. The Pigments used by Andreina Rosa
3.1.1. White Pigments
3.1.2. Blue, Green, and Purple Pigments
3.1.3. Red Pigments
3.1.4. Yellow and Orange Pigments
3.1.5. Brown Pigments
3.1.6. The Color Palette of Andreina Rosa
3.2. The Preliminary Identification of Mixtures
3.2.1. The Color Correction of Images
3.2.2. The Extraction of the Color Palettes Using the PaletteR Package in R
3.2.3. The Simulation of Mixtures and Measurement of Color Differences
4. Conclusions
- They were unvarnished;
- They were not affected by substantial degradation that might have caused colors to fade or might have reduced the visibility of the original hues;
- The majority of paint layers was light and vibrant as the predominance of dark colors would imply a poor color correction of the image;
- The primary colors that could compose the visible mixtures are present on the surface of the canvas.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Izzo, F.C.; van den Berg, K.J.; van Keulen, H.; Ferriani, B.; Zendri, E. Modern Oil Paints–Formulations, Organic Additives and Degradation: Some Case Studies. In Issues in Contemporary Oil Paint; van den Berg, K.J., Burnstock, A., de Keijzer, M., Krueger, J., Learner, T., de Tagle, A., Heydenreich, G., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 75–104. [Google Scholar]
- Hong, G.; Luo, M.R.; Rhodes, P.A. A Study of Digital Camera Colorimetric Characterization Based on Polynomial Modeling. Color Res. Appl. 2001, 26, 76–84. [Google Scholar] [CrossRef]
- Bianco, S.; Schettini, R.; Vanneschi, L. Empirical Modeling for Colorimetric Characterization of Digital Cameras. In Proceedings of the 2009 16th IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, 7–10 November 2009; pp. 3469–3472. [Google Scholar]
- Trombini, M.; Ferraro, F.; Manfredi, E.; Petrillo, G.; Dellepiane, S. Camera Color Correction for Cultural Heritage Preservation Based on Clustered Data. J. Imaging 2021, 7, 115. [Google Scholar] [CrossRef]
- Molada-Tebar, A.; Lerma, J.L.; Marqués-Mateu, Á. Camera Characterization for Improving Color Archaeological Documentation. Color Res. Appl. 2018, 43, 47–57. [Google Scholar] [CrossRef]
- Gaiani, M.; Apollonio, F.I.; Ballabeni, A.; Remondino, F. Securing Color Fidelity in 3D Architectural Heritage Scenarios. Sensors 2017, 17, 2437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imatest Master. Available online: https://www.imatest.com/products/imatest-master/ (accessed on 14 April 2022).
- BabelColor–Color Measurement and Analysis Software. Available online: https://babelcolor.com/ (accessed on 9 November 2022).
- ColorChecker Passport Photo 2. Available online: https://www.xrite.com/service-support/product-support/calibration-solutions/colorchecker-passport-photo-2 (accessed on 21 November 2022).
- Ramella, G.; Sanniti di Baja, G. From Color Quantization to Image Segmentation. In Proceedings of the 2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), Naples, Italy, 28 November–1 December 2016; p. 804. [Google Scholar]
- Cirillo, A.; Paletter: Make a Palette from Your Image. R Package Version 0.0.0.9000. Available online: http://www.andreacirillo.com/2018/05/08/how-to-use-paletter-to-automagically-build-palettes-from-pictures/ (accessed on 18 September 2022).
- Cirillo, A. How to Build a Color Palette from Any Image with R and K-Means Algo. Available online: https://www.r-bloggers.com/2017/06/how-to-build-a-color-palette-from-any-image-with-r-and-k-means-algo/ (accessed on 14 April 2022).
- Wickham, H. Ggplot2; Springer: New York, NY, USA, 2009. [Google Scholar]
- Stringa, N. Pittura nel Veneto. Il Novecento. Dizionario degli artisti; La pittura nel Veneto; Ediz. illustrata.; Mondadori Electa: Regione del Veneto, Italy, 2009. [Google Scholar]
- Simonot, L.; Elias, M. Color Change Due to a Varnish Layer. Color Res. Appl. 2004, 29, 196–204. [Google Scholar] [CrossRef]
- Guidelines: Technical Guidelines for Digitizing Cultural Heritage Materials–Federal Agencies Digital Guidelines Initiative. Available online: https://www.digitizationguidelines.gov/guidelines/digitize-technical.html (accessed on 30 April 2022).
- ColorChecker Classic Mini. Available online: https://calibrite.com/product/colorchecker-classic-mini/ (accessed on 30 April 2022).
- Molada, A.; Marqués-Mateu, A.; Lerma, J.; Westland, S. Dominant Color Extraction with K-Means for Camera Characterization in Cultural Heritage Documentation. Remote Sens. 2020, 12, 520. [Google Scholar] [CrossRef] [Green Version]
- ColorChecker® Digital SG. Available online: https://www.xrite.com/it-it/categories/calibration-profiling/colorchecker-digital-sg (accessed on 2 May 2022).
- CIE | International Commission on Illumination/Comission Internationale de l’Eclairage/Internationale Beleuchtungskommission. Available online: https://cie.co.at/ (accessed on 1 April 2022).
- New Color Specifications for ColorChecker SG and Classic Charts–X-Rite (2016). Available online: https://zenodo.org/record/3245895 (accessed on 13 April 2022).
- Kirchner, E.; van Wijk, C.; van Beek, H.; Koster, T. Exploring the Limits of Color Accuracy in Technical Photography. Herit. Sci. 2021, 9, 57. [Google Scholar] [CrossRef]
- Imatest Version 2021.2. Available online: https://www.imatest.com/micro_site/2021-2/ (accessed on 28 November 2022).
- Color Correction Matrix (CCM). Available online: https://www.imatest.com/docs/colormatrix/ (accessed on 14 April 2022).
- Sharma, G.; Wu, W.; Dalal, E.N. The CIEDE2000 Color-Difference Formula: Implementation Notes, Supplementary Test Data, and Mathematical Observations. Color Res. Appl. 2005, 30, 21–30. [Google Scholar] [CrossRef]
- Andersen, C.F.; Hardeberg, J. Colorimetric Characterization of Digital Cameras Preserving Hue Planes. In Proceedings of the Color Imaging Conference, Scottsdale, AZ, USA, 7–11 November 2005. [Google Scholar]
- Vazquez-Corral, J.; Connah, D.; Bertalmío, M. Perceptual Color Characterization of Cameras. Sensors 2014, 14, 23205–23229. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Franco-Penya, H.-H.; Kelleher, J.D.; Pugh, J.; Ross, R. An Analysis of the Application of Simplified Silhouette to the Evaluation of K-Means Clustering Validity. In Machine Learning and Data Mining in Pattern Recognition; Perner, P., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 291–305. [Google Scholar]
- Zeileis, A.; Fisher, J.C.; Hornik, K.; Ihaka, R.; McWhite, C.D.; Murrell, P.; Stauffer, R.; Wilke, C.O. Colorspace: A Toolbox for Manipulating and Assessing Colors and Palettes. J. Stat. Soft. 2020, 96, 1–49. [Google Scholar] [CrossRef]
- Kurosu, M. Human-Computer Interaction. Theories, Methods, and Human Issues: 20th International Conference, HCI International 2018, Las Vegas, NV, USA, July 15–20, 2018, Proceedings, Part I.; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Ilyas, A.; Farid, M.S.; Khan, M.H.; Grzegorzek, M. Exploiting Superpixels for Multi-Focus Image Fusion. Entropy 2021, 23, 247. [Google Scholar] [CrossRef]
- Colour Metric. Available online: https://www.compuphase.com/cmetric.htm (accessed on 14 April 2022).
- Kotsarenko, Y.; Ramos, F. Measuring Perceived Color Difference Using YIQ NTSC Transmission Color Space in Mobile Applications. Program. Matemática Softw. 2010, 2, 27–43. [Google Scholar]
- Gama, J.; Davis, G.; Colorscience: Color Science Methods and Data. R Package Version 1.0.8. Available online: https://CRAN.R-project.org/package=colorscience (accessed on 14 April 2022).
- Urbanek, S.; Jpeg: Read and Write JPEG Images. R Package Version 0.1-8.1. Available online: https://CRAN.R-project.org/package=jpeg (accessed on 1 August 2022).
- Ooms, J.; Magick: Advanced Graphics and Image-Processing in R. R Package Version 2.5.2. Available online: https://CRAN.R-project.org/package=magick (accessed on 1 August 2022).
- Burgio, L.; Clark, R.J.H. Library of FT-Raman Spectra of Pigments, Minerals, Pigment Media and Varnishes, and Supplement to Existing Library of Raman Spectra of Pigments with Visible Excitation. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2001, 57, 1491–1521. [Google Scholar] [CrossRef]
- Deslattes, R.D.; Kessler, E.G., Jr.; Indelicato, P.; de Billy, L.; Lindroth, E.; Anton, J.; Coursey, J.S.; Schwab, D.J.; Chang, C.; Sukumar, R.; et al. X-ray Transition Energies, Version 1.2; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2009. Available online: http://physics.nist.gov/XrayTrans (accessed on 18 December 2022).
- Osticioli, I.; Mendes, N.F.C.; Nevin, A.; Gil, F.P.S.C.; Becucci, M.; Castellucci, E. Analysis of Natural and Artificial Ultramarine Blue Pigments Using Laser Induced Breakdown and Pulsed Raman Spectroscopy, Statistical Analysis and Light Microscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2009, 73, 525–531. [Google Scholar] [CrossRef] [Green Version]
- Miliani, C.; Daveri, A.; Brunetti, B.G.; Sgamellotti, A. CO2 Entrapment in Natural Ultramarine Blue. Chem. Phys. Lett. 2008, 466, 148–151. [Google Scholar] [CrossRef]
- Miliani, C.; Rosi, F.; Daveri, A.; Brunetti, B.G. Reflection Infrared Spectroscopy for the Non-Invasive in Situ Study of Artists’ Pigments. Appl. Phys. A 2011, 106, 295. [Google Scholar] [CrossRef]
- Nodari, L.; Ricciardi, P. Non-Invasive Identification of Paint Binders in Illuminated Manuscripts by ER-FTIR Spectroscopy: A Systematic Study of the Influence of Different Pigments on the Binders’ Characteristic Spectral Features. Herit. Sci. 2019, 7, 7. [Google Scholar] [CrossRef]
- Ajò, D.; Casellato, U.; Fiorin, E.; Vigato, P.A. Ciro Ferri’s Frescoes: A Study of Painting Materials and Technique by SEM-EDS Microscopy, X-Ray Diffraction, Micro FT-IR and Photoluminescence Spectroscopy. J. Cult. Herit. 2004, 5, 333–348. [Google Scholar] [CrossRef]
- Aceto, M.; Agostino, A.; Fenoglio, G.; Picollo, M. Non-Invasive Differentiation between Natural and Synthetic Ultramarine Blue Pigments by Means of 250–900 Nm FORS Analysis. Anal. Methods 2013, 5, 4184–4189. [Google Scholar] [CrossRef]
- Ramos, P.M.; Ruisánchez, I. Noise and Background Removal in Raman Spectra of Ancient Pigments Using Wavelet Transform. J. Raman Spectrosc. 2005, 36, 848–856. [Google Scholar] [CrossRef]
- Buzgar, N.; Apopei, A.; Diaconu, V.; Buzatu, A. The Composition and Source of the Raw Material of Two Stone Axes of Late Bronze Age from Neamț County (Romania)—A Raman Study. An. Științifice Ale Univ. “Al. I. Cuza” Din Iași Ser. Geol. 2013, 59, 5–22. [Google Scholar]
- Pozzi, F.; Lombardi, J.; Leona, M. Winsor & Newton Original Handbooks: A Surface-Enhanced Raman Scattering (SERS) and Raman Spectral Database of Dyes from Modern Watercolor Pigments. Herit. Sci. 2013, 1, 23. [Google Scholar] [CrossRef]
- Schaening, A.; Schreiner, M.; Jembrih-Simbuerger, D. Identification and classification of synthetic organic pigments of a collection of the 19 th and 20th century by ftir. In Proceedings of the Sixth Infrared and Raman Useres Group Conference (IRUG6), Florence, Italy, 29 March–1 April 2004; Il Prato: Villatora, Italy; pp. 302–305. [Google Scholar]
- Polo, M.-E.; Felicísimo, Á.M.; Durán-Domínguez, G. Accurate 3D models in both geometry and texture: An archaeological application. Digit. Appl. Archaeol. Cult. Herit. 2022, 27, e00248. [Google Scholar] [CrossRef]
- Aliatis, I.; Bersani, D.; Lottici, P.P.; Marino, I.G. Raman Analysis on 18th Century Painted Wooden Statues. ArcheoSciences. Rev. D’archéométrie 2012. [Google Scholar] [CrossRef] [Green Version]
- Colombini, A.; Kaifas, D. Characterization of some orange and yellow organic and fluorescent pigments by raman spectroscopy. E-Preserv. Sci. 2010, 7, 14–21. [Google Scholar]
- Tomasini, E.P.; Gómez, B.; Halac, E.B.; Reinoso, M.; Di Liscia, E.J.; Siracusano, G.; Maier, M.S. Identification of Carbon-Based Black Pigments in Four South American Polychrome Wooden Sculptures by Raman Microscopy. Herit. Sci. 2015, 3, 19. [Google Scholar] [CrossRef] [Green Version]
- Piccolo, A.; Bonato, E.; Falchi, L.; Lucero-Gómez, P.; Barisoni, E.; Piccolo, M.; Balliana, E.; Cimino, D.; Izzo, F.C. A Comprehensive and Systematic Diagnostic Campaign for a New Acquisition of Contemporary Art—The Case of Natura Morta by Andreina Rosa (1924–2019) at the International Gallery of Modern Art Ca’ Pesaro, Venice. Heritage 2021, 4, 4372–4398. [Google Scholar] [CrossRef]
- Janakkumar Baldevbhai, P.; Anand, R.S. Color Image Segmentation for Medical Images Using L*a*b* Color Space. IOSR J. Electron. Commun. Eng. (IOSRJECE) 2012, 1, 24–45. [Google Scholar] [CrossRef]
- Rowe, F.M.; Burr, A.H.; Corbishley, S.G. The Constitution of Hansa Yellow G (MLB) and Other Yellow Pigment Colours. J. Soc. Dye. Colour. 1926, 42, 80–86. [Google Scholar] [CrossRef]
- Hamerton, I.; Tedaldi, L.; Eastaugh, N. A Systematic Examination of Colour Development in Synthetic Ultramarine According to Historical Methods. PLoS ONE 2013, 8, e50364. [Google Scholar] [CrossRef] [Green Version]
- Jipkate, B.R.; Gohokar, V.V. A Comparative Analysis of Fuzzy C-Means Clustering and K Means Clustering Algorithms. Int. J. Comput. Eng. Res. 2012, 2, 737–739. [Google Scholar]
- Pavan, M.; Pelillo, M. Dominant Sets and Pairwise Clustering. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 167–172. [Google Scholar] [CrossRef]
- Handprint: Color Theory. Available online: http://www.handprint.com/HP/WCL/wcolor.html (accessed on 20 September 2022).
- Color Checker Chart. Available online: https://www.mathworks.com/matlabcentral/fileexchange/38236-color-checker-chart (accessed on 22 November 2022).
Variable | Value |
---|---|
Flash | Off |
ISO | 400 |
Operation Mode | Manual |
Exposure Time | 1/125 |
Quality | RAW |
f-stop | 1.0 |
Color Space | sRGB |
Variable | Value |
---|---|
Standard observer | 2°/10° |
Illuminant | D50/D65 |
Acquisition | SCI |
Color | Pigments |
---|---|
White | Lithopone |
Black | Carbon-black |
Red | Cinnabar red |
Studio Hansa red | |
Hematite | |
Blue | Ultramarine blue |
Yellow | Chrome yellow |
Hansa yellow (PY3) | |
Purple | Hematite or cinnabar red, ultramarine blue and carbon-black |
Green | Ultramarine blue and Hansa yellow |
Orange | Chrome yellow and cinnabar red |
Brown | Cinnabar red, ultramarine blue, and carbon-black |
A | B | C | D | E | F | |
---|---|---|---|---|---|---|
1 | 2.057 | 1.154 | 0.464 | 1.329 | 1.252 | 0.729 |
2 | 0.395 | 0.263 | 0.733 | 1.247 | 0.909 | 0.346 |
3 | 0.607 | 0.586 | 0.214 | 0.823 | 1.215 | 1.23 |
4 | 1.275 | 0.921 | 0.598 | 0.841 | 0.423 | 11.33 |
Painting Index | ΔE2000 (Input-Reference) | ΔE2000 (Corrected-Reference) |
---|---|---|
R1 | 6.49 | 3.26 |
R2 | 11.09 | 3.39 |
R3 | 11.41 | 3.68 |
R4 | 12.72 | 4.48 |
R5 | 9.74 | 3.19 |
R6 | 10.9 | 4.09 |
Painting Index | Percentage of Colors | CompuPhase Color Difference (K-Means) |
---|---|---|
R1 | 50% red + 50% blue | 27.82 |
60% red + 40% blue | 12.95 | |
70% red + 30% blue | 18.41 | |
80% red + 20% blue | 36.28 | |
R3 | 50% red + 50% green | 26.45 |
60% red + 40% green | 31.08 | |
70% red + 30% green | 41.78 | |
80% red + 20% green | 55.25 | |
R5 | 50% red + 50% blue | 14.25 |
60% red + 40% blue | 7.69 | |
70% red + 30% blue | 20.46 | |
80% red + 20% blue | 36.02 | |
40% blue + 60% yellow | 87.8 | |
50% blue + 50% yellow | 63.07 | |
60% blue + 40% yellow | 45.14 | |
70% blue + 30% yellow | 42.88 | |
R6 | 50% red + 50% blue | 37.69 |
60% red + 40% blue | 37.25 | |
70% red + 30% blue | 40.65 | |
80% red + 20% blue | 47.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raicu, T.; Zollo, F.; Falchi, L.; Barisoni, E.; Piccolo, M.; Izzo, F.C. Preliminary Identification of Mixtures of Pigments Using the paletteR Package in R—The Case of Six Paintings by Andreina Rosa (1924–2019) from the International Gallery of Modern Art Ca’ Pesaro, Venice. Heritage 2023, 6, 524-547. https://doi.org/10.3390/heritage6010028
Raicu T, Zollo F, Falchi L, Barisoni E, Piccolo M, Izzo FC. Preliminary Identification of Mixtures of Pigments Using the paletteR Package in R—The Case of Six Paintings by Andreina Rosa (1924–2019) from the International Gallery of Modern Art Ca’ Pesaro, Venice. Heritage. 2023; 6(1):524-547. https://doi.org/10.3390/heritage6010028
Chicago/Turabian StyleRaicu, Teodora, Fabiana Zollo, Laura Falchi, Elisabetta Barisoni, Matteo Piccolo, and Francesca Caterina Izzo. 2023. "Preliminary Identification of Mixtures of Pigments Using the paletteR Package in R—The Case of Six Paintings by Andreina Rosa (1924–2019) from the International Gallery of Modern Art Ca’ Pesaro, Venice" Heritage 6, no. 1: 524-547. https://doi.org/10.3390/heritage6010028
APA StyleRaicu, T., Zollo, F., Falchi, L., Barisoni, E., Piccolo, M., & Izzo, F. C. (2023). Preliminary Identification of Mixtures of Pigments Using the paletteR Package in R—The Case of Six Paintings by Andreina Rosa (1924–2019) from the International Gallery of Modern Art Ca’ Pesaro, Venice. Heritage, 6(1), 524-547. https://doi.org/10.3390/heritage6010028