Protection of Historical Mortars through Treatment with Suspensions of Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Nanoparticles
2.2. Treatment of the Test Specimens with the Nanoparticles
2.3. Dissolution Tests
3. Results
3.1. Composites of Silica Nanoparticles with ACC and Silica Particles
3.2. Kinetics of Dissolution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Syrmakezis, C.A. Seismic protection of historical structures and monuments. Struct. Control Health Monit. 2006, 13, 958–979. [Google Scholar] [CrossRef]
- Howard, A.J.; Hancox, E.; Hanson, J.; Jackson, R. Protecting the Historic Environment from Inland Flooding in the UK: Some Thoughts on Current Approaches to Asset Management in the Light of Planning Policy, Changing Catchment Hydrology and Climate Change. Hist. Environ. Policy Pract. 2017, 8, 125–142. [Google Scholar] [CrossRef]
- Brimblecombe, P.; Richards, J. Moisture as a Driver of Long-Term Threats to Timber Heritage—Part II: Risks Imposed on Structures at Local Sites. Heritage 2022, 5, 154. [Google Scholar] [CrossRef]
- Spathis, P.; Triantafyllidis, K.; Prochaska, C.; Karapanagiotis, I.; Pavlidou, E.; Stefanidou, M. Characterization and Properties of Silicate and Nanocomposite Coatings for the Protection of Dolomite Marble against Weathering: Natural and Anthropogenic Hazards and Sustainable Preservation. In 10th International Symposium on the Conservation of Monuments in the Mediterranean Basin; Springer International Publishing AG: Cham, Switzerland, 2018; pp. 287–294. [Google Scholar]
- Baglioni, P.; Chelazzi, D.; Giorgi, R.; Poggi, G. Colloid and Materials Science for the Conservation of Cultural Heritage: Cleaning, Consolidation, and Deacidification. Langmuir 2013, 29, 5110–5122. [Google Scholar] [CrossRef]
- Sadat-Shojai, M.; Ershad-Langroudi, A. Polymeric coatings for protection of historic monuments: Opportunities and challenges. J. Appl. Polym. Sci. 2009, 112, 2535–2551. [Google Scholar] [CrossRef]
- Brunelli, A.; Calgaro, L.; Semenzin, E.; Cazzagon, V.; Giubilato, E.; Marcomini, A.; Badetti, E. Leaching of nanoparticles from nano-enabled products for the protection of cultural heritage surfaces: A review. ESEU 2021, 33, 48. [Google Scholar] [CrossRef]
- Becerra, J.; Zaderenko, A.P.; Gómez-Morón, M.A.; Ortiz, P. Nanoparticles Applied to Stone Buildings. Int. J. Archit. Herit. 2021, 15, 1320–1335. [Google Scholar] [CrossRef]
- Giorgi, R.; Ambrosi, M.; Toccafondi, N.; Baglioni, P. Nanoparticles for Cultural Heritage Conservation: Calcium and Barium Hydroxide Nanoparticles for Wall Painting Consolidation. Chem. Eur. J. 2010, 16, 9374–9382. [Google Scholar] [CrossRef]
- Giorgi, R.; Baglioni, M.; Berti, D.; Baglioni, P. New Methodologies for the Conservation of Cultural Heritage: Micellar Solutions, Microemulsions, and Hydroxide Nanoparticles. Acc. Chem. Res. 2010, 43, 695–704. [Google Scholar] [CrossRef]
- Baglioni, P.; Carretti, E.; Chelazzi, D. Nanomaterials in art conservation. Nat. Nanotechnol. 2015, 10, 287–290. [Google Scholar] [CrossRef]
- Serafini, I.; Ciccola, A. Chapter 14—Nanotechnologies and Nanomaterials: An Overview for Cultural Heritage. In Nanotechnologies and Nanomaterials for Diagnostic, Conservation and Restoration of Cultural Heritage; Lazzara, G., Fakhrullin, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 325–380. [Google Scholar]
- Abdellah, M.Y.; Gelany, A.F.; Mohamed, A.F.; Khoshaim, A.B. Protection of Limestone Coated with Different Polymeric Materials. Am. J. Mech. Eng. 2017, 5, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Lettieri, Μ.; Masieri, M.; Frigione, M. Durability to simulated bird guano of nano-filled oleo/hydrophobic coatings for the protection of stone materials. Prog. Org. Coat. 2020, 148, 105900. [Google Scholar] [CrossRef]
- Ion, R.-M.; Nyokong, T.; Nwahara, N. Wood preservation with gold hydroxyapatite system. Herit. Sci. 2018, 6, 37. [Google Scholar] [CrossRef] [Green Version]
- Ion, R.-M.; Doncea, S.-M.; Turcanu-Carutiu, D. Nanotechnologies in Cultural Heritage-Materials and Instruments for Diagnosis and Treatment. In Novel Nanomaterials; IntechOpen: London, UK, 2018; pp. 173–190. [Google Scholar]
- Blee, A.; Matisons, J. Nanoparticles and the conservation of cultural heritage. Mater. Forum 2008, 32, 121–128. [Google Scholar]
- Chandra, S.; Wu, L. Kolloidale Kieselsäure für das Festigen von Naturstein/Colloidal Silica in Stone Conservation. RBM 1999, 5, 15–28. [Google Scholar] [CrossRef]
- Stepien, P.; Kozlowski, R.; Tokarz, M. Gypstop—Colloidal silica for protective coating of porous building materials: Practical experience at the Wawel Castle, Cracow, Poland. WIT Trans. Built Environ. 1993, 4, 303–310. [Google Scholar]
- Storemyr, P.; Wendler, E.; Zehnder, K. Weathering and Conservation of Soapstone and Greenschist Used at Nidaros Cathedral (Norway). In Report Raphael II Nidaros Cathedral Restoration Trondheim Norway 2000. EC Raphael Programme—European Heritage Laboratory; Report no. 2/2001; Lunde, Ø., Gunnarsjaa, A., Eds.; The Restoration Workshop of Nidaros Cathedral: Trondheim, Norway, 2001. [Google Scholar]
- Sierra-Fernandez, A.; Gomez-Villalba, L.S.; Rabanalb, M.E.; Fort, R. New nanomaterials for applications in conservation and restoration of stony materials: A review. Mater. Construc. 2017, 67, e107. [Google Scholar] [CrossRef]
- Stuff, M.; Rübner, K.; Prinz, C.; Rische, N.; Chronz, M.; Kühne, H.-C. Weathering and conservation of tuff stone. In Proceedings of the EGU General Assembly 2020, Online, 4–8 May 2020. [Google Scholar]
- Zendri, E.; Biscontin, G.; Nardini, I.; Riato, S. Characterization and reactivity of silicatic consolidants. Constr. Build. Mater. 2007, 21, 1098–1106. [Google Scholar] [CrossRef] [Green Version]
- Illescas, J.F.; Mosquera, M. Surfactant-Synthesized PDMS/Silica Nanomaterials Improve Robustness and Stain Resistance of Carbonate Stone. J. Phys. Chem. C 2011, 115, 14624–14634. [Google Scholar] [CrossRef]
- Wang, W.; Wang, S.; Liu, Q.; Wang, X.; Zhu, J.; Luo, H.; Ji, S. Study on the efficacy of amorphous calcium carbonate as a consolidant for calcareous matrix. Herit. Sci. 2022, 10, 165. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, C.; Elert, K.; Ševčík, R. Amorphous and crystalline calcium carbonate phases during carbonation of nanolimes: Implications in heritage conservation. CrystEngComm 2016, 18, 6594–6607. [Google Scholar] [CrossRef]
- Baglioni, M.; Poggi, G.; Chelazzi, D.; Baglioni, P. Advanced Materials in Cultural Heritage Conservation. Molecules 2021, 26, 3967. [Google Scholar] [CrossRef] [PubMed]
- Burgos-Cara, A.; Rodríguez-Navarro, C.; Ortega-Huertas, M.; Ruiz-Agudo, E. Bioinspired Alkoxysilane Conservation Treatments for Building Materials Based on Amorphous Calcium Carbonate and Oxalate Nanoparticles. ACS Appl. Nano Mater. 2019, 2, 4954–4967. [Google Scholar] [CrossRef]
- Karthikeyan, A.; Pillai, S.G.; Unnikrishnan, K.K. Amorphous calcium carbonate coated sandstone: Preparation, characterization and weathering resistance. Surf. Coat. Technol. 2009, 203, 3138–3145. [Google Scholar]
- Unnikrishnan, K.K.; Pillai, S.G.; Karthikeyan, A. Amorphous calcium carbonate coatings on sandstone: Preparation, characterization and weathering resistance. Mater. Lett. 2009, 63, 2386–2389. [Google Scholar]
- Zhang, Z.; Gao, Y.; Gao, Y.; Li, Y. Amorphous calcium carbonate coatings on marble surfaces: Preparation, characterization, and weathering resistance. Surf. Coat. Technol. 2015, 268, 89–98. [Google Scholar]
- Kellermeier, M.; Melero-García, E.; Glaab, F.; Klein, R.; Drechsler, M.; Rachel, R.; García-Ruiz, J.M.; Kunz, W. Stabilization of amorphous calcium carbonate in inorganic silica-rich environments. J. Am. Chem. Soc. 2010, 132, 17859–17866. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, Y.; Takai, C.; Razavi-Khosroshahi, H.; Suthabanditpong, W.; Fuji, M. Synthesis of ultra-small hollow silica nanoparticles using the prepared amorphous calcium carbonate in one-pot process. Adv. Powder Technol. 2018, 29, 904–908. [Google Scholar] [CrossRef]
- Salve, P.R.; Maurya, A.; Wate, S.R. Chemical Composition of Major Ions in Rainwater. Bull. Environ. Contam. Toxicol. 2008, 80, 242–246. [Google Scholar] [CrossRef]
- Faatz, M.; Gröhn, F.; Wegner, G. Amorphous Calcium Carbonate: Synthesis and Potential Intermediate in Biomineralization. Adv. Mater. 2004, 16, 996–1000. [Google Scholar] [CrossRef]
- Singh, T.K.; Jain, C.L.; Sharma, S.K.; Singh, S.S. Preparation of dispersed silica by hydrolysis of tetraethyl orthosilicate. Indian J. Eng. Mater. Sci. 1999, 6, 349–351. [Google Scholar]
- Voinescu, A.E.; Touraud, D.; Lecker, A.; Pfitzner, A.; Kunz, W.; Ninham, B.W. Mineralization of CaCO3 in the presence of egg white lysozyme. Langmuir 2007, 23, 12269–12274. [Google Scholar] [CrossRef] [PubMed]
- Babko, A.K.; Pilipenko, A.T. Photometric Analysis, Methods of Determining Non-Metals; Mir Publishers: Moscow, Russia, 1976. [Google Scholar]
- Lioliou, M.G.; Paraskeva, C.A.; Koutsoukos, P.G.; Payatakes, A.C. Heterogeneous nucleation and growth of calcium carbonate on calcite and quartz. J. Colloid Interface Sci. 2007, 308, 421–428. [Google Scholar] [CrossRef]
- Gal, A.; Weiner, S.; Addadi, L. The Stabilizing Effect of Silicate on Biogenic and Synthetic Amorphous Calcium Carbonate. J. Am. Chem. Soc. 2010, 132, 13208–13211. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.V.; Cathles, L.M. Retention of silica nanoparticles on calcium carbonate sands immersed in electrolyte solutions. J. Colloid Interface Sci. 2014, 436, 1–8. [Google Scholar] [CrossRef]
- Tavare, N.S. Characterization of Crystallization Kinetics from Batch Experiments, Industrial Crystallization; The Springer Chemical Engineering Series; Springer: Boston, MA, USA, 1995; pp. 141–196. [Google Scholar]
Material Treated | % Ca * | Specific Surface Area (m2/g) | Porosity (cm3/g) |
---|---|---|---|
Mortar 1 | 61 | 10.0 | 0.021 |
Mortar 2 | 50 | 13.2 | 0.022 |
Mortar 3 | 43 | 14.0 | 0.064 |
Material | Rate of Dissolution, Rdiss/× 10−8 mol·m−2·s−1 | ||
---|---|---|---|
Mortar | 1 | 2 | 3 |
3.8 | 9.9 | 10.0 | |
ACC | 170.0 | ||
SY1 | 10.0 | ||
SY2 | 43.0 | ||
ACC Treated | 3.0 | 2.8 | 5.9 |
am-SiO2 Treated | 0.5 | 1.3 | 0.2 |
SY1 Treated | 3.0 | 5.6 | 6.9 |
SY2 Treated | 0.9 | 3.2 | 6.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavlakou, E.I.; Lemonia, C.; Zouvani, E.; Paraskeva, C.A.; Koutsoukos, P.G. Protection of Historical Mortars through Treatment with Suspensions of Nanoparticles. Heritage 2023, 6, 1148-1168. https://doi.org/10.3390/heritage6020064
Pavlakou EI, Lemonia C, Zouvani E, Paraskeva CA, Koutsoukos PG. Protection of Historical Mortars through Treatment with Suspensions of Nanoparticles. Heritage. 2023; 6(2):1148-1168. https://doi.org/10.3390/heritage6020064
Chicago/Turabian StylePavlakou, Efstathia I., Christine Lemonia, Emily Zouvani, Christakis A. Paraskeva, and Petros G. Koutsoukos. 2023. "Protection of Historical Mortars through Treatment with Suspensions of Nanoparticles" Heritage 6, no. 2: 1148-1168. https://doi.org/10.3390/heritage6020064
APA StylePavlakou, E. I., Lemonia, C., Zouvani, E., Paraskeva, C. A., & Koutsoukos, P. G. (2023). Protection of Historical Mortars through Treatment with Suspensions of Nanoparticles. Heritage, 6(2), 1148-1168. https://doi.org/10.3390/heritage6020064