A First Approach to the Study of Winsor & Newton’s 19th-Century Manufacture of Madder Red Lake Pigments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis Methods for Madder Lake Pigments
2.3. Analytical Equipment and Experimental Conditions
2.3.1. Colourimetry
2.3.2. Energy-Dispersive X-ray Fluorescence Spectrometry (XRF)
2.3.3. UV-VIS Absorption Spectroscopy
2.3.4. Fibre Optics Reflectance Spectroscopy (FORS)
2.3.5. High-Performance Liquid Chromatography with a Diode Array Detector (HPLC-DAD)
2.3.6. Fourier Transform Infrared Spectroscopy (FTIR)
2.3.7. Microspectrofluorimetry
3. Results and Discussion
3.1. Research in the W&N 19th Century Archive Database
3.2. Main Steps for the W&N’s 19th-Century Manufacture of Madder Red Lake Pigments
3.3. Characterisation of the Madder Red Lake Pigments
3.4. Comparison with a W&N 19th-Century Oil Paint Tube
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Additional HPLC-DAD Analyses
Appendix B. Additional Data on the W&N Production Records
Formulation Name|Code | Original Production Name | URC * |
---|---|---|
Madder Rose | MR | Madder Rose-colours | P1P025AL01 ¥ |
Madder Carmine for Water | P1P257AL01 | |
Madder Lake | ML | Madder Lake | P1P127AL05 |
§ | ||
Rose Madder | RM | Rose Madder | P1P114AL13 |
Madder Carmine | P1P120AL11 | |
Another formula [RM extra quality] | P1P320BL01 | |
Madder Carmine | P1P322AL01 | |
- | Liquid Madder Lake | P1P030AL03 |
Crimson Madder | P1P205AL12 | |
Madder with lime water | P1P299AL01 |
Appendix C. Additional FTIR Analysis
References
- Cardon, D. Natural Dyes: Sources, Tradition, Technology and Science; Archetype Publications: London, UK, 2007; pp. 107–121. [Google Scholar]
- Schweppe, H.; Winter, J. Madder and Alizarin. In Artists’ Pigments: A Handbook of Their History and Characteristics; Fitzhugh, E.W., Ed.; National Gallery of Art: Washington, DC, USA; Archetype Publications: London, UK, 1997; Volume 3, pp. 109–134. [Google Scholar]
- Daniels, V.; Devièse, T.; Hacke, M.; Higgit, C. Technological insights into madder pigment production in antiquity. In The British Museum: Technical Research Bulletin; Archetype Publications: London, UK, 2014; Volume 8, pp. 13–28. [Google Scholar]
- Chenciner, R. Madder Reds: A History of Luxury and Trade, 1st ed.; Routledge Curzon: London, UK; New York, NY, USA, 2005; pp. 11–44, 202–252. [Google Scholar]
- Kirby, J.; Higgit, C.; Spring, M. Madder lakes of the 15th-17th centuries: Variability of the dyestuff content. In The Diversity of Dyes in History and Archaeology; Kirby, J., Ed.; Archetype Publications: London, UK, 2017; pp. 148–161. [Google Scholar]
- Kirby, J. The reconstruction of late 19th-century French red lake pigments. In Arts of the Past: Sources and Reconstructions; Clarke, M., Townsend, J.H., Stijnman, A., Eds.; Archetype Publications: London, UK, 2005; pp. 69–77. [Google Scholar]
- Kirby, J.; Spring, M.; Higgit, C. The Technology of Eighteenth- and nineteenth-Century Red Lake Pigments. Natl. Gallery Tech. Bull. 2007, 28, 69–87. [Google Scholar]
- Miliani, C.; Monico, L.; Melo, M.J.; Fantacci, S.; Angelin, E.M.; Romani, A.; Janssens, K. Recent insights into the photochemistry of artists’ pigments and dyes: Towards better understanding and prevention of colour change in works of art. Angew. Chem. Int. Ed. 2018, 57, 7324–7334. [Google Scholar] [CrossRef]
- Grazia, C.; Clementi, C.; Miliani, C.; Romani, A. Photophysical properties of alizarin and purpurin Al(III) complexes in solution and solid state. Photochem. Photobiol. Sci 2011, 10, 1249–1254. [Google Scholar] [CrossRef]
- Kiel, E.G.; Heertjes, P.M. Metal complexes of Alizarin I-The structure of Calcium-Aluminium lake of Alizarin. J. Soc. Dye. Colour. 1963, 72, 21–27. [Google Scholar] [CrossRef]
- Wunderlich, C.H.; Bergerhoff, G. Konstitution and Farbe von Alizarin- un Purpurin-Farblacken. Chem. Ber. 1994, 127, 1185–1190. [Google Scholar] [CrossRef]
- Sanyova, J. Spectroscopic Studies (FTIR,SIMS,ES-MS) on the Structure of Anthraquinone-Aluminium Complexes. In Dyes in History and Archeology 21; Kirby, J., Ed.; Archetype Publications: London, UK, 2008; pp. 209–214. [Google Scholar]
- Saunders, D.; Kirby, J. Light-induced Colour Changes in Red and Yellow Lake Pigments. Natl. Gallery Tech. Bull. 1994, 15, 79–97. [Google Scholar]
- Berenbeim, J.A.; Boldissar, S.; Owens, S.; Haggmark, M.R.; Gate, G.; Siouri, F.M.; Cohen, T.; Rode, M.F.; Patterson, C.S.; de Vries, M.S. Excited state intramolecular proton transfer in ydroxianthraquinones: Toward predicting fading of organic colorants in art. Sci. Adv. 2019, 5, eaaw5227. [Google Scholar] [CrossRef] [Green Version]
- Melo, M.J.; Ferreira, J.L.; Parola, A.J.; Melo, J.S.S. Photochemistry for Cultural Heritage. In Applied Photochemistry: When Light Meets Molecules.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 499–530. [Google Scholar]
- Vitorino, T.; Casini, A.; Cucci, C.; Melo, M.J.; Picollo, M.; Stefani, L. Non-invasive identification of traditional red lake pigments in fourteenth to sixteenth centuries paintings through the use of hyperspectral imaging technique. Appl. Phys. A 2015, 121, 891–901. [Google Scholar] [CrossRef]
- Fonseca, B.; Patterson, C.S.; Ganio, M.; MacLennan, D.; Trentelman, K. Seeing red: Towards an improved protocol for the identification of madder and cochineal-based pigments by filter optics reflectance spectroscopy (FORS). Herit. Sci. 2019, 7, 92. [Google Scholar] [CrossRef]
- Melo, M.J.; Claro, A. Bright Light: Microspectrofluorimetry for the Characterization of Lake Pigments and Dyes in Works of Art. Acc. Chem. Res. 2010, 43, 857–866. [Google Scholar] [CrossRef]
- Nabais, P.; Melo, M.J.; Lopes, J.A.; Vieira, M.; Castro, R.; Aldo, R. Organic colorants based on lac dye and brazilwood as markers for a chronology and geography of medieval scriptoria: A chemometrics approach. Herit. Sci. 2021, 9, 32. [Google Scholar] [CrossRef]
- Osticioli, I.; Pagliai, M.; Comelli, D.; Schettino, V.; Nevin, A. Red lakes from Leonardo’s Last Supper and other Old Master Paintings: Micro-Raman spectroscopy of anthraquinone pigments in paint cross-sections. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 222, 117273. [Google Scholar] [CrossRef] [PubMed]
- Pagliai, M.; Osticioli, I.; Nevin, A.; Siano, S.; Cardini, G.; Schettino, V. DFT calculations of the IR and Raman spectra of anthraquinone dyes and lakes. J. Raman Spectrosc. 2018, 49, 668–683. [Google Scholar] [CrossRef]
- Mouri, C.; Laursen, R. Identification of anthraquinone markers for distinguishing Rubia species in madder-dyed textiles by HPLC. Microchim. Acta 2012, 179, 105–113. [Google Scholar] [CrossRef]
- Degano, I.; Tognotti, P.; Kunzelman, D.; Modugno, F. HPLC-DAD and HPLC-ESI-Q-ToF characterisation of early 20th century lake and organic pigments from Lefranc archives. Herit. Sci. 2017, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Pozzi, F.; van den Berg, K.J.; Fiedler, I.; Casadio, F. A systematic analysis of red lake pigments in French impressionist and Post-Impressionist paintings by surface-enhanced Raman spectroscopy (SERS). J. Raman Spectrosc. 2014, 45, 1119–1126. [Google Scholar] [CrossRef]
- Kirby, J.; Spring, M.; Higgitt, C. The technology of red lake pigment manufacture: Study of the dyestuff substrate. Natl. Gallery Tech. Bull. 2005, 26, 71–87. [Google Scholar]
- Harley, R.D. Artists’ Pigments c. 1600-1835; Archetype Publications: London, UK, 2001; pp. 131–147. [Google Scholar]
- Carlyle, L. The Artist’s Assistant: Oil Painting Instructions Manuals and Handbooks in Britain 1800-1900 With References to Selected Eighteenth-Century Sources; Archetype Publications: London, UK, 2001; pp. 506–535. [Google Scholar]
- Otero, V.; Pinto, J.V.; Carlyle, L.; Vilarigues, M.; Cotte, M.; Melo, M.J. Nineteenth century chrome yellow and chrome deep from Winsor & Newton. Stud. Conserv. 2017, 62, 123–149. [Google Scholar]
- Vitorino, T.; Otero, V.; Carlyle, L.; Melo, M.J.; Parola, A.J.; Picollo, M. Nineteenth-century cochineal lake pigments from Winsor & Newton: Insight into their methodology through reconstructions. In Proceedings of the ICOM-CC 18th Triennial Conference Preprints, Copenhagen, Denmark, 4–8 September 2017. [Google Scholar]
- Otero, V.; Campos, M.F.; Pinto, J.V.; Vilarigues, M.; Carlyle, L.; Melo, M.J. Barium, zinc and strontium yellows in late 19th-early 20th century oil paintings. Herit. Sci. 2017, 5, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Santos, A.; Otero, V.; Vilarigues, M. The colour of moving images: A documentary study of Winsor & Newton 19th-century watercolours used to paint glass slides for magic lanterns. In Proceedings of the 8th Symposium of the ICOM-CC Working Group Art Technological Source Research, Cologne, Germany, 26–27 September 2019. [Google Scholar]
- Veneno, M.; Nabais, P.; Otero, V.; Clemente, A.; Oliveira, M.C.; Melo, M.J. Yellow Lake Pigments from Weld in Art: Investigating the Winsor & Newton 19th Century Archive. Heritage 2021, 4, 422–436. [Google Scholar]
- Daniels, V. Revealing the Mysteries of the Madder Bath. In Dyes in History and Archeology 35/36; Kirby, J., Ed.; Archetype Publications: London, UK, 2017; pp. 70–77. [Google Scholar]
- La Nasa, J.; Doherty, B.; Rosi, F.; Braccini, C.; Broers, F.T.; Degano, I.; Matinero, J.M.; Miliani, C.; Modugno, F.; Sabatini, F.; et al. An integrated analytical study of crayons from the original art materials collection of the MUNCH museum in Oslo. Sci. Rep. 2021, 11, 7152. [Google Scholar] [CrossRef]
- Clarke, M.; Carlyle, L. Page-image recipe databases, a new approach for accessing art technological manuscripts and rare printed sources: The Winsor & Newton archive prototype. In Proceedings of the ICOM Committee for Conservation 14th Triennial Meeting, The Hague, The Netherlands, 12–16 September 2005. [Google Scholar]
- Claro, A.; Melo, M.J.; Schaefer, S.; Melo, J.S.S.; Pina, F.; Berg, K.J.; Burnstock, A. The use of microspectrofluorimetry for the characterisation of lake pigments. Talanta 2008, 74, 922–929. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, G.; Pedetti, S.; Bourlier, Y.; Jonnard, P.; Méthivier, C.; Walter, P.; Pradier, C.M.; Jaber, M. New Insights into the Structure and Degradation of Alizarin Lake Pigments: Input of the Surface Study Approach. J. Phys. Chem. C 2020, 124, 12370–12380. [Google Scholar] [CrossRef]
- Van der Weerd, J.; van Loon, A.; Boon, J.J. FTIR Studies of the Effects of Pigments on the Aging of Oil. Stud. Conserv. 2005, 50, 3–22. [Google Scholar] [CrossRef]
- Monico, L.; Rosi, F.; Miliani, C.; Daveri, A.; Brunetti, B.G. Non-invasive identification of metal-oxalate complexes on polychrome artwork surfaces by reflection mid-infrared spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 116, 270–280. [Google Scholar] [CrossRef]
W&N 19th-c. Madder Red Colours | Oil Paint Tube | Powder | ||
---|---|---|---|---|
First Appearance | Last Appearance | First Appearance | Last Appearance | |
Pink Madder | 1835 | - | 1835 1 | - |
Rose Madder | 1835 | - | 1835 1 | - |
Madder Carmine | c. 1840 | - | c. 1840 | - |
Madder Lake | c. 1840 2 | - | not in powder | |
Extra Madder Carmine Deep | c. 1861 | c. 1861 | not in powder | |
Extra Madder Carmine Bright | c. 1861 | - | 1864 | - |
Extra Madder Carmine | 1864 | - | 1864 | - |
Scarlet Madder | 1886 | - | 1892 | - |
Crimson Madder | 1886 | - | not in powder | |
Rose Madder (pink shade) | 1900 | - | not in powder | |
Pink Madder Lake | not in oil | c. 1840 | c. 1849 | |
Rose Madder Lake | not in oil | c. 1840 | c. 1849 |
Formulation Name|Code | Synthesis Methods |
---|---|
Madder Rose | MR | 1. Wash 5 g of madder powder with 100 mL of water (repeat 5 times); 2. Dissolve 8.57 g of alum in 30 mL of hot water (near boiling); 3. Pour the above solution into the madder roots; 4. Decant the supernatant liquor into 88 mL of distilled water; 5. Slowly add an aqueous solution of carbonate of ammonia (1.2 M) and stir occasionally; 6. Filter the precipitate. |
Madder Lake | ML | 1. Let 5 g of madder powder rest in 100 mL of water for 1 h; 2. Decant the supernatant and let the madder rest in 100 mL of water for 30 min; 3. Decant the supernatant and wash the madder 3 times; 4. Dissolve 10.48 g of alum in 30 mL of hot water (80 °C); 5. Run through the above solution into the madder roots placed in a cotton filter bag and collect the red extract; 6. To the red extract, add immediately, one at a time, three solutions of sodium borate: 1.9 g in 10 mL, 0.24 g in 5 mL and 0.06 g in 2.5 mL; 7. Filter the precipitate. |
Rose Madder | RM | 1. Prepare a solution of 0.5 mL of sulfuric acid in 4 mL of water; 2. Pour the solution into the madder roots after step 5 of the Madder Lake recipe. 3. After 30 days, add 16 mL of boiling water; 4. Add immediately, one at a time, three solutions of sodium borate: 0.5 g in 2.5 mL, 0.06 g in 1.25 mL and 0.03 g in 1.25 mL; 5. Filter the precipitate. |
Formulation Name | Code | L* | a* | b* | FORS | XRF | FTIR | HPLC-DAD |
---|---|---|---|---|---|---|---|---|
Madder Rose | MR1 | 78.80 ± 0.35 | 32.87 ± 0.25 | 2.81 ± 0.08 | 511, 549 (sh) | S, K, Al | Aluminate | 1. Pseudopurpurin 2. Alizarin 3. Purpurin |
MR2 | 78.82 ± 0.61 | 31.59 ± 0.58 | 3.00 ± 0.21 | 512, 546 (sh) | ||||
MR3 | 82.81 ± 0.46 | 24.79 ± 0.28 | 2.45 ± 0.24 | 513, 549 (sh) | ||||
Madder Lake | ML1 | 85.61 ± 0.75 | 23.38 ± 1.37 | 5.37 ± 0.24 | 511, 547 (sh) | S, K, Al | ||
ML2 | 83.48 ± 0.53 | 23.21 ± 1.31 | 4.19 ± 0.21 | 512, 547 (sh) | ||||
ML3 | 85.12 ± 1.04 | 20.60 ± 1.75 | 3.69 ± 0.06 | 510, 547 (sh) | ||||
Rose Madder | RM1 | 92.24 ± 0.07 | 5.98 ± 0.12 | 6.86 ± 0.06 | 508 | S, K, Al, Fe | ||
RM2 | 86.96 ± 1.03 | 16.18 ± 1.38 | 4.95 ± 0.1 | 504, 538 (sh) | ||||
RM3 | 89.67 ± 0.32 | 8.97 ± 0.4 | 7.61 ± 0.1 | 505, 538 (sh) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veiga, T.; Moro, A.J.; Nabais, P.; Vilarigues, M.; Otero, V. A First Approach to the Study of Winsor & Newton’s 19th-Century Manufacture of Madder Red Lake Pigments. Heritage 2023, 6, 3606-3621. https://doi.org/10.3390/heritage6040192
Veiga T, Moro AJ, Nabais P, Vilarigues M, Otero V. A First Approach to the Study of Winsor & Newton’s 19th-Century Manufacture of Madder Red Lake Pigments. Heritage. 2023; 6(4):3606-3621. https://doi.org/10.3390/heritage6040192
Chicago/Turabian StyleVeiga, Tiago, Artur J. Moro, Paula Nabais, Márcia Vilarigues, and Vanessa Otero. 2023. "A First Approach to the Study of Winsor & Newton’s 19th-Century Manufacture of Madder Red Lake Pigments" Heritage 6, no. 4: 3606-3621. https://doi.org/10.3390/heritage6040192
APA StyleVeiga, T., Moro, A. J., Nabais, P., Vilarigues, M., & Otero, V. (2023). A First Approach to the Study of Winsor & Newton’s 19th-Century Manufacture of Madder Red Lake Pigments. Heritage, 6(4), 3606-3621. https://doi.org/10.3390/heritage6040192