Geological Insights on the Calcareous Tufas (Pietra Spugna) Used as Building and Ornamental Stones in the UNESCO Historical Centre of Urbino (Marche Region, Italy)
Abstract
:1. Introduction
Travertines vs. Calcareous Tufas
2. Materials and Methods
Radiocarbon Measurements and Isotopic Analyses
3. Results and Geological Insights on the Calcareous Tufas
3.1. General Features of the Samples
3.2. Radiocarbon Datings and the Holocene Framewok
3.3. δ13 C-δ18O Data and the Physical–Chemical Constraints
4. Discussion on the Calcareous Tufa Stone Heritage
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agnati, U. Urvinum Mataurense. In Per la Storia Romana Della Provincia di Pesaro e Urbino; L’Erma di Bretschneider: Roma, Italy, 1999; pp. 19–108. [Google Scholar]
- Conti, P.; Cornamusini, G.; Carmignani, L. An outline of the geology of the Northern Apennines (Italy), with geological map at 1:250,000 scale. Ital. J. Geosci. 2020, 139, 149–194. [Google Scholar] [CrossRef]
- Siekiera, A. (Ed.) Descrittione del Palazzo Ducale di Urbino; Collana Studi e ricerche n. 87; Edizioni dell’Orso: Alessandria, Italy, 2010; Volume 1587, p. 156. [Google Scholar]
- Rodolico, F. Le Pietre Delle Città d’Italia; Le Monnier: Firenze, Italy, 1953; p. 475. [Google Scholar]
- Pedley, H.M. Classification and environmental models of cool freshwater tufas. Sediment. Geol. 1990, 68, 143–154. [Google Scholar] [CrossRef]
- Pedley, M. Tufas and travertines of the Mediterranean region: A testing ground for freshwater carbonate concepts and developments. Sedimentology 2009, 56, 221. [Google Scholar] [CrossRef]
- Capezzuoli, E.; Gandin, A.; Pedley, M. Decoding tufa and travertine (fresh water carbonates) in the sedimentary record: The state of the art. Sedimentology 2014, 61, 1–21. [Google Scholar] [CrossRef]
- Santi, P.; Tramontana, M.; Tonelli, G.; Renzulli, A.; Veneri, F. The historic centre of Urbino, UNESCO world heritage (Marche Region, Italy): An urban-geological itinerary across the building and ornamental stones. Geoheritage 2021, 13, 86. [Google Scholar] [CrossRef]
- De Francesco, A.M.; Miriello, D.; Forciniti, D.; Guido, A. Physicochemical analysis of original and restored carbonate material of the Romanic church bell tower in Longobucco (Calabria, Italy). Mediterr. Archaeol. Archaeom. 2021, 21, 121–132. [Google Scholar]
- Busdraghi, P.; Veneri, F. I materiali lapidei impiegati in Urbino nell’antichità: I travertini. In Proceedings of the AIGA 1st National Congress, Chieti, Italy, 14–16 November 2003; pp. 127–137. [Google Scholar]
- Capezzuoli, E.; Gandin, A. I “travertini” in Italia: Proposta di una nuova nomenclatura basata sui caratteri genetici. Il Quat. It. J. Quat. Sci. 2004, 17, 273–284. [Google Scholar]
- Capezzuoli, E.; Gandin, A. Facies distribution and microfacies of thermal-spring travertine from Tuscany. In Proceedings of the 1st International Symposium on Travertine, Denizli, Turkey, 21–25 September 2005; Ozkul, M., Yagiz, S., Jones, B., Eds.; Kozan Ofset Matbaacilik San. ve Tic. Ltd. Şti.: Ankara, Turkey, 2005; pp. 43–49, ISBN 975-6992-11-5. [Google Scholar]
- Gandin, A.; Capezzuoli, E. Travertine versus Calcareous tufa: Distinctive petrologic features and stable isotope signatures. Il Quat. It. J. Quat. Sci. 2008, 21, 125–136. [Google Scholar]
- Brogi, A.; Capezzuoli, E. Travertine deposition and faulting: The fault-related travertine fissure ridge at Terme S. Giovanni, Rapolano Terme (Italy). Int. J. Earth Sci. 2009, 98, 931–947. [Google Scholar] [CrossRef]
- Folk, R.L.; Chafetz, H.S.; Tiezzi, P.A. Bizarre Forms of Depositional and Diagenetic Calcite in Hot-Spring Travertines, Central Italy; Carbonate cements; Schneidermann, N., Harris, P.M., Eds.; SEPM Special Publications: Broken Arrow, OK, USA, 1985; Volume 36, pp. 349–369. [Google Scholar]
- Minissale, A.; Kerrick, D.M.; Magro, G.; Murrell, M.T.; Paladini, M.; Rihs, S.; Sturchio, N.C.; Tassi, F.; Vaselli, O. Geochemistry of Quaternary travertines in the region north of Rome (Italy): Structural, hydrologic and paleoclimatic implications. Earth Planet. Sci. Lett. 2002, 203, 709–728. [Google Scholar] [CrossRef]
- Faccenna, C.; Soligo, M.; Billi, A.; De Filippis, L.; Funiciello, R.; Rossetti, C.; Tuccimei, P. Late Pleistocene depositional cycles of the Lapis Tiburtinus travertine (Tivoli, central Italy): Possible influence of climate and fault activity. Global Planet. Chang. 2008, 63, 299–308. [Google Scholar] [CrossRef]
- Carucci, V.; Petitta, M.; Aravena, R. Interaction between shallow and deep aquifers in the Tivoli Plain (Central Italy) enhanced by groundwater extraction: A multi-isotope approach and geochemical modeling. Appl. Geochem. 2012, 27, 266–280. [Google Scholar] [CrossRef]
- Giampaolo, C.; Aldega, L. Il travertino la pietra di Roma. Rend. Online Soc. Geol. Ital. 2013, 27, 98–109. [Google Scholar] [CrossRef]
- Porta, G.D.; Croci, A.; Marini, M.; Kele, S. Depositional architecture, facies character and geochemical signature of the Tivoli travertines (Pleistocene, Acque Albule Basin, Central Italy). Res. Paleont. Strat. 2017, 123, 487–540. [Google Scholar]
- Ford, T.D.; Pedley, H.M. A review of tufa and travertine deposits of the world. Earth Sci. Rev. 1996, 41, 117–175. [Google Scholar] [CrossRef]
- Julia, R. Travertines; Carbonate Depositional Environments, Memoirs; Scholle, P.A., Bebout, D.G., Moore, C.H., Eds.; American Association of Petroleum Geologists: Tulsa, OK, USA, 1983; Volume 33, pp. 64–72. [Google Scholar]
- Atkinson, T.C. Carbon dioxide in the atmosphere of the unsaturated zone: An important control of groundwater hardness in limestones. J. Hydrol. 1977, 35, 111–123. [Google Scholar] [CrossRef]
- Brook, G.A.; Folkoff, M.E.; Box, E.O. A world model of soil carbon dioxide. Earth Surf. Process. Landf. 1983, 8, 79–88. [Google Scholar] [CrossRef]
- Dabkowski, J. High potential of calcareous tufas for integrative multidisciplinary studies and prospects for archaeology in Europe. J. Archaeol. Sci. 2014, 52, 72–83. [Google Scholar] [CrossRef]
- Calcagnile, L.; Maruccio, L.; Scrimieri, L.; delle Side, D.; Braione, E.; D’Elia, M.; Quarta, G. Development and application of facilities at the Centre for Applied Physics, Dating and Diagnostics (CEDAD) at the University of Salento during the last 15 years. Nucl. Instr. Meth Phys. Res. 2019, 456, 252–256. [Google Scholar] [CrossRef]
- Barešić, J.; Faivre, S.; Sironić, A.; Borković, D.; Lovrenčić Mikelić, I.; Drysdale, R.N.; Bronić, I.K. The Potential of Tufa as a Tool for Paleoenvironmental Research-A Study of Tufa from the Zrmanja River Canyon. Croat. Geosci. 2021, 11, 376. [Google Scholar] [CrossRef]
- Hajdas, I.; Ascough, P.; Garnett, M.H.; Fallon, S.J.; Pearson, C.L.; Quarta, G.; Spalding, K.L.; Yamaguchi, H.; Yoneda, M. Radiocarbon dating. Nat. Rev. Methods Primers 2021, 1, 62. [Google Scholar] [CrossRef]
- Mazzini, F. I Mattoni e le Pietre di Urbino; Argalia Editore: Urbino, Italy, 1982; p. 609. [Google Scholar]
- Stuiver, M.; Polach, H.A. Discussion Reporting of 14C data. Radiocarbon 1977, 19, 355–363. [Google Scholar] [CrossRef]
- Reimer, P.; Austin, W.; Bard, E.; Bayliss, A.; Blackwell, P.; Bronk Ramsey, C.; Butzin, M.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radiocarbon 2020, 62, 725–757. [Google Scholar] [CrossRef]
- Aliabdo, A.A.E.; Elmoaty, A.E.M.A. Reliability of using non-destructive tests to estimate compressive strength of building stones and bricks. Alex. Eng. J. 2012, 51, 193–203. [Google Scholar] [CrossRef]
- ISRM. Suggested methods for determining the uniaxial compressive strength and deformability of rock materials. Int. J. Rock. Mech. Min. Sci. 1979, 16, 135–140. [Google Scholar]
- Irfan, T.Y.; Dearman, W.R. Engineering classification and index properties of a weathered granite. Bull. Int. Assoc. Eng. Geol. 1978, 17, 79–90. [Google Scholar] [CrossRef]
- D’Argenio, B.; Ferreri, V. Ambienti deposizionali e litofacies dei travertini quaternari dell’Italia centro-meridionale. Mem. Soc. Geol. Ital. 1988, 41, 861–868. [Google Scholar]
- Cilla, G.; Coltorti, M.; Dramis, F. Holocene fluvial dynamics in mountain areas: The case of the river Esino (Appennino Umbro-marchigiano). Geogr. Fis. E Din. Quat. 1994, 17, 163–174. [Google Scholar]
- Fubelli, G.; Dramis, F.; Calderoni, G.; Cilla, G.; Materazzi, M.; Mazzini, I.; Soligo, M. Holocene aggradation/erosion of a tufa dam at Triponzo (Central Italy). Geogr. Fis. Din. Quat. 2013, 36, 139–149. [Google Scholar]
- Calderoni, G.; Cilia, G.; Dramis, F.; Esu, D.; Magnatti, M.; Materazzi, M. La deposizione di travertino nelle aree prossimali dei fiumi Esino, Potenza e Chienti durante l’Olocene antico (Appennino Centrale Marchigiano). Il Quat. 1996, 9, 481–492. [Google Scholar]
- Dabkowski, J. The late-Holocene tufa decline in Europe: Myth or reality. Quat. Sci. Rev. 2020, 230, 106141. [Google Scholar] [CrossRef]
- Andrews, J.E.; Pedley, H.M.; Dennis, P.F. Stable isotope record of palaeoclimatic change in a British Holocene tufa. Holocene 1994, 4, 349–355. [Google Scholar] [CrossRef]
- Pentecost, A. The Quaternary travertine deposits of Europe and Asia Minor. Quat. Sci. Rev. 1995, 14, 1005–1028. [Google Scholar] [CrossRef]
- Pentecost, A. Travertine; Springer: Berlin/Heidelberg, Germany, 2005; p. 445. [Google Scholar]
- Zak, K.; Lozek, V.; Kadlec, J.; Hladíkova, J.; Cílek, V. Climate-induced changes in Holocene calcareous tufa formations, Bohemian karst, Czech Republic. Quat. Int. 2002, 91, 137–152. [Google Scholar] [CrossRef]
- Pedley, M.; Andrews, J.; Ordonez, S.; Del Cura, M.A.G.; Martin, J.A.G.; Taylor, D. Does climate control the morphological fabric of freshwater carbonates? A comparative study of Holocene barrage tufas from Spain and Britain. Palaeogeo. Palaeoclim. Palaeoecol. 1996, 121, 239–257. [Google Scholar] [CrossRef]
- Andrews, J.E.; Pedley, M.; Dennis, P.F. Palaeoenvironmental records in Holocene Spanish tufas: A stable isotope approach in search of reliable climatic archives. Sedimentology 2000, 47, 961–978. [Google Scholar] [CrossRef]
- Dobrowolski, R.; Durakiewicz, T.; Pazdur, A. Calcareous tufas in the soligenous mires of eastern Poland as an indicator of the Holocene climatic changes. Acta Geol. Pol. 2002, 52, 63–73. [Google Scholar]
- Dobrowolski, R.; Hajdas, I.; Melke, J.; Alexandrowicz, W.P. Chronostratigraphy of calcareous mire sediments at Zawad_owka (EasternPoland) and their use in palaeogeographical reconstruction. Geochronometria 2005, 24, 69–79. [Google Scholar]
- Lozek, V. Malako stratigrafie Holocenního Penovce UStankovan Na Severním Slovensku. Geosci. Res. Rep. 2009, 42, 229–232. [Google Scholar]
- Hajek, M.; Dudova, L.; Hajkova, P.; Rolecek, J.; Moutelíkova, J.; Jamrichova, E.; Horsak, M. Contrasting Holocene environmental histories may explain patterns of species richness and rarity in a Central European landscape. Quat. Sci. Rev. 2016, 133, 48–61. [Google Scholar] [CrossRef]
- Dabkowski, J.; Brou, L.; Naton, H.G. New stratigraphic and geochemical data on the Holocene environment and climate from a tufa deposit at Direndall (Mamer Valley, Luxembourg). Holocene 2015, 25, 1153–1164. [Google Scholar] [CrossRef]
- Usdowski, E.; Hoefs, J.; Menschel, G. Relationship between 13C and 18O fractionation and changes in major element composition in a recent calcite-depositing spring—A model of chemical variations with inorganic CaCO3 precipitation. Earth Planet. Sci. Lett. 1979, 42, 267–276. [Google Scholar] [CrossRef]
- Chafetz, H.S.; Lawrence, J.R. Stable isotopic variability within modern travertines. Geogr. Phys. Quat. 1994, 48, 257–273. [Google Scholar] [CrossRef]
- Horvatincic, N.; Bronici, K.; Obelic, B. Differences in the 14C age, δ13C and δ18O of Holocene tufa and speleothems in the Dinaric Karst. Palaeogeogr. Palaeoclim. Palaecol. 2003, 193, 139–157. [Google Scholar] [CrossRef]
- Vaudour, J. Evolution holocene des travertins de vallee dans le Midi mediteraneen français. Geogr. Phys. Quat. 1994, 48, 315–326. [Google Scholar] [CrossRef]
- Goudie, A.S.; Viles, H.A.; Pentecost, A. The late-Holocene tufa decline in Europe. Holocene 1993, 3, 181–186. [Google Scholar] [CrossRef]
- Griffiths, H.I.; Pedley, H.M. Did changes in late Last Glacial and early Holocene atmospheric CO2 concentrations control rates of tufa precipitation? Holocene 1995, 5, 238–242. [Google Scholar] [CrossRef]
- Martín-Algarra, A.; Martín-Martín, M.; Andreo, B.; Julia, R.; Gonzalez-Gomez, C. Sedimentary pattern sinperched spring travertines near Granada (Spain) as indicators of the paleohydrological and paleoclimatological evolution of a karst massif. Sediment. Geol. 2003, 161, 217–228. [Google Scholar] [CrossRef]
- Dramis, F.; Materazzi, M.; Cilla, G. Influence of climatic changes on freshwater Travertine deposition: A new hypothesis. Phys. Chem. Earth A Solid Earth Geod. 1999, 24, 893–897. [Google Scholar] [CrossRef]
- Bini, M.; Zanchetta, G.; Regattieri, E.; Isola, I.; Drysdale, R.N.; Fabiani, F.; Genovesi, S.S.; Hellstrom, J.C. Hydrological changes during the Roman Climatic Optimum in northern Tuscany (Central Italy) as evidenced by speleothem records and archaeological data. J. Quat. Sci. 2020, 35, 791–802. [Google Scholar] [CrossRef]
- Zanchetta, G.; Bini, M.; Bloomfield, K.; Izdebski, A.; Vivoli, N.; Regattieri, E.; Isola, I.; Drysdale, R.N.; Bajo, P.; Hellstrom, J.C.; et al. Beyond one-way determinism: San Frediano’s miracle and climate change in Central and Northern Italy in late antiquity. Clim. Change 2021, 165, 25. [Google Scholar] [CrossRef]
- Porta, G.D. Carbonate build-ups in lacustrine, hydrothermal and fluvial settings: Comparing depositional geometry, fabric types and geochemical signatures. In Microbial Carbonates in Space and Time: Implications for Global Exploration and Production; Bosence, D.W.J., Gibbons, K.A., Le Heron, D.P., Morgan, W.A., Pritchard, T., Vining, B.A., Eds.; Geological Society London Special Publications: London, UK, 2015; Volume 418, pp. 17–68. [Google Scholar]
- Lavecchia, G. Appunti per uno schema strutturale dell’Appennino Umbro-Marchigiano. 3-Lo stile deformativo. Boll. Soc. Geol. Ital. 1981, 100, 271–278. [Google Scholar]
- Bonciani, F.; Borraccini, F.; Callegari, I.; Catenacci, V.; Cecca, M.; Conte, G.; Cornamusini, G.; D’Ambrogi, C.; De Donatis, M.; Pantaloni, M.; et al. Carta Geologica d’Italia alla Scala 1:50.000, Foglio 280 Fossombrone. ISPRA 2016. [Google Scholar]
- Savelli, D.; De Donatis, M.; Mazzoli, S.; Nesci, O.; Tramontana, M.; Veneri, F. Evidence for Quaternary Faulting in the Metauro River Basin (Northern Marche Apennines). Boll. Soc. Geol. Ital. 2002, 121, 931–937. [Google Scholar]
- Anselmi, S.; Volpe, G. L’architettura popolare in Italia; La Terza, M., Ed.; Laterza: Roma, Italy, 1987; pp. 11–13. [Google Scholar]
- Sancho, C.; Pena, J.L.; Melendez, A. Controls on Holocene and present-day travertine formation in the Guadalaviar River (Iberian Chain, NE Spain). Z. Für Geomorphol. 1997, 41, 289–307. [Google Scholar] [CrossRef]
Samples | Radiocarbon Age 14C BP | DCP-Corrected Age 14C BP * | Calibrated 14C Age (BP) ** (1σ) | ẟ13C (‰ vs. V-PDB) | ẟ18O (‰ vs. V-PDB) | |
---|---|---|---|---|---|---|
Ashlars from defensive Roman walls (3rd–2nd century BCE) | ||||||
TRU6 | Remnants at Corso Garibaldi | 5600 ± 35 | 5385 ± 35 | 6185 ± 76 | −9.87 −10.88 | −9.89 −9.59 |
TRU8 | Remnants at Palazzo Battiferri | 8384 ± 45 | 8168 ± 45 | 9125 ± 79 | −8.68 −8.66 | −9.02 −7.75 |
Reused Roman blocks in the historical palaces and fortress (14th–16th century AD) | ||||||
TRU1 | Via San Girolamo | 6469 ± 35 | 6253 ± 35 | 7173 ± 69 | −5.76 −7.26 | −6.99 −7.52 |
TRU2 | Via San Girolamo | 4731 ± 35 | 4516 ± 35 | 5167 ± 81 | −9.26 −9.60 | −9.21 −9.63 |
TRU3 | Via San Girolamo | 6785 ± 35 | 6570 ± 35 | 7478 ± 40 | −10.24 −8.55 | −9.72 −7.70 |
TRU5 | Piola San Bartolo | 7373 ± 35 | 7178 ± 35 | 7987 ± 34 | −10.14 −9.20 | −11.22 −10.15 |
TRU7 | Fortezza Albornoz | 4427 ± 35 | 4212 ± 35 | 4744 ± 68 | −5.99 −4.32 | −7.00 −6.62 |
Portals (17th century AD) | ||||||
TRU9 | Oratorio delle Grotte | 1488 ± 35 | 1273 ± 35 | 1212 ± 49 | −8.12 −8.69 | −6.16 −7.56 |
TRU10 | Oratorio della Morte | 7278 ± 40 | 7064± 40 | 7890 ± 45 | −8.84 −8.13 | −8.31 −7.10 |
Location | Rebound Index (R) * | Apparent Uniaxial Compressive Strength σc (Qua, MPa)* |
---|---|---|
Corso Garibaldi | 15.6 | 33.4 |
San Girolamo | 25.1 | 40.7 |
Piola San Bartolo | 30.2 | 44.7 |
Fortezza Albornoz | 20.7 | 37.4 |
Palazzo Peroli | 22.0 | 38.3 |
Via Saffi | 21.3 | 37.8 |
Oratorio delle Grotte | 30.6 | 45 |
Oratorio della Morte | 17.4 | 34.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santi, P.; Renzulli, A.; Veneri, F.; Tonelli, G.; Tramontana, M.; Taussi, M.; Calcagnile, L.; Quarta, G. Geological Insights on the Calcareous Tufas (Pietra Spugna) Used as Building and Ornamental Stones in the UNESCO Historical Centre of Urbino (Marche Region, Italy). Heritage 2023, 6, 4227-4242. https://doi.org/10.3390/heritage6050223
Santi P, Renzulli A, Veneri F, Tonelli G, Tramontana M, Taussi M, Calcagnile L, Quarta G. Geological Insights on the Calcareous Tufas (Pietra Spugna) Used as Building and Ornamental Stones in the UNESCO Historical Centre of Urbino (Marche Region, Italy). Heritage. 2023; 6(5):4227-4242. https://doi.org/10.3390/heritage6050223
Chicago/Turabian StyleSanti, Patrizia, Alberto Renzulli, Francesco Veneri, Gianluigi Tonelli, Mario Tramontana, Marco Taussi, Lucio Calcagnile, and Gianluca Quarta. 2023. "Geological Insights on the Calcareous Tufas (Pietra Spugna) Used as Building and Ornamental Stones in the UNESCO Historical Centre of Urbino (Marche Region, Italy)" Heritage 6, no. 5: 4227-4242. https://doi.org/10.3390/heritage6050223
APA StyleSanti, P., Renzulli, A., Veneri, F., Tonelli, G., Tramontana, M., Taussi, M., Calcagnile, L., & Quarta, G. (2023). Geological Insights on the Calcareous Tufas (Pietra Spugna) Used as Building and Ornamental Stones in the UNESCO Historical Centre of Urbino (Marche Region, Italy). Heritage, 6(5), 4227-4242. https://doi.org/10.3390/heritage6050223