Potential Impact of Using ChatGPT-3.5 in the Theoretical and Practical Multi-Level Approach to Open-Source Remote Sensing Archaeology, Preliminary Considerations
Abstract
:1. Introduction
2. Materials and Methods
2.1. OpenAI ChatGPT-3
- (i)
- Generated Text: It can generate coherent and relevant responses and text based on the given questions or instructions. It can be used to answer specific questions, provide explanations, generate creative content, or even play the role of a virtual character in a conversational interaction;
- (ii)
- Translations: By utilising ChatGPT’s translation API, it is possible to provide text in a particular language and obtain a translation in another specified language. This can be useful in supporting multilingual communication and facilitating understanding between individuals who speak different languages;
- (iii)
- Speech Synthesis: It can be used to generate text-to-speech synthesis;
- (iv)
- Content Research and Generation: It can be used to conduct research on specific topics and generate content based on the results;
- (v)
- Interactive Assistance: ChatGPT’s APIs enable the creation of interactive applications that leverage its conversational capabilities to engage in conversations and respond to user queries. This can be used to develop chatbots, virtual assistants, or interactive support tools.
2.2. GEE and Sentinel-2 L2A
2.3. Approach to ChatGPT-3.5
- (i)
- Entry level: (a) RS and archaeology (general theory and methods), (b) current research trends (up to 2021), (c) used references;
- (ii)
- Medium level: (a) provide information about the tools to be used depending on the user’s desired outcome, (b) help the user to use simple functions and processes in JavaScript underlying RS applied to archaeology;
- (iii)
- Advanced level: (a) help the user to perform complex processes for advanced RS work applied to archaeology (e.g., classification and statistics) and to create a complete process by recreating the methodology described in a scientific paper on the topic step-by-step, (c) interoperability between different tools and libraries currently used for RS in archaeology.
- (1)
- Not correct (0%);
- (2)
- Almost completely incorrect. The system starts by providing minimal information, but the essential parts are missing or incorrect (25%);
- (3)
- It’s not quite correct, but it’s not totally incorrect. The system provides correct information but mistakes or omits some important information (50%);
- (4)
- Almost completely correct (75%);
- (5)
- Correct. The system explains the required topic comprehensively (100%);
- (1)
- Not working (0%);
- (2)
- Partially functional or functional after intensive user interaction (25%);
- (3)
- Partially working or working after further explanation by the user at ChatGPT (50%);
- (4)
- Almost completely correct even without user interaction (75%);
- (5)
- Fully functional as generated by AI (100%);
- (i)
- F.V. has no experience in the use of RS for archaeology and has asked and evaluated entry-level questions. These were joined by those with more experience in order to avoid giving positive marks even in the case of wrong answers;
- (ii)
- A.M.A. and M.S. already have experience with RS for archaeology, but none about data processing tools and therefore assessed the mid-level answers, always under the supervision of the most experienced;
- (iii)
- N.A., M.D., R.L., and N.M. can be considered experts in RS for archaeology and assessed the answers for the advanced level.
2.3.1. Entry Level
2.3.2. Medium Level
2.3.3. Advanced Level
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Declaration of Generative AI in Scientific Writing
References
- Agapiou, A. Remote sensing heritage in a petabyte-scale: Satellite data and heritage Earth Engine© applications. Int. J. Digit. Earth 2017, 10, 85–102. [Google Scholar] [CrossRef]
- Agapiou, A.; Lysandrou, V. Remote sensing archaeology: Tracking and mapping evolution in European scientific literature from 1999 to 2015. J. Archaeol. Sci. Rep. 2015, 4, 192–200. [Google Scholar] [CrossRef]
- Adamopoulos, E.; Rinaudo, F. UAS-Based Archaeological Remote Sensing: Review, Meta-Analysis and State-of-the-Art. Drones 2020, 4, 46. [Google Scholar] [CrossRef]
- Campana, S. Drones in Archaeology. State-of-the-art and Future Perspectives: Drones in Archaeology. Archaeol. Prospect. 2017, 24, 275–296. [Google Scholar] [CrossRef]
- Campana, S.R.L. Archaeology, Remote Sensing. In Encyclopedia of Geoarchaeology; Gilbert, A.S., Ed.; Springer: Dordrecht, The Netherlands, 2017. [Google Scholar]
- Campana, S.; Piro, S. Seeing the Unseen. Geophysics and Landscape Archaeology; CRC Press: Boca Raton, FL, USA, 2008; ISBN 978-0-203-88955-8. [Google Scholar]
- Ceraudo, G. 100 anni di Archeologia aerea in Italia. Archeol. Aerea 2000, 4, 5–15. [Google Scholar]
- Stolze, F. Die Achaemenidischen und, Sassanidischen Denkmaler und Inschriften von Persepolis; A. Asher & CO.: Berlin, Germany, 1882. [Google Scholar]
- Castrianni, L.; Cella, E. Giacomo Boni e il Foro Romano: La prima applicazione della fotografia aerea archeologica in Italia. AAerea 2009, UIV, 21–28. [Google Scholar]
- Boni, G. Fotografie e Pianta Altimetrica del Foro Romano; Academia dei lincei: Roma, Italy, 1900. [Google Scholar]
- Parcak, S.H. Satellite Remote Sensing for Archaeology; Routledge: London, UK; New York, NY, USA, 2009; ISBN 978-0-415-44877-2. [Google Scholar]
- Stichelbaut, B. The application of First World War aerial photography to archaeology: The Belgian images. Antiquity 2006, 80, 161–172. [Google Scholar] [CrossRef]
- Kennedy, A. Petra: Its History and Monuments; Country Life: London, UK, 1925. [Google Scholar]
- Glueck, N. Deities and Dolphins: The Story of the Nabateans; Farrar, Straus and Giroux: New York, NY, USA, 1965. [Google Scholar]
- Beazeley, G.A. Air Photography in Archæology. Geogr. J. 1919, 53, 330–335. [Google Scholar] [CrossRef]
- Baber, M. A History of Aerial Photography and Archaeology: Mata Hari’s Glass Eye and Other Stories; English Heritage: Swindon, UK, 2011. [Google Scholar]
- Crawford, O.G.S. Air Survey and Archæology. Geogr. J. 1923, 61, 342–360. [Google Scholar] [CrossRef]
- Crawford, O.G.S.; Keiller, A. Wessex from the Air; Oxford University Press: Oxford, UK, 1928. [Google Scholar]
- Deuel, L. Flights into Yesterday. In The Story of Aerial Archaeology; The Chaucer Press: Bungay, UK, 1969. [Google Scholar]
- Kennedy, D.; Bewley, R. Aerial archaeology in Jordan. Antiquity 2009, 83, 69–81. [Google Scholar] [CrossRef]
- Poidebard, A. Les Révélations Archéologiques de la Photographie Aérienne-Une Nouvelle Méthode de Recherches et D’observations en Région de Steppe; Editions Plon: Paris, France, 1929. [Google Scholar]
- Stein, A. Surveys on the Roman Frontier in’Iraq and Trans-Jordan. Geogr. J. 1940, 95, 428. [Google Scholar] [CrossRef]
- Caton-Thompson, G. Zimbabwe based on the British Association report. Antiquity 1929, 3, 424–433. [Google Scholar] [CrossRef]
- Rees, L.W.B. The Transjordan Desert. Antiquity 1929, 3, 389–407. [Google Scholar] [CrossRef]
- Kidder, A. Five Days Over the Maya Country. Sci. Mon. 1930, 30, 193–205. [Google Scholar]
- Johnson, J. The Dura air photographs. Archaeology 1950, 3, 158–159. [Google Scholar]
- Goodchild, R.G. Roman Tripolitania: Reconnaissance in the Desert Frontier Zone. Geogr. J. 1950, 115, 161. [Google Scholar] [CrossRef]
- Williams-Hunt, P.D.R. Irregular Earthworks in Eastern Siam: An air survey. Antiquity 1950, 24, 30–36. [Google Scholar] [CrossRef]
- Bradford, J.S.P. The Apulia Expedition: An Interim Report. Antiquity 1950, 24, 84–94. [Google Scholar] [CrossRef]
- Bradford, J. ‘Buried Landscapes’ in Southern Italy. Antiquity 1949, 23, 58–72. [Google Scholar] [CrossRef]
- Buettner-Janusch, J. Use of Infrared Photography in Archaeological Field Work. Am. Antiq. 1954, 20, 84–87. [Google Scholar] [CrossRef]
- Edeine, B. Una méthode praqtique pour la détection aérienne des sites archaéologiques, en particulier par la photographie sur films en coleurs et sur films infrarouges. Bull. Sociéte Préhistorique Fracaise 1956, 53, 540–546. [Google Scholar] [CrossRef]
- Gumerman, G.J.; Lyons, T.R. Archeological Methodology and Remote Sensing: Tests of aerial remote-sensing devices have revealed varying degrees of usefulness to the archeologist. Science 1971, 172, 126–132. [Google Scholar] [CrossRef]
- Beck, A. Archaeological Site Detection: The Importance of Contrast; ISPRS; Newcastle University: Newcastle, UK, 2007; pp. 307–312. [Google Scholar]
- Agache, R. Essai d’utilisation aérienne et au sol d’émulsions spectrozonales, dites infrarouges couleurs. Bull. Société Préhistorique Française 1968, 65, 192–201. [Google Scholar]
- Dashora, A.; Sreenivas, B.; Lohani, B.; Malik, J.N.; Shah, A.A. GCP collection for corona satellite photographs: Issues and methodology. J. Indian Soc. Remote Sens. 2006, 34, 153–160. [Google Scholar] [CrossRef]
- Casana, J.; Cothren, J. Stereo analysis, DEM extraction and orthorectification of CORONA satellite imagery: Archaeological applications from the Near East. Antiquity 2008, 82, 732–749. [Google Scholar] [CrossRef]
- Wiseman, J.R.; El-Baz, F. (Eds.) Remote Sensing in Archaeology; Interdisciplinary Contributions to Archaeology; Springer: New York, NY, USA, 2007; ISBN 978-0-387-44453-6. [Google Scholar]
- Khawaga, M. A contribution to the fractal pattern of the Abu Tartar plateau: Western Desert. Ann. Geol. Surv. Egypt 1979, 9, 163–171. [Google Scholar]
- El-Etr, J.; Yousif, M.; Dardir, A. Utilization of Landsat images and convetional aerial photgraphs in the delineation of some aspects of the geology of the central eastern desert, Egypt. Ann. Geol. Surv. Egypt 1989, 9, 136–162. [Google Scholar]
- Campbell, K.M. Remote Sensing: Conventional and Infrared Imagery for Archaeologists. Univer. Calg. Archaeol. Assoc. 1981, 11, 1–8. [Google Scholar]
- Parrington, M. Remote Sensing. Annu. Rev. Anthropol. 1983, 12, 105–124. [Google Scholar] [CrossRef]
- Robertson, R.A. Remote sensing in peat and terrain resource surveys. In Proceedings of the Conference: Symposium of IPS Commission I on Remote Sensing in Peat and Terrain Resource Surveys, Aberdeen, UK, 12 September 1983. [Google Scholar]
- Masini, N.; Soldovieri, F. (Eds.) Sensing the Past: From Artifact to Historical Site; Geotechnologies and the Environment; Springer International Publishing: Cham, Switzerland, 2017; Volume 16, ISBN 978-3-319-50516-9. [Google Scholar]
- Lambers, K. Airborne and Spaceborne Remote Sensing and Digital Image Analysis in Archaeology. In Digital Geoarchaeology: New Techniques for Interdisciplinary Human-Environmental Research; Siart, C., Forbriger, M., Bubenzer, O., Eds.; Natural Science in Archaeology; Springer International Publishing: Cham, Switzerland, 2018; pp. 109–122. ISBN 978-3-319-25316-9. [Google Scholar]
- Luo, L.; Wang, X.; Guo, H.; Lasaponara, R.; Zong, X.; Masini, N.; Wang, G.; Shi, P.; Khatteli, H.; Chen, F.; et al. Airborne and spaceborne remote sensing for archaeological and cultural heritage applications: A review of the century (1907–2017). Remote Sens. Environ. 2019, 232, 111280. [Google Scholar] [CrossRef]
- Luo, L.; Wang, X.; Guo, H.; Lasaponara, R.; Shi, P.; Bachagha, N.; Li, L.; Yao, Y.; Masini, N.; Chen, F.; et al. Google Earth as a Powerful Tool for Archaeological and Cultural Heritage Applications: A Review. Remote Sens. 2018, 10, 1558. [Google Scholar] [CrossRef]
- Campana, S.; Forte, M.; Consiglio nazionale delle ricerche (Italy) (Eds.) From Space to Place: 2nd International Conference on Remote Sensing in Archaeology. In Proceedings of the 2nd International Workshop, CNR, Rome, Italy, 4–7 December 2006; BAR International Series; Archeopress: Oxford, UK, 2006; ISBN 978-1-84171-998-6. [Google Scholar]
- Forte, M.; Campana, S.; Liuzza, C. (Eds.) Space, Time, Place. In Proceedings of the Third International Conference on Remote Sensing in Archaeology, Tiruchirappalli, Tamil Nadu, India, 17-21 August 2009; BAR International Series; Archaeopress: Oxford, UK, 2010; ISBN 978-1-4073-0659-9. [Google Scholar]
- Comer, D.C.; Harrower, M.J. Mapping Archaeological Landscapes from Space; SpringerBriefs in Archaeological Heritage Management; Springer: New York, NY, USA, 2013; ISBN 978-1-4614-6073-2. [Google Scholar]
- Forte, M.; Campana, S.R.L. (Eds.) Digital Methods and Remote Sensing in Archaeology: Archaeology in the Age of Sensing; Quantitative Methods in the Humanities and Social Sciences; Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-40656-5. [Google Scholar]
- Hadjimitsis, D.G.; Themistocleous, K.; Cuca, B.; Agapiou, A.; Lysandrou, V.; Lasaponara, R.; Masini, N.; Schreier, G. (Eds.) Remote Sensing for Archaeology and Cultural Landscapes: Best Practices and Perspectives Across Europe and the Middle East; Springer Remote Sensing/Photogrammetry, Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-030-10978-3. [Google Scholar]
- Tapete, D. Remote Sensing and Geosciences for Archaeology. Geosciences 2018, 8, 41. [Google Scholar] [CrossRef]
- Wilson, D.R. Air Photo Interpretation for Archaeologists; Tempus: Newcastle, NSW, Australia, 2000; ISBN 978-0-7524-1498-0. [Google Scholar]
- Aqdus, S.A.; Hanson, W.S.; Drummond, J. The potential of hyperspectral and multi-spectral imagery to enhance archaeological cropmark detection: A comparative study. J. Archaeol. Sci. 2012, 39, 1915–1924. [Google Scholar] [CrossRef]
- McCoy, M.D.; Ladefoged, T.N. New Developments in the Use of Spatial Technology in Archaeology. J. Archaeol. Res. 2009, 17, 263–295. [Google Scholar] [CrossRef]
- McCoy, M.D. Geospatial Big Data and archaeology: Prospects and problems too great to ignore. J. Archaeol. Sci. 2017, 84, 74–94. [Google Scholar] [CrossRef]
- Zingaro, M.; Scicchitano, G.; Capolongo, D. The Innovative Growth of Space Archaeology: A Brief Overview of Concepts and Approaches in Detection, Monitoring, and Promotion of the Archaeological Heritage. Remote Sens. 2023, 15, 3049. [Google Scholar] [CrossRef]
- Tapete, D.; Cigna, F. COSMO-SkyMed SAR for Detection and Monitoring of Archaeological and Cultural Heritage Sites. Remote Sens. 2019, 11, 1326. [Google Scholar] [CrossRef]
- Tapete, D.; Cigna, F. Appraisal of Opportunities and Perspectives for the Systematic Condition Assessment of Heritage Sites with Copernicus Sentinel-2 High-Resolution Multispectral Imagery. Remote Sens. 2018, 10, 561. [Google Scholar] [CrossRef]
- Agapiou, A. Enhancement of Archaeological Proxies at Non-Homogenous Environments in Remotely Sensed Imagery. Sustainability 2019, 11, 3339. [Google Scholar] [CrossRef]
- Agapiou, A.; Hadjimitsis, D.; Alexakis, D. Evaluation of Broadband and Narrowband Vegetation Indices for the Identification of Archaeological Crop Marks. Remote Sens. 2012, 4, 3892–3919. [Google Scholar] [CrossRef]
- Agapiou, A.; Lysandrou, V.; Hadjimitsis, D. Optical Remote Sensing Potentials for Looting Detection. Geosciences 2017, 7, 98. [Google Scholar] [CrossRef]
- Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Moghaddam, S.H.A.; Mahdavi, S.; Ghahremanloo, M.; Parsian, S.; et al. Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5326–5350. [Google Scholar] [CrossRef]
- Gattiglia, G. Think big about data: Archaeology and the Big Data challenge. Archäologische Inf. 2015, 38, 113–124. [Google Scholar] [CrossRef]
- Huggett, J. Is Big Digital Data Different? Towards a New Archaeological Paradigm. J. Field Archaeol. 2020, 45, S8–S17. [Google Scholar] [CrossRef]
- Howey, M.C.L.; Sullivan, F.B.; Burg, M.B.; Palace, M.W. Remotely Sensed Big Data and Iterative Approaches to Cultural Feature Detection and Past Landscape Process Analysis. J. Field Archaeol. 2020, 45, S27–S38. [Google Scholar] [CrossRef]
- Kitchin, R. Big Data, new epistemologies and paradigm shifts. Big Data Soc. 2014, 1, 205395171452848. [Google Scholar] [CrossRef]
- Agapiou, A.; Hadjimitsis, D.G.; Themistocleous, K.; Papadavid, G.; Toulios, L. Detection of archaeological crop marks in Cyprus using vegetation indices from Landsat TM/ETM+ satellite images and field spectroscopy measurements. In Proceedings of the SPIE 7831, Earth Resources and Environmental Remote Sensing/GIS Applications, 25 October 2010; SPIE: Bellingham, WA, USA; Volume 78310. [CrossRef]
- Agudo, P.U.; Pajas, J.A.; Pérez-Cabello, F.; Redón, J.V.; Lebrón, B.E. The Potential of Drones and Sensors to Enhance Detection of Archaeological Cropmarks: A Comparative Study Between Multi-Spectral and Thermal Imagery. Drones 2018, 2, 29. [Google Scholar] [CrossRef]
- De Guio, A. Cropping for a better future, vegetation Indices in archaeology. In Detecting and Understanding Historic Landscapes; PCA Studies; SAP, Società Archeologica s.r.l: Mantova, Italy, 2015; pp. 23–60. ISBN 978-88-87115-99-4. [Google Scholar]
- Tan, K.-L.; Wan, Y.-Q.; Yang, Y.-D.; Duan, Q.-B. Study of hyperspectral remote sensing for archaeology. J. Infrared Millim. Waves 2005, 24, 437–440. [Google Scholar]
- Evans, D.; Traviglia, A. Uncovering Angkor: Integrated Remote Sensing Applications in the Archaeology of Early Cambodia. In Satellite Remote Sensing; Lasaponara, R., Masini, N., Eds.; Remote Sensing and Digital Image Processing; Springer: Dordrecht, The Netherlands, 2012; Volume 16, pp. 197–230. ISBN 978-90-481-8800-0. [Google Scholar]
- Kaimaris, D.; Patias, P.; Tsakiri, M. Best period for high spatial resolution satellite images for the detection of marks of buried structures. Egypt. J. Remote Sens. Space Sci. 2012, 15, 9–18. [Google Scholar] [CrossRef]
- Chuvieco, E.; Martín, M.P.; Palacios, A. Assessment of different spectral indices in the red-near-infrared spectral domain for burned land discrimination. Int. J. Remote Sens. 2002, 23, 5103–5110. [Google Scholar] [CrossRef]
- Rouse, J.; Haas, R.H.; Deering, D.; Schell, J.A.; Harlan, J. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. Type III, Final Report; NASA: Washington, DC, USA, 1974; pp. 1–371. [Google Scholar]
- White, D.C.; Williams, M.; Barr, S.L. Detecting Sub-Surface Soil Disturbance Using Hyperspectral First Derivative Band Ratios of Associated Vegetation Stress. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 243–248. [Google Scholar]
- Rowlands, A.; Sarris, A. Detection of exposed and subsurface archaeological remains using multi-sensor remote sensing. J. Archaeol. Sci. 2007, 34, 795–803. [Google Scholar] [CrossRef]
- Silver, M.; Törmä, M.; Silver, K.; Okkonen, J.; Nuñez, M. Remote sensing, landscape and archaeology tracing ancient tracks and roads between Palmyra and the Euphrates in Syria. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, II-5/W3, 279–285. [Google Scholar] [CrossRef]
- Ceccato, P.; Flasse, S.; Tarantola, S.; Jacquemoud, S.; Grégoire, J.-M. Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sens. Environ. 2001, 77, 22–33. [Google Scholar] [CrossRef]
- Ceccato, P.; Gobron, N.; Flasse, S.; Pinty, B.; Tarantola, S. Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1: Theoretical approach. Remote Sens. Environ. 2002, 82, 188–197. [Google Scholar] [CrossRef]
- Calleja, J.F.; Requejo Pagés, O.; Díaz-Álvarez, N.; Peón, J.; Gutiérrez, N.; Martín-Hernández, E.; Cebada Relea, A.; Rubio Melendi, D.; Fernández Álvarez, P. Detection of buried archaeological remains with the combined use of satellite multispectral data and UAV data. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 555–573. [Google Scholar] [CrossRef]
- Hum, Y.C.; Lai, K.W.; Mohamad Salim, M.I. Multiobjectives bihistogram equalization for image contrast enhancement. Complexity 2014, 20, 22–36. [Google Scholar] [CrossRef]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective; Pearson series in geographic information science; Pearson Education, Inc.: Glenview, IL, USA, 2016; ISBN 978-0-13-405816-0. [Google Scholar]
- Crist, E.P.; Cicone, R.C. A Physically-Based Transformation of Thematic Mapper Data—The TM Tasseled Cap. IEEE Trans. Geosci. Remote Sens. 1984, GE–22, 256–263. [Google Scholar] [CrossRef]
- Estornell, J.; Martí-Gavliá, J.M.; Sebastiá, M.T.; Mengual, J. Principal component analysis applied to remote sensing. Model. Sci. Educ. Learn. 2013, 6, 83. [Google Scholar] [CrossRef]
- Traviglia, A.; Cottica, D. Remote sensing applications and archaeological research in the Northern Lagoon of Venice: The case of the lost settlement of Constanciacus. J. Archaeol. Sci. 2011, 38, 2040–2050. [Google Scholar] [CrossRef]
- Traviglia, A. Archaeological Usability of Hyperspectral Images: Successes and Failures of Image Processing Techniques; BAR: Oxford, UK, 2006; pp. 123–130. [Google Scholar]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Ord, J.K.; Getis, A. Local Spatial Autocorrelation Statistics: Distributional Issues and an Application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- Orengo, H.A.; Conesa, F.C.; Garcia-Molsosa, A.; Lobo, A.; Green, A.S.; Madella, M.; Petrie, C.A. Automated detection of archaeological mounds using machine-learning classification of multisensor and multitemporal satellite data. Proc. Natl. Acad. Sci. USA 2020, 117, 18240–18250. [Google Scholar] [CrossRef]
- Liss, B.; Howland, M.D.; Levy, T.E. Testing Google Earth Engine for the automatic identification and vectorization of archaeological features: A case study from Faynan, Jordan. J. Archaeol. Sci. Rep. 2017, 15, 299–304. [Google Scholar] [CrossRef]
- Mutanga, O.; Kumar, L. Google Earth Engine Applications. Remote Sens. 2019, 11, 591. [Google Scholar] [CrossRef]
- Kumar, L.; Mutanga, O. Google Earth Engine Applications Since Inception: Usage, Trends, and Potential. Remote Sens. 2018, 10, 1509. [Google Scholar] [CrossRef]
- Gorelick, N. Google Earth Engine; American Geophysical Union: Vienna, Austria, 2013; p. 11997. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Yang, L.; Driscol, J.; Sarigai, S.; Wu, Q.; Chen, H.; Lippitt, C.D. Google Earth Engine and Artificial Intelligence (AI): A Comprehensive Review. Remote Sens. 2022, 14, 3253. [Google Scholar] [CrossRef]
- Fiorucci, M.; Verschoof-van der Vaart, W.B.; Soleni, P.; Le Saux, B.; Traviglia, A. Deep Learning for Archaeological Object Detection on LiDAR: New Evaluation Measures and Insights. Remote Sens. 2022, 14, 1694. [Google Scholar] [CrossRef]
- Fiorucci, M.; Khoroshiltseva, M.; Pontil, M.; Traviglia, A.; Del Bue, A.; James, S. Machine Learning for Cultural Heritage: A Survey. Pattern Recognit. Lett. 2020, 133, 102–108. [Google Scholar] [CrossRef]
- Wang, H.; Li, J.; Wu, H.; Hovy, E.; Sun, Y. Pre-Trained Language Models and Their Applications. Engineering 2022, 25, 51–65. [Google Scholar] [CrossRef]
- Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving Language Understanding by Generative Pre-Training. 2018, 1–12. [Google Scholar]
- Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language Models are Unsupervised Multitask Learners. OpenAI Blog 2019, 1, 9. [Google Scholar]
- Shakarian, P.; Koyyalamudi, A.; Ngu, N.; Mareedu, L. An Independent Evaluation of ChatGPT on Mathematical Word Problems (MWP). arXiv 2023, arXiv:2302.13814. [Google Scholar] [CrossRef]
- Sobania, D.; Briesch, M.; Hanna, C.; Petke, J. An Analysis of the Automatic Bug Fixing Performance of ChatGPT. arXiv 2023, arXiv:2301.08653. [Google Scholar] [CrossRef]
- Liu, Y.; Han, T.; Ma, S.; Zhang, J.; Yang, Y.; Tian, J.; He, H.; Li, A.; He, M.; Liu, Z.; et al. Summary of ChatGPT/GPT-4 Research and Perspective Towards the Future of Large Language Models. Meta-Radiology 2023, 1, 100017. [Google Scholar] [CrossRef]
- ChatGPT. Available online: https://openai.com/chatgpt (accessed on 27 November 2023).
- Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al. Language Models are Few-Shot Learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901. [Google Scholar] [CrossRef]
- OpenAI—Research. Available online: https://openai.com/research (accessed on 19 June 2023).
- Agapiou, A.; Lysandrou, V. Interacting with the Artificial Intelligence (AI) Language Model ChatGPT: A Synopsis of Earth Observation and Remote Sensing in Archaeology. Heritage 2023, 6, 4072–4085. [Google Scholar] [CrossRef]
- Jiao, W.; Wang, W.; Huang, J.; Wang, X.; Tu, Z. Is ChatGPT a Good Translator? Yes with GPT-4 As The Engine. arXiv 2023, arXiv:2301.08745. [Google Scholar] [CrossRef]
- Surameery, N.M.S.; Shakor, M.Y. Use Chat GPT to Solve Programming Bugs. Technol. Comput. Eng. 2023, 3, 17–22. [Google Scholar] [CrossRef]
- Frieder, S.; Pinchetti, L.; Griffiths, R.-R.; Salvatori, T.; Lukasiewicz, T.; Petersen, P.C.; Chevalier, A.; Berner, J. Mathematical Capabilities of ChatGPT. arXiv 2023, arXiv:2301.13867. [Google Scholar] [CrossRef]
- Dowling, M.; Lucey, B. ChatGPT for (Finance) research: The Bananarama Conjecture. Finance Res. Lett. 2023, 53, 103662. [Google Scholar] [CrossRef]
- Biswas, S.S. Role of Chat GPT in Public Health. Ann. Biomed. Eng. 2023, 51, 868–869. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.S. Potential Use of Chat GPT in Global Warming. Ann. Biomed. Eng. 2023, 51, 1126–1127. [Google Scholar] [CrossRef]
- Biswas, S. ChatGPT and the Future of Medical Writing. Radiology 2023, 307, e223312. [Google Scholar] [CrossRef]
- Zhu, J.-J.; Jiang, J.; Yang, M.; Ren, Z.J. ChatGPT and Environmental Research. Environ. Sci. Technol. 2023, 57, 17667–17670. [Google Scholar] [CrossRef]
- Spennemann, D.H.R. Exhibiting the Heritage of COVID-19—A Conversation with ChatGPT. Heritage 2023, 6, 5732–5749. [Google Scholar] [CrossRef]
- Spennemann, D.H.R. ChatGPT and the Generation of Digitally Born “Knowledge”: How Does a Generative AI Language Model Interpret Cultural Heritage Values? Knowledge 2023, 18, 480–512. [Google Scholar] [CrossRef]
- Thorp, H.H. ChatGPT is fun, but not an author. Science 2023, 379, 313. [Google Scholar] [CrossRef]
- Pegoraro, A.; Kumari, K.; Fereidooni, H.; Sadeghi, A.-R. To ChatGPT, or not to ChatGPT: That is the question! arXiv 2023, arXiv:2304.01487. [Google Scholar] [CrossRef]
- Doshi, R.H.; Bajaj, S.S.; Krumholz, H.M. ChatGPT: Temptations of Progress. Am. J. Bioeth. 2023, 23, 6–8. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, F.; Talebi Bezmin Abadi, A. ChatGPT and Publication Ethics. Arch. Med. Res. 2023, 54, 272–274. [Google Scholar] [CrossRef] [PubMed]
- Beltrami, E.J.; Grant-Kels, J.M. Consulting ChatGPT: Ethical dilemmas in language model artificial intelligence. J. Am. Acad. Dermatol. 2023, 11, S0190. [Google Scholar] [CrossRef] [PubMed]
- King, M.R. ChatGPT A Conversation on Artificial Intelligence, Chatbots, and Plagiarism in Higher Education. Cell. Mol. Bioeng. 2023, 16, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Osco, L.; Lemos, E.; Gonçalves, W.; Ramos, A.P.; Junior, J. The Potential of Visual ChatGPT for Remote Sensing. Remote Sens. 2023, 15, 3232. [Google Scholar] [CrossRef]
- Al Rahhal, M.; Bazi, Y.; Alsaleh, S.; Al-Razgan, M.; Mekhalfi, M.; Zuair, M.; Alajlan, N. Open-ended remote sensing visual question answering with transformers. Int. J. Remote Sens. 2022, 43, 6809–6823. [Google Scholar] [CrossRef]
- Bashmal, L.; Bazi, Y.; Melgani, F.; Ricci, R.; Al Rahhal, M.; Zuair, M. Visual Question Generation from Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 3279–3293. [Google Scholar] [CrossRef]
- Lobry, S.; Marcos, D.; Murray, J.; Tuia, D. RSVQA: Visual Question Answering for Remote Sensing Data. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8555–8566. [Google Scholar] [CrossRef]
- Earth Engine Data Catalog|Google for Developers. Available online: https://developers.google.com/earth-engine/datasets (accessed on 20 June 2023).
- Telesca, L.; Aromando, A.; Faridani, F.; Lovallo, M.; Cardettini, G.; Abate, N.; Papitto, G.; Lasaponara, R. Exploring Long-Term Anomalies in the Vegetation Cover of Peri-Urban Parks Using the Fisher-Shannon Method. Entropy 2022, 24, 1784. [Google Scholar] [CrossRef]
- Telesca, L.; Abate, N.; Faridani, F.; Lovallo, M.; Lasaponara, R. Discerning Xylella fastidiosa-Infected Olive Orchards in the Time Series of MODIS Terra Satellite Evapotranspiration Data by Using the Fisher–Shannon Analysis and the Multifractal Detrended Fluctuation Analysis. Fractal Fract. 2023, 7, 466. [Google Scholar] [CrossRef]
- Mahdianpari, M.; Salehi, B.; Mohammadimanesh, F.; Homayouni, S.; Gill, E. The First Wetland Inventory Map of Newfoundland at a Spatial Resolution of 10 m Using Sentinel-1 and Sentinel-2 Data on the Google Earth Engine Cloud Computing Platform. Remote Sens. 2019, 11, 43. [Google Scholar] [CrossRef]
- Campos-Taberner, M.; Moreno-Martínez, Á.; García-Haro, F.J.; Camps-Valls, G.; Robinson, N.P.; Kattge, J.; Running, S.W. Global Estimation of Biophysical Variables from Google Earth Engine Platform. Remote Sens. 2018, 10, 1167. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Amini, S.; Saber, M.; Rabiei-Dastjerdi, H.; Homayouni, S. Urban Land Use and Land Cover Change Analysis Using Random Forest Classification of Landsat Time Series. Remote Sens. 2022, 14, 2654. [Google Scholar] [CrossRef]
- Parente, L.; Mesquita, V.; Miziara, F.; Baumann, L.; Ferreira, L. Assessing the pasturelands and livestock dynamics in Brazil, from 1985 to 2017: A novel approach based on high spatial resolution imagery and Google Earth Engine cloud computing. Remote Sens. Environ. 2019, 232, 111301. [Google Scholar] [CrossRef]
- Hansen, C.H. Google Earth Engine as a Platform for Making Remote Sensing of Water Resources a Reality for Monitoring Inland Waters; Department of Civil and Environmental Engineering: Suite, UT, USA, 2015. [Google Scholar] [CrossRef]
- Deines, J.M.; Kendall, A.D.; Crowley, M.A.; Rapp, J.; Cardille, J.A.; Hyndman, D.W. Mapping three decades of annual irrigation across the US High Plains Aquifer using Landsat and Google Earth Engine. Remote Sens. Environ. 2019, 233, 111400. [Google Scholar] [CrossRef]
- DeVries, B.; Huang, C.; Armston, J.; Huang, W.; Jones, J.W.; Lang, M.W. Rapid and robust monitoring of flood events using Sentinel-1 and Landsat data on the Google Earth Engine. Remote Sens. Environ. 2020, 240, 111664. [Google Scholar] [CrossRef]
- Horowitz, F. MODIS Daily Land Surface Temperature Estimates in Google Earth Engine as an Aid in Geothermal Energy Siting. In Proceedings of the the World Geothermal Congress, Melbourne, Australia, 19–24 April 2015. [Google Scholar]
- Arévalo, P.; Bullock, E.L.; Woodcock, C.E.; Olofsson, P. A Suite of Tools for Continuous Land Change Monitoring in Google Earth Engine. Front. Clim. 2020, 2, 576740. [Google Scholar] [CrossRef]
- Lasaponara, R.; Abate, N.; Masini, N. On the Use of Google Earth Engine and Sentinel Data to Detect “Lost”’ Sections of Ancient Roads. The Case of Via Appia. IEEE Geosci. Remote Sens. Lett. 2021, 19, 3001605. [Google Scholar] [CrossRef]
- Firpi, O.A.A. Satellite Data for All? Review of Google Earth Engine for Archaeological Remote Sensing. Internet Archaeol. 2016, 42. [Google Scholar] [CrossRef]
- Case Studies—Google Earth Engine. Available online: https://earthengine.google.com/case_studies/ (accessed on 20 June 2023).
- Agapiou, A.; Alexakis, D.D.; Sarris, A.; Hadjimitsis, D.G. Evaluating the Potentials of Sentinel-2 for Archaeological Perspective. Remote Sens. 2014, 6, 2176–2194. [Google Scholar] [CrossRef]
- Alicandro, M.; Candigliota, E.; Dominici, D.; Immordino, F.; Masin, F.; Pascucci, N.; Quaresima, R.; Zollini, S. Hyperspectral PRISMA and Sentinel-2 Preliminary Assessment Comparison in Alba Fucens and Sinuessa Archaeological Sites (Italy). Land 2022, 11, 2070. [Google Scholar] [CrossRef]
- Johnson, D.; Goodman, R.; Patrinely, J.; Stone, C.; Zimmerman, E.; Donald, R.; Chang, S.; Berkowitz, S.; Finn, A.; Jahangir, E.; et al. Assessing the Accuracy and Reliability of AI-Generated Medical Responses: An Evaluation of the Chat-GPT Model. Res. Sq. 2023. preprint. [Google Scholar] [CrossRef]
- Das, D.; Kumar, N.; Longjam, L.A.; Sinha, R.; Deb Roy, A.; Mondal, H.; Gupta, P. Assessing the Capability of ChatGPT in Answering First- and Second-Order Knowledge Questions on Microbiology as per Competency-Based Medical Education Curriculum. Cureus 2023, 15, e36034. [Google Scholar] [CrossRef] [PubMed]
- Fergus, S.; Botha, M.; Ostovar, M. Evaluating Academic Answers Generated Using ChatGPT. J. Chem. Educ. 2023, 100, 1672–1675. [Google Scholar] [CrossRef]
- Likert, R. A technique for measurement of attitudes. Arch. Psychol. 1932, 22, 55. [Google Scholar]
- Luo, L.; Bachagha, N.; Yao, Y.; Liu, C.; Shi, P.; Zhu, L.; Shao, J.; Wang, X. Identifying Linear Traces of the Han Dynasty Great Wall in Dunhuang Using Gaofen-1 Satellite Remote Sensing Imagery and the Hough Transform. Remote Sens. 2019, 11, 2711. [Google Scholar] [CrossRef]
- Arthur, D.; Vassilvitskii, S. k-means++: The advantages of careful seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2007; pp. 1027–1035. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Shao, Y.; Lunetta, R.S. Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS J. Photogramm. Remote Sens. 2012, 70, 78–87. [Google Scholar] [CrossRef]
- Spennemann, D.H. What has ChatGPT read? The origins of archaeological citations used by a generative artificial intelligence application. arXiv 2023, arXiv:2308.03301. [Google Scholar]
- McGowan, A.; Gui, Y.; Dobbs, M.; Shuster, S.; Cotter, M.; Selloni, A.; Goodman, M.; Srivastava, A.; Cecchi, G.A.; Corcoran, C.M. ChatGPT and Bard exhibit spontaneous citation fabrication during psychiatry literature search. Psychiatry Res. 2023, 326, 115334. [Google Scholar] [CrossRef] [PubMed]
- Day, T. A Preliminary Investigation of Fake Peer-Reviewed Citations and References Generated by ChatGPT. Prof. Geogr. 2023, 1–4. [Google Scholar] [CrossRef]
Dataset | Tokens | Training Weight |
---|---|---|
Common Crawl | 410 billion | 60% |
WebText2 | 19 billion | 22% |
Books1 | 12 billion | 8% |
Books2 | 55 billion | 8% |
Wikipedia | 3 billion | 3% |
Parameter | Description |
---|---|
Spatial Resolution | 10 m (bands 2, 3, 4, 8), 20 m (bands 5, 6, 7) |
Spectral Bands | Coastal aerosol (Band 1), Blue (Band 2), Green (Band 3), Red (Band 4), Red-edge 1 (Band 5), Red-edge 2 (Band 6), Red-edge 3 (Band 7), NIR (Band 8), NIR narrow (Band 8A), Water vapour (Band 9), SWIR 1 (Band 11), SWIR 2 (Band 12) |
Temporal Resolution | 5 days (global coverage) |
Swath Width | 290 km (single satellite) |
Revisit Time | 2–5 days (depending on latitude) |
Data Format | Level-1C (Top of Atmosphere), Level-2A (Bottom of Atmosphere) |
Data Source | Copernicus Open Access Hub (https://scihub.copernicus.eu/, accessed on 25 September 2023) |
Acquisition Modes | Global (Full Swath), Europe (Granules) |
Mission Lifetime | 7 years (planned) |
Radiometric Resolution | 12 bits |
Level | Number of Questions Asked | Mean Score | StdDev |
---|---|---|---|
Entry | 19 | 2.263157895 | 1.617083315 |
Medium | 23 | 3.260869565 | 1.2420881273 |
Advanced | 54 | 2.611111111 | 1.7131142 |
Year | Number of Completely Correct References | Number of Fake References |
---|---|---|
2010 | 0 | 10 |
2011 | 0 | 10 |
2012 | 1 | 9 |
2013 | 0 | 10 |
2014 | 0 | 10 |
2015 | 0 | 10 |
2016 | 0 | 10 |
2017 | 0 | 10 |
2018 | 0 | 10 |
2019 | 0 | 10 |
2020 | NaN | NaN |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abate, N.; Visone, F.; Sileo, M.; Danese, M.; Minervino Amodio, A.; Lasaponara, R.; Masini, N. Potential Impact of Using ChatGPT-3.5 in the Theoretical and Practical Multi-Level Approach to Open-Source Remote Sensing Archaeology, Preliminary Considerations. Heritage 2023, 6, 7640-7659. https://doi.org/10.3390/heritage6120402
Abate N, Visone F, Sileo M, Danese M, Minervino Amodio A, Lasaponara R, Masini N. Potential Impact of Using ChatGPT-3.5 in the Theoretical and Practical Multi-Level Approach to Open-Source Remote Sensing Archaeology, Preliminary Considerations. Heritage. 2023; 6(12):7640-7659. https://doi.org/10.3390/heritage6120402
Chicago/Turabian StyleAbate, Nicodemo, Francesca Visone, Maria Sileo, Maria Danese, Antonio Minervino Amodio, Rosa Lasaponara, and Nicola Masini. 2023. "Potential Impact of Using ChatGPT-3.5 in the Theoretical and Practical Multi-Level Approach to Open-Source Remote Sensing Archaeology, Preliminary Considerations" Heritage 6, no. 12: 7640-7659. https://doi.org/10.3390/heritage6120402
APA StyleAbate, N., Visone, F., Sileo, M., Danese, M., Minervino Amodio, A., Lasaponara, R., & Masini, N. (2023). Potential Impact of Using ChatGPT-3.5 in the Theoretical and Practical Multi-Level Approach to Open-Source Remote Sensing Archaeology, Preliminary Considerations. Heritage, 6(12), 7640-7659. https://doi.org/10.3390/heritage6120402