Non-Invasive Study of Pigment Palette Used by Olga Boznańska Investigated with Analytical Imaging, XRF, and FTIR Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Tubes of Paint
3.2. Painting Palettes
3.3. Paintings
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Calza, C.; Pedreira, A.; Lopes, R.T. Analysis of paintings from the nineteenth century Brazilian painter Rodolfo Amoedo using EDXRF portable system. X-ray Spectrom. 2009, 38, 327–332. [Google Scholar] [CrossRef]
- Bacci, M.; Casini, A.; Cucci, C.; Picollo, M.; Radicati, B.; Vervat, M. Non-invasive spectroscopic measurements on the Il ritratto della figliastra by Giovanni Fattori: Identification of pigments and colorimetric analysis. J. Cult. Herit. 2003, 4, 329–336. [Google Scholar] [CrossRef]
- Ardid, M.; Ferrero, J.L.; Juanes, D.; Lluch, J.L.; Roldán, C. Comparison of total-reflection X-ray fluorescence, static and portable energy dispersive X-ray fluorescence spectrometers for art and archeometry studies. Spectrochim. Acta B 2004, 59, 1581–1586. [Google Scholar] [CrossRef]
- Mantler, M.; Schreiner, M. X-ray fluorescence spectrometry in art and archaeology. X-ray Spectrom. 2000, 29, 3–17. [Google Scholar] [CrossRef]
- Moioli, P.; Seccaroni, C. Analysis of art objects using a portable x-ray fluorescence spectrometer. X-ray Spectrom. 2000, 29, 48–52. [Google Scholar] [CrossRef]
- Schreiner, M.; Frühmann, B.; Jembrih-Simbürger, D.; Linke, R. X-rays in art and archaeology: An overview. Powder Diffr. 2004, 19, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Gargano, M.; Galli, A.; Bonizzoni, L.; Alberti, R.; Aresi, N.; Caccia, M.; Castiglioni, I.; Interlenghi, M.; Salvatore, C.; Ludwig, N.; et al. The Giotto’s workshop in the XXI century: Looking inside the “God the Father with Angels” gable. J. Cult. Herit. 2019, 36, 255–263. [Google Scholar] [CrossRef]
- Doleżyńska-Sewerniak, E.; Klisińska-Kopacz, A. A characterization of the palette of Rafał Hadziewicz (1803–1886) through the following techniques: Infrared false colour (IRFC), XRF, FTIR, RS and SEM-EDS. J. Cult. Herit. 2019, 36, 238–246. [Google Scholar] [CrossRef]
- Sarkowicz, D.; Klisińska-Kopacz, A. Investigation of the Painting Idyll Attributed to Henryk Siemiradzki: The Unusual Technology of a Canvas Painting Executed on an Enlarged Photograph. Stud. Conserv. 2018, 63, 251–266. [Google Scholar] [CrossRef]
- Klisińska-Kopacz, A.; Obarzanowski, M.; Frączek, P.; Moskal-del Hoyo, M.; Gargano, M.; Goslar, T.; Chmielewski, F.; Dudała, J.; del Hoyo-Meléndez, J.M. An analytical investigation of a wooden panel painting attributed to the workshop of Lucas Cranach the Elder. J. Cult. Herit. 2022, 55, 185–194. [Google Scholar] [CrossRef]
- Germinario, C.; Francesco, I.; Mercurio, M.; Langella, A.; Sali, D.; Kakoulli, I.; De Bonis, A.; Grifa, C. Multi-analytical and non-invasive characterization of the polychromy of wall paintings at the Domus of Octavius Quartio in Pompeii. Eur. Phys. J. Plus 2018, 133, 359–370. [Google Scholar] [CrossRef]
- Khramchenkova, R.; Ionescu, C.; Sitdikov, A.; Kaplan, P.; Gál, Á.; Gareev, B. A pXRF In Situ Study of 16th–17th Century Fresco Paints from Sviyazhsk (Tatarstan Republic, Russian Federation). Minerals 2019, 9, 114. [Google Scholar] [CrossRef] [Green Version]
- Doleżyńska-Sewerniak, E.; Jendrzejewski, R.; Klisińska-Kopacz, A.; Sawczak, M. Non-invasive spectroscopic methods for the identification of drawing materials used in XVIII century. J. Cult. Herit. 2020, 41, 34–42. [Google Scholar] [CrossRef]
- de Viguerie, L.; Rochut, S.; Alfeld, M.; Walter, P.; Astier, S.; Gontero, V.; Boulc’h, F. XRF and reflectance hyperspectral imaging on a 15th century illuminated manuscript: Combining imaging and quantitative analysis to understand the artist’s technique. Herit. Sci. 2018, 6, 11–23. [Google Scholar] [CrossRef]
- Silva, C.E.; Silva, L.P.; Edwards, H.G.M.; de Oliveira, L.F.C. Diffuse reflection FTIR spectral database of dyes and pigments. Anal. Bioanal. Chem. 2006, 386, 2183–2191. [Google Scholar] [CrossRef]
- Newman, R. Some applications of infrared spectroscopy in the examination of painting materials. J. Am. Inst. Conserv. 1979, 19, 42–62. [Google Scholar] [CrossRef]
- Akyuz, S.; Akyuz, T.; Emre, G.; Gulec, A.; Basaran, S. Pigment analyses of a portrait and paint box of Turkish artist Feyhaman Duran (1886–1970): The EDXRF, FTIR and micro Raman spectroscopic studies. Spectrochim. Acta A 2012, 89, 74–81. [Google Scholar] [CrossRef]
- Zayat, M.; Levy, D. Blue CoAl2O4 particles prepared by the sol-gel citrate-gel methods. Chem. Mater. 2000, 12, 2763–2769. [Google Scholar] [CrossRef]
- Boselli, L.; Ciattini, S.; Galeotti, M.; Lanfranchi, M.R.; Lofrumento, C.; Picollo, M.; Zoppi, A. An unusual white pigment in La Verna Sanctuary fescoes: An analysis with micro-Raman, FTIR, XRD and UV-VIS-NIR FORS. Preserv. Sci. 2009, 6, 38–42. [Google Scholar]
- Otero, V.; Campos, M.F.; Pinto, J.V.; Vilarigues, M.; Carlyle, L.; Melo, M.J. Barium, zinc and strontium yellows in late 19th-early 20th century oil paintings. Herit. Sci. 2017, 5, 46–58. [Google Scholar] [CrossRef] [Green Version]
- Simonsen, K.P.; Christiansen, M.B.; Vinum, M.G.; Sanyova, J.; Bendix, J. Single crystal X-ray structure of the artists’ pigment zinc yellow. J. Molec. Struct. 2017, 1141, 322–327. [Google Scholar] [CrossRef]
- Monico, L.; Van der Snickt, G.; Janssens, K.; De Nolf, W.; Miliani, C.; Verbeeck, J.; Tian, H.; Tan, H.; Dik, J.; Radepont, M.; et al. Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of synchrotron X-ray spectromicroscopy and related methods. 1. Artificially aged model samples. Anal. Chem. 2011, 83, 1214–1223. [Google Scholar] [CrossRef] [PubMed]
- Monico, L.; Van der Snickt, G.; Janssens, K.; De Nolf, W.; Miliani, C.; Dik, J.; Radepont, M.; Hendriks, E.; Geldof, M.; Cotte, M. Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of synchrotron X-ray spectromicroscopy and related methods. 2. Original paint layer samples. Anal. Chem. 2011, 83, 1224–1231. [Google Scholar] [CrossRef] [PubMed]
- Monico, L.; Janssens, K.; Miliani, C.; Brunetti, B.G.; Vagnini, M.; Vanmeert, F.; Falkenberg, G.; Abakumov, A.; Lu, Y.; Tian, H.; et al. Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of spectromicroscopic methods. 3. Synthesis, characterization, and detection of different crystal forms of the chrome yellow pigment. Anal. Chem. 2013, 85, 851–859. [Google Scholar] [CrossRef]
- Monico, L.; Janssens, K.; Miliani, C.; Van der Snickt, G.; Brunetti, B.G.; Cestelli Guidi, M.; Radepont, M.; Cotte, M. Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of spectromicroscopic methods. 4. Artificial aging of model samples of coprecipitates of lead chromate and lead sulfate. Anal. Chem. 2013, 85, 860–867. [Google Scholar] [CrossRef]
- Meilunas, R.J.; Bentsen, J.G.; Steinberg, A. Analysis of aged paint binders by FTIR spectroscopy. Stud. Conserv. 1990, 35, 33–51. [Google Scholar]
- Legan, L.; Retko, K.; Ropret, P. Vibrational spectroscopic study on degradation of alizarin carmine. Microchem. J. 2016, 127, 36–45. [Google Scholar] [CrossRef]
- Sabbatini, L.; Tarantino, M.; Zambonin, P. Analytical characterization of paintings on pre-Roman pottery by means of spectroscopic techniques. Part II: Red, brown and black colored shards. Fresenius J. Anal. Chem. 2000, 366, 116–124. [Google Scholar] [CrossRef]
- de Queiroz Baddini, A.L.; de Paula Santos, J.L.V.; Tavares, R.R.; de Paula, L.S.; da Costa Araújo Filho, H.; Freitas, R.P. PLS-DA and data fusion of visible Reflectance, XRF and FTIR spectroscopy in the classification of mixed historical pigments. Spectrochim. Acta A 2022, 265, 120384–120392. [Google Scholar] [CrossRef]
- Vahur, S.; Teearu, A.; Peets, P.; Joosu, L.; Leito, I. ATR-FT-IR spectral collection of conservation materials in the extended region of 4000–80 cm−1. Anal. Bioanal. Chem. 2016, 408, 3373–3379. [Google Scholar] [CrossRef]
- Grazenaite, E.; Kiuberis, J.; Beganskiene, A.; Senvaitiene, J.; Kareiva, A. XRD and FTIR characterisation of historical green pigments and their lead-based glazes. Chemija 2014, 25, 199–205. [Google Scholar]
- Marecka, A. Leon Wyczółkowski’s pastels from the collections of professors’ portraits in the Jagiellonian University Museum–technology and conservation issues. Opusc. Mus. 2014, 22, 151–163. [Google Scholar]
- Brouzi, K.; Ennaciri, A.; Harcharras, M.; Capitelli, F. Structure and vibrational spectra of a new trihydrate diphosphate MnNH4NaP2O7 3H2O. J. Raman Spectrosc. 2004, 35, 41–46. [Google Scholar] [CrossRef]
- Harcharras, M.; Ennaciri, A.; Rulmont, A.; Gilbert, B. Vibrational spectra and structures of double diphosphates M2CdP2O7 (M = Li, Na, K, Rb, Cs). Spectrochim. Acta A 1997, 53, 345–352. [Google Scholar] [CrossRef]
- Nguyen, D.K.; Bach, Q.V.; Lee, J.H.; Kim, I.T. Synthesis and Irreversible Thermochromic Sensor Applications of Manganese Violet. Materials 2018, 11, 1693. [Google Scholar] [CrossRef] [Green Version]
- Possenti, E.; Colombo, C.; Realini, M.; Song, C.L.; Kazarian, S.G. Insight into the effects of moisture and layer build-up on the formation of lead soaps using micro-ATR-FTIR spectroscopic imaging of complex painted stratigraphies. Anal. Bioanal. Chem. 2021, 413, 455–467. [Google Scholar] [CrossRef]
- Mazzeo, R.; Prati, S.; Quaranta, M.; Joseph, E.; Kendix, E.; Galeotti, M. Attenuated total reflection micro FTIR characterisation of pigment–binder interaction in reconstructed paint films. Anal. Bioanal. Chem. 2008, 392, 65–76. [Google Scholar] [CrossRef]
- Kendix, E.; Moscardi, G.; Mazzeo, R.; Baraldi, P.; Prati, S.; Joseph, E.; Capelli, S. Far infrared and Raman spectroscopy analysis of inorganic pigments. J. Raman Spectrosc. 2008, 39, 1104–1112. [Google Scholar] [CrossRef]
- Guglielmi, V.; Andreoli, M.; Comite, V.; Baroni, A.; Fermo, P. The combined use of SEM-EDX, Raman, ATR-FTIR and visible reflectance techniques for the characterisation of Roman wall painting pigments from Monte d’Oro area (Rome): An insight into red, yellow and pink shades. Environ. Sci. Pollut. Res. 2022, 29, 29419–29437. [Google Scholar] [CrossRef]
Color of Paint | Detected Elements | MID-FTIR Bands (cm−1) | Composition of Paint |
---|---|---|---|
Blue, tube 1 | Zn, K, Fe (Ca, Cu, Pb) | 562(sh), 698(m), 1008(s), 1069(s), 1124(m) | Ultramarine |
2086(w) | Prussian blue | ||
428(s), 497(s), 545(sh) | Zinc white | ||
1609(m), 1623(m), 1170(m), 1240(w), 1470(m), 1720(w), 2840(w), 2926(w) | Oil binder | ||
Blue, tube 2 | Co, Zn, Ba (Ca, Ni) | 599(m), 652(s), 805(m), 1083(m), 1646(w) | Cobalt blue |
(w), 983(w),1070(s), 1181(m) | Barite white | ||
430(s), 500(s), 549(sh) | Zinc white | ||
1730(w), 2840(w), 2926(w) | Oil binder | ||
Yellow, tube 1 | Cr, Zn, Ba, S (Fe, Pb) | 805(w), 878(m), 942(m) | Zinc yellow |
635(w), 981(w), 1068(sh), 1085(s), 1170(s) | Barite white | ||
1697(m), 2851(m), 2918(m) | Oil binder | ||
Yellow, tube 2 | Cr, Pb, S, Ba (Fe, Zn) | 836(m), 850(m) | Chrome yellow |
635(w), 981(w),1068(sh), 1170(s) | Barite white | ||
1722(w), 2847(m), 2916(m) | Oil binder | ||
Red, tube 1 | Fe (Cu, Zn, Pb) | 476(m), 572(m) | Iron oxide red |
1730(w), 2840(w), 2928(w) | Oil binder | ||
Orange | Cr, Pb (Fe) | 825(m), 835(m), 847(m) | Chrome orange |
1732(w), 2840(w), 2918(w) | Oil binder | ||
White, tube 1 | Pb | 674(m), 768(m), 834(m), 1040(m), 1379(s) | Lead white |
1730(w), 2850(w), 2918(w) | Oil binder | ||
Ligth brown, tube 1 | Fe (Si, K, Ca, Mn, Ti, Cu, Zn) | 457(w), 662(w), 712(w), 790(sh), 801(m), 894(m), 1012 (sh), 1028(s), 1104(sh), 1124(sh), 3608(w), 3716(w) | Yellow ochre |
1735(w), 2849(w), 2926(w) | Oil binder | ||
Green | K, Fe, Cr, Pb, Ca, Ba (Cu, Zn) | 2089(m) | Prussian blue |
834(m), 852(m) | Chrome yellow | ||
635(w), 983(w), 1170(s) | Barite white | ||
711(m), 872(m), 1390(s) | Calcite | ||
1730(w), 2840(w), 2926(w) | Oil binder | ||
White, tube 2 | Zn, Pb, Ca Ba | 428(s), 497(s), 545(sh) | Zinc white |
675(m), 768(m),834(m), 1041(m), 1379(s) | Lead white | ||
711(m), 872(m), 1388(s) | Calcite | ||
635(w), 981(w), 1170(s) | Barite white | ||
1726(w), 2850(w), 2918(w) | Oil binder | ||
Yellow, tube 3 | Cd, S (Ca, Zn, Sr, Ba, Pb) | 610(m), 1105(m) | Cadmium yellow |
1730(w), 2846(w), 2916(w) | Oil binder | ||
Red, tube 2 (lacca) | Ba, Sr, Ca (Fe, Zn, Pb) | 543(m), 609(m), 640(w), 1010(m), 1039(m), 1071(m), 1235(m), 1289(m), 1360(w), 1465(m), 1585(s), | Organic red dye |
635(w), 981(w), 1170(s) | Barite white | ||
1631(m), 1740(m), 2850(m), 2920(m) | Oil binder | ||
Light brown, tube 2 | Fe (Si, K, Ca, Ti, Cu, Zn, Pb) | 596(w), 671(w), 875(m), 1032(s), 1159(m), 1313(w) | Yellow ochre |
1375(m), 1448(m), 1697(m), 2851(m), 2918(m) | Oil binder | ||
Dark brown, tube 1 | Mn, Fe (Ca, Cu, Zn) | 450(m), 540(m), 590(m), 630(m), 730(m), 797(m), 1080(s), 1165(s) | Umber |
1720(w), 2846(w), 2918(w) | Oil binder |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klisińska-Kopacz, A.; Frączek, P.; Obarzanowski, M.; Czop, J. Non-Invasive Study of Pigment Palette Used by Olga Boznańska Investigated with Analytical Imaging, XRF, and FTIR Spectroscopy. Heritage 2023, 6, 1429-1443. https://doi.org/10.3390/heritage6020078
Klisińska-Kopacz A, Frączek P, Obarzanowski M, Czop J. Non-Invasive Study of Pigment Palette Used by Olga Boznańska Investigated with Analytical Imaging, XRF, and FTIR Spectroscopy. Heritage. 2023; 6(2):1429-1443. https://doi.org/10.3390/heritage6020078
Chicago/Turabian StyleKlisińska-Kopacz, Anna, Piotr Frączek, Michał Obarzanowski, and Janusz Czop. 2023. "Non-Invasive Study of Pigment Palette Used by Olga Boznańska Investigated with Analytical Imaging, XRF, and FTIR Spectroscopy" Heritage 6, no. 2: 1429-1443. https://doi.org/10.3390/heritage6020078
APA StyleKlisińska-Kopacz, A., Frączek, P., Obarzanowski, M., & Czop, J. (2023). Non-Invasive Study of Pigment Palette Used by Olga Boznańska Investigated with Analytical Imaging, XRF, and FTIR Spectroscopy. Heritage, 6(2), 1429-1443. https://doi.org/10.3390/heritage6020078