Zinc Oxide Nanoparticles in Leather Conservation: Exploring the Potential of Hydroxypropyl Cellulose/Zinc Oxide Nanocomposite as a Leather Consolidation Agent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Leathers
2.2. Treatment Materials
2.3. Accelerated Aging
2.4. Contact Angle Measurement
2.5. Uniaxial Tensile Test
2.6. Colorimetery
2.7. Scanning Electron Microscopy
2.8. ATR-FTIR Spectroscopy
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koochakzaei, A.; Mallakpour, S. Identification of surface dyeing agents of two bookbinding leathers from 19th-century Qajar, Iran, using LC–MS, μXRF and FTIR spectroscopy. Archaeometry 2023, 65, 603–616. [Google Scholar] [CrossRef]
- Koochakzaei, A.; Sabaghian, M. Tannin characterization and sourcing in historical leathers through FTIR spectroscopy and PCA analysis. Collagen Leather 2023, 5, 1–9. [Google Scholar] [CrossRef]
- Koochakzaei, A.; Achachluei, M.M. Red Stains on Archaeological Leather: Degradation Characteristics of A Shoe From The 11th–13th Centuries (Seljuk Period, Iran). J. Am. Inst. Conserv. 2015, 54, 45–56. [Google Scholar] [CrossRef]
- Florian, M.-L.E. The mechanisms of deterioration in leather. In Conservation of Leather and Related Materials; Kite, M., Thomson, R., Eds.; Butterworth-Heinemann: London, UK, 2006; pp. 36–57. [Google Scholar]
- Thomson, R. The Manufacture of Leather. In Conservation of Leather and Related Materials; Kite, M., Thomson, R., Eds.; Butterworth-Heinemann: London, UK, 2006; pp. 66–81. [Google Scholar]
- Puica, N.M.; Ardelean, E. The industrial pollution impact on religious heritage in Romania. Eur. J. Sci. Theol. 2008, 4, 51–59. [Google Scholar]
- Mahony, C.C.; Pearlstein, E. Evaluation of consolidants for the Treatment of Red Rot on Vegetable Tanned Leather. In Proceedings of the AIC 42nd Annual Meeting, San Francisco, CA, USA, 28–31 May 2014. [Google Scholar]
- Florian, M.-L.E. Protein Facts: Fibrous Proteins in Cultural and Natural History Artifacts; Archetype: London, UK, 2007. [Google Scholar]
- Kozjak, I.; Igrec, I. Environmental influence on the leather used for book restoration, practical aspects of UV and hydrothermal degradation. In Proceedings of the International Scientific Conference: Protection of Cultural Heritage from Natural and Man-made Disasters, National and University Library in Zagreb, Zagreb, Croatia, 8–10 May 2014. [Google Scholar]
- Overell, R. The ‘Red-Rot’ Problem. La Trobe J. 2004, 73, 101–107. [Google Scholar]
- Lama, A.; Antunes, A.P.M.; Covington, A.D.; Guthrie-Strachan, J.; Fletcher, Y. Use of aluminium alkoxide and oxazolidine II to treat acid-deteriorated historic leather. J. Inst. Conserv. 2015, 38, 172–187. [Google Scholar] [CrossRef]
- Koochakzaei, A.; Mallakpour, S.; Ahmadi, H. Performance Evaluation of Hybrid Formulations Consisting of Antioxidant and Crosslinking Agents for the Treatment of Acid Degradation in Historic Vegetable-Tanned Leathers. J. Am. Leather Chem. Assoc. 2022, 117, 330–337. [Google Scholar]
- Lama, A.; Antunes, A.P.M.; Fletcher, Y.; Guthrie-Strachan, J.; Vidler, K. Investigation of acid-deterioration in leather leading towards finding a suitable product for treatment. In Proceedings of the 114th Society of Leather Technologists and Chemists (SLTC) Conference, University of Northampton, Northampton, UK, 7 May 2011. [Google Scholar]
- Vyskočilová, G.; Ebersbach, M.; Kopecká, R.; Prokeš, L.; Příhoda, J. Model study of the leather degradation by oxidation and hydrolysis. Herit. Sci. 2019, 7, 1–13. [Google Scholar] [CrossRef]
- Sebestyén, Z.; Czégény, Z.; Badea, E.; Carsote, C.; Şendrea, C.; Barta-Rajnai, E.; Bozi, J.; Miu, L.; Jakab, E. Thermal characterization of new, artificially aged and historical leather and parchment. J. Anal. Appl. Pyrolysis 2015, 115, 419–427. [Google Scholar] [CrossRef]
- Johnson, A. Evaluation of the use of SC6000 in conjunction with Klucel G as a conservation treatment for bookbinding leather: Notes on a preliminary study. J. Inst. Conserv. 2013, 36, 125–144. [Google Scholar] [CrossRef]
- Bainbridge, A. Material-Based Treatments. In Conservation of Books; Routledge: London, UK, 2023; pp. 554–640. [Google Scholar]
- Kite, M.; Thomson, R.; Angus, A. Materials and techniques: Past and present. In Conservation of Leather and Related Materials; Routledge: London, UK, 2006; pp. 121–129. [Google Scholar]
- Gill, K.; Boersma, F. Solvent reactivation of hydroxypropyl cellulose (Klucel G) in textile conservation: Recent developments. Conservator 1997, 21, 12–19. [Google Scholar] [CrossRef]
- Caruso, M.R.; D’agostino, G.; Milioto, S.; Cavallaro, G.; Lazzara, G. A review on biopolymer-based treatments for consolidation and surface protection of cultural heritage materials. J. Mater. Sci. 2023, 58, 12954–12975. [Google Scholar] [CrossRef]
- Cains, A. Preparation of the Book for Conservation and Repair. New Bookbind. 1981, 1, 11–25. [Google Scholar]
- Quandt, A.B. Recollections of Tony Cains and his Approach to the Treatment of Parchment Manuscripts. J. Pap. Conserv. 2021, 22, 156–179. [Google Scholar]
- Lafrance, J. Efficiency and Quality in a Batch Treatment: The Conservation of over A Hundred Leather Shoes And Fragments. In Proceedings of the 11th ICOM-CC Group on Wet Organic Archaeological Materials Conference, Greenville, NC, USA, 24–29 May 2010. [Google Scholar]
- Phillips, M.W. Notes on a Method for Consolidating Leather. J. Am. Inst. Conserv. 1984, 24, 53–56. [Google Scholar] [CrossRef]
- Steere, P. What is Cellugel? Shedding Light on an Elusive Product. J. Pap. Conserv. 2017, 18, 67–70. [Google Scholar] [CrossRef]
- Ruzicka, G.; Reidell, S.; Primanis, O. Leather Conservation-bookbinding leather consolidants. In Conservation of Leather and Related Materials; Kite, M., Thomson, R., Eds.; Butterworth-Heinemann: London, UK, 2006; pp. 230–232. [Google Scholar]
- Ahmadi, H.; Mallakpour, S.; Koochakzaei, A. Evaluating the Role of antioxidants in the stabilization of hydroxypropyl cellulose by ATR-FTIR Spectroscopy. Prog. Color Color. Coat. 2018, 11, 93–101. [Google Scholar] [CrossRef]
- Majeed, Z.N.; Mohammed, H.H.; Farhan, S.A. Study the Photodegradation of Hydroxypropyl Cellulose in Presence and Absence of Benzophenone and Eosine Dye. Chem. Mater. Res. 2014, 6, 18–25. [Google Scholar]
- Zhang, J.; Zhang, D.; Zhang, X. UV-0/HPC laminated coatings for protection of cellulosed-based cultural heritage against UV rays. Polym. Degrad. Stab. 2020, 177, 109169. [Google Scholar] [CrossRef]
- Cinteză, L.O.; Tănase, M.A. Multifunctional ZnO nanoparticle: Based coatings for cultural heritage preventive conservation. In Thin Films; IntechOpen: London, UK, 2020. [Google Scholar]
- David, M.E.; Ion, R.-M.; Grigorescu, R.M.; Iancu, L.; Andrei, E.R. Nanomaterials used in conservation and restoration of cultural heritage: An up-to-date overview. Materials 2020, 13, 2064. [Google Scholar] [CrossRef]
- Kanth, A.P.; Soni, A.K. Application of nanocomposites for conservation of materials of cultural heritage. J. Cult. Herit. 2023, 59, 120–130. [Google Scholar] [CrossRef]
- Afsharpour, M.; Imani, S. Preventive protection of paper works by using nanocomposite coating of zinc oxide. J. Cult. Herit. 2017, 25, 142–148. [Google Scholar] [CrossRef]
- Zhao, S.-W.; Guo, C.-R.; Hu, Y.-Z.; Guo, Y.-R.; Pan, Q.-J. The preparation and antibacterial activity of cellulose/ZnO composite: A review. Open Chem. 2018, 16, 9–20. [Google Scholar] [CrossRef]
- Gu, W. Application and enhancement effect of nano-ZnO film preparation technology in the protection of paper artwork. Ferroelectrics 2023, 607, 1–15. [Google Scholar] [CrossRef]
- Weththimuni, M.L.; Milanese, C.; Licchelli, M.; Malagodi, M. Improving the protective properties of shellac-based varnishes by functionalized nanoparticles. Coatings 2021, 11, 419. [Google Scholar] [CrossRef]
- Luo, Z.; Dong, K.; Guo, M.; Lian, Z.; Zhang, B.; Wei, W. Preparation of Zinc Oxide Nanoparticles-Based Starch Paste and its Antifungal Performance as a Paper Adhesive. Starch-Stärke 2018, 70, 1700211. [Google Scholar] [CrossRef]
- El-Feky, O.M.; Dong, K.; Guo, M.; Lian, Z.; Zhang, B.; Wei, W. Use of ZnO nanoparticles for protecting oil paintings on paper support against dirt, fungal attack, and UV aging. J. Cult. Herit. 2014, 15, 165–172. [Google Scholar] [CrossRef]
- Jia, M.; Zhang, X.G.; Weng, J.J.; Zhang, J.; Zhang, M.F. Protective coating of paper works: ZnO/cellulose nanocrystal composites and analytical characterization. J. Cult. Herit. 2019, 38, 64–74. [Google Scholar] [CrossRef]
- Mostafa, A.M.; Hamed, S.A.E.-K.M.; Afifi, H.; Mohamady, S. A comparative study on the color change of pigments due to the consolidation of conventional spectroscopic techniques and laser-induced breakdown spectroscopy. Appl. Phys. A 2019, 125, 1–9. [Google Scholar] [CrossRef]
- Abu Krorra, A.; Noshy, W.; Oun, A.; Abu Elleif, M. Evaluation of Hydroxypropyl Cellulose, Zinc Oxide Nanoparticles and Nanocellulose for Tracing Papers Consolidation. Adv. Res. Conserv. Sci. 2021, 2, 21–30. [Google Scholar] [CrossRef]
- ISO 3376:2020; Leather—Physical and Mechanical Tests—Determination of Tensile Strength and Percentage Elongation. ISO: Geneva, Switzerland, 2020.
- Song, Z.; Kelf, T.A.; Sanchez, W.H.; Roberts, M.S.; Rička, J.; Frenz, M.; Zvyagin, A.V. Characterization of optical properties of ZnO nanoparticles for quantitative imaging of transdermal transport. Biomed. Opt. Express 2011, 2, 3321–3333. [Google Scholar] [CrossRef]
- Joseph, M.; Nampoori, V.P.N.; Kailasnath, M. Biofunctionalized zinc oxide nanoflowers coated textiles for UV protection. Mater. Today Proc. 2022, 68, 363–366. [Google Scholar] [CrossRef]
- Grüneberger, F.; Künniger, T.; Huch, A.; Zimmermann, T.; Arnold, M. Nanofibrillated cellulose in wood coatings: Dispersion and stabilization of ZnO as UV absorber. Prog. Org. Coat. 2015, 87, 112–121. [Google Scholar] [CrossRef]
- Guo, M.Y.; Ng, A.M.C.; Liu, F.; Djurišić, A.B.; Chan, W.K.; Su, H.; Wong, K.S. Effect of Native Defects on Photocatalytic Properties of ZnO. J. Phys. Chem. C 2011, 115, 11095–11101. [Google Scholar] [CrossRef]
- Dash, D.; Panda, N.R.; Sahu, D. Photoluminescence and photocatalytic properties of europium doped ZnO nanoparticles. Appl. Surf. Sci. 2019, 494, 666–674. [Google Scholar] [CrossRef]
- Sharma, V.; Sharma, J.; Kansay, V.; Sharma, V.D.; Sharma, A.; Kumar, S.; Bera, M. The effect of calcination temperatures on the structural and optical properties of zinc oxide nanoparticles and their influence on the photocatalytic degradation of leather dye. Chem. Phys. Impact 2023, 6, 100196. [Google Scholar] [CrossRef]
- Carsote, C.; Şendrea, C.; Micu, M.-C.; Adams, A.; Badea, E. Micro-DSC, FTIR-ATR and NMR MOUSE study of the dose-dependent effects of gamma irradiation on vegetable-tanned leather: The influence of leather thermal stability. Radiat. Phys. Chem. 2021, 189, 109712. [Google Scholar] [CrossRef]
- Badea, E.; Miu, L.; Budrugeac, P.; Giurginca, M.; Mašić, A.; Badea, N.; Della Gatta, G. Study of deterioration of historical parchments by various thermal analysis techniques complemented by SEM, FTIR, UV-Vis-NIR and unilateral NMR investigations. J. Therm. Anal. Calorim. 2008, 91, 17–27. [Google Scholar] [CrossRef]
- Koochakzaei, A.; Ahmadi, H.; Achachlouei, M.M. Performance Evaluation of Dimethyl Silicone Oil as Archaeological Dry Leather Lubricant. J. Am. Leather Chem. Assoc. 2020, 115, 140–144. [Google Scholar] [CrossRef]
- Petroviciu, I.; Ahmadi, H.; Achachlouei, M.M. Artificially aged parchment investigated by FTIR. In Proceedings of the 3rd International Congress "Chemistry for Cultural Heritage" (ChemCH 2014), Academy of Fine Arts, Vienna, Austria, 1–5 July 2014. [Google Scholar]
- Koochakzaei, A.; Ahmadi, H.; Mallakpour, S. An experimental comparative study of the effect of skin type on the stability of vegetable leather under acidic condition. J. Am. Leather Chem. Assoc. 2018, 113(11), 345–351. [Google Scholar]
- Júnior, Z.S.S.; Botta, S.B.; Ana, P.A.; Franca, C.M.; Fernandes, K.P.S.; Mesquita-Ferrari, R.A.; Deana, A.; Bussadori, S.K. Effect of papain-based gel on type I collagen-spectroscopy applied for microstructural analysis. Sci. Rep. 2015, 5, 11448. [Google Scholar] [CrossRef]
- Pielesz, A. Temperature-dependent FTIR spectra of collagen and protective effect of partially hydrolysed fucoidan. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 118, 287–293. [Google Scholar] [CrossRef]
- Zaltariov, M.-F.; Filip, D.; Macocinschi, D.; Spiridon, I. Hydrohypropyl cellulose/polyurethane blends. The behavior after accelerated ageing. A FTIR study. Cellul. Chem. Technol. 2020, 54, 903–914. [Google Scholar]
- Yang, Z.; Gong, D. Studies of structure changes of archeological leather by FTIR spectroscopy. J. Soc. Leather Technol. Chem. 2018, 102, 262–267. [Google Scholar]
- Derrick, M. Evaluation of the State of Degradation of Dead Sea Scroll Samples Using FTIR Spectroscopy. Book Pap. Annu. 1991, 10, 49–65. [Google Scholar]
- Vetter, W.; Pöllnitz, G.; Schreiner, M. Examination of Historic Parchment Manuscripts by Non invasive Reflection-FTIR—Possibilities and Limitations. In Proceedings of the 3rd International Congress “Chemistry for Cultural Heritage” (ChemCH 2014), Academy of Fine Arts, Vienna, Austria, 1–5 July 2014. [Google Scholar]
- Plavan, V.; Giurginca, M.; Budrugeac, P.; Vilsan, M.; Miu, L. Evaluation of the Physico—chemical Characteristics of Leather Samples of Some Historical Objects from Kiev. Rev. Chim. 2010, 61, 627–631. [Google Scholar]
- Chatzigrigoriou, A.; Karapanagiotis, I.; Poulios, I. Superhydrophobic Coatings Based on Siloxane Resin and Calcium Hydroxide Nanoparticles for Marble Protection. Coatings 2020, 10, 334. [Google Scholar] [CrossRef]
- Karapanagiotis, I.; Manoudis, P.N. Superhydrophobic and superamphiphobic materials for the conservation of natural stone: An overview. Constr. Build. Mater. 2022, 320, 126175. [Google Scholar] [CrossRef]
- Manoudis, P.N.; Chughtai, Z.; Tsiridis, V.; Evgenidis, S.P.; Spathis, P.K.; Karapantsios, T.D.; Karapanagiotis, I. Tuning the Wettability of a Commercial Silane Product to Induce Superamphiphobicity for Stone Protection. Coatings 2023, 13, 700. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koochakzaei, A.; Ghane, Z.; Mohammadi Achachluei, M. Zinc Oxide Nanoparticles in Leather Conservation: Exploring the Potential of Hydroxypropyl Cellulose/Zinc Oxide Nanocomposite as a Leather Consolidation Agent. Heritage 2023, 6, 7547-7558. https://doi.org/10.3390/heritage6120396
Koochakzaei A, Ghane Z, Mohammadi Achachluei M. Zinc Oxide Nanoparticles in Leather Conservation: Exploring the Potential of Hydroxypropyl Cellulose/Zinc Oxide Nanocomposite as a Leather Consolidation Agent. Heritage. 2023; 6(12):7547-7558. https://doi.org/10.3390/heritage6120396
Chicago/Turabian StyleKoochakzaei, Alireza, Zahra Ghane, and Mohsen Mohammadi Achachluei. 2023. "Zinc Oxide Nanoparticles in Leather Conservation: Exploring the Potential of Hydroxypropyl Cellulose/Zinc Oxide Nanocomposite as a Leather Consolidation Agent" Heritage 6, no. 12: 7547-7558. https://doi.org/10.3390/heritage6120396
APA StyleKoochakzaei, A., Ghane, Z., & Mohammadi Achachluei, M. (2023). Zinc Oxide Nanoparticles in Leather Conservation: Exploring the Potential of Hydroxypropyl Cellulose/Zinc Oxide Nanocomposite as a Leather Consolidation Agent. Heritage, 6(12), 7547-7558. https://doi.org/10.3390/heritage6120396