The Long-Term Efficiency and Compatibility of Hydrophobic Treatments in Protecting Vulnerable Sandstone at Arbroath Abbey (Scotland)
Abstract
:1. Introduction
2. Materials
2.1. Samples of Abbey Stone
2.2. Hydrophobic Treatment
3. Methods
3.1. Field Observations
3.2. Moisture Analysis
3.3. Application of Hydrophobic Cream
3.4. Mineralogy and Petrography
3.5. Open Porosity and Bulk Density
3.6. Water Vapour Diffusion Resistance
3.7. Capillary Absorption
3.8. Ultrasonic Wave Velocities (Vp)
3.9. Durability
4. Results and Discussion
4.1. Decay Patterns at Arbroath Abbey
4.2. Moisture Mapping
4.3. Mineralogy and Petrology
4.4. Open Porosity
4.5. Capillary Absorption
4.6. Vapour Diffusion Resistance
4.7. Durability
5. Final Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Young, M.; Murray, M.; Cordiner, P. Chemical Consolidants and Water Repellents for Sandstones in Scotland; Historic Environment Scotland: Edinburgh, UK, 2003. [Google Scholar]
- Öztürk, I. Alkoxysilanes Consolidation of Stone and Earthen Building Materials. Master’s Thesis, University of Pennsylvania, Philadelphia, PA, USA, 1992. [Google Scholar]
- Odgers, D. Progress with Stone Consolidants; Historic England, The Institute of Historic Building Conservation (IHBC), UK. 2018, pp. 20–22. Available online: https://historicengland.org.uk/content/docs/research/ctx154-odgers-stone-consolidantspdf/ (accessed on 1 May 2023).
- Price, C.A. Brethane Stone Preservative: Current Paper CP1/81, 1-9; Building Research Establishment: Watford, UK, 1981.
- Garcia Pascua, N.; Sánchez De Rojas, M.I.; Frias, M. The important role of the color measurement in restoration works: Use of consolidants and water-repellents in sandstone. In Proceedings of the 8th Eighth International Congress on Deterioration and Conservation of Stone Proceedings, Berlin, Germany, 30 September–4 October 1996; pp. 1351–1361. [Google Scholar]
- Cnudde, V.; Jacobs, P.J.S. Monitoring of weathering and conservation of building materials through non-destructive X-ray computed microtomography. Environ. Geol. 2004, 46, 477–485. [Google Scholar] [CrossRef]
- Jiménez González, I.; Scherer, G.W. Effect of swelling inhibitors on the swelling and stress relaxation of clay bearing stones. Environ. Geol. 2004, 46, 364–377. [Google Scholar] [CrossRef]
- De Ferri, L.; Lottici, P.P.; Lorenzi, A.; Montenero, A.; Salvioli-Mariani, E. Study of silica nanoparticles–polysiloxane hydrophobic treatments for stone-based monument protection. J. Cult. Herit. 2011, 12, 356–363. [Google Scholar] [CrossRef]
- Pinna, D.; Salvadori, B.; Galeotti, M. Monitoring the performance of innovative and traditional biocides mixed with consolidants and water-repellents for the prevention of biological growth on stone. Sci. Total Environ. 2012, 423, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Akoğlu, K.G.; Caner-Saltık, E.N. Hydric dilation of Mount Nemrut sandstones and its control by surfactants. J. Cult. Herit. 2015, 16, 276–283. [Google Scholar] [CrossRef]
- Wen, Y.; Qing, H.; Shu, H.; Liu, Q. Evaluating the Protective Effects of Calcium Carbonate Coating on Sandstone Cultural Heritage. Coatings 2021, 11, 1534. [Google Scholar] [CrossRef]
- Elert, K.; Rodriguez-Navarro, C. Degradation and conservation of clay-containing stone: A review. Constr. Build. Mater. 2022, 330, 127226. [Google Scholar] [CrossRef]
- Charola, A.E. Water Repellents and Other” Protective” Treatments: A Critical Review/Hydrophobieren und andere” schützende” Maßnahmen: Ein kritischer Überblick. Restor. Build. Monum. 2003, 9, 3–22. [Google Scholar] [CrossRef]
- Moropoulou, A.; Kouloumbi, N.; Haralampopoulos, G.; Konstanti, A.; Michailidis, P. Criteria and methodology for the evaluation of conservation interventions on treated porous stone susceptible to salt decay. Prog. Org. Coat. 2003, 48, 259–270. [Google Scholar] [CrossRef]
- Jia, M.; Liang, J.; He, L.; Zhao, X.; Simon, S. Hydrophobic and hydrophilic SiO2-based hybrids in the protection of sandstone for anti-salt damage. J. Cult. Herit. 2019, 40, 80–91. [Google Scholar] [CrossRef]
- Ershad-Langroudi, A.; Fadaei, H.; Ahmadi, K. Application of polymer coatings and nanoparticles in consolidation and hydrophobic treatment of stone monuments. Iran. Polym. J. 2019, 28, 1–19. [Google Scholar] [CrossRef]
- Gherardi, F. Current and Future Trends in Protective Treatments for Stone Heritage. In Conserving Stone Heritage; Springer: Cham, Switzerland, 2022; pp. 137–176. [Google Scholar]
- Kennedy, C.J. The role of heritage science in conservation philosophy and practice. Hist. Environ. Policy Pract. 2015, 6, 214–228. [Google Scholar] [CrossRef]
- WTA Merkblatt AG 3.17; Hydrophobierende Imprägnierung von mineralischen Baustoffen. WTA Publications: Stuttgart, Germany, 2010.
- Snethlage, R. Stone Conservation. In Stone in Architecture; Springer: Berlin/Heidelberg, Germany, 2011; pp. 516–518. [Google Scholar]
- Vergès-Belmin, V. (Ed.) Illustrated Glossary on Stone Deterioration Patterns; Monuments and Sites XV; ICOMOS: Paris, France, 2008. [Google Scholar]
- BS EN 1936:2006; Natural Stone Test Methods—Determination of Real Density and Apparent Density, and of Total and Open Porosity. BSI: London, UK, 2006.
- BS EN 12572:2016; Hygrothermal performance of building materials and products—Determination of water vapour transmission properties—Cup method. BSI: London, UK, 2016.
- BS EN ISO 15148:2002; Hygrothermal performance of building materials and products—Determination of water absorption coefficient by partial immersion. BSI: London, UK, 2002.
- Benavente, D.; del Cura, M.G.; Bernabéu, A.; Ordóñez, S. Quantification of salt weathering in porous stones using an experimental continuous partial immersion method. Eng. Geol. 2001, 59, 313–325. [Google Scholar] [CrossRef]
- Charola, A.E.; Bläuer, C. Salts in masonry: An overview of the problem. Restor. Build. Monum. 2015, 21, 119–135. [Google Scholar] [CrossRef]
- McKinley, J.M.; Worden, R.H.; Ruffell, A.H. Smectite in sandstones: A review of the controls on occurrence and behaviour during diagenesis, clay mineral cements in sandstone. Int. Assoc. Sedimentol. Spec. Publ. 2003, 34, 109–128. [Google Scholar]
- Mausfeld, S.A.; Grassegger, G. Abbauprozesse an Feldspaten und Tonmineralen unter den Bedingungen der Bauwerksverwitterung. Z. Dt. Geol. Ges. 1992, 143, 23–39. [Google Scholar]
- Schäfer, M.; Steiger, M. A rapid method for the determination of cation exchange capacities of sandstone: Preliminary data. In Natural Stone, Weathering Phenomena, Conservation Strategies and Case Studies; Siegesmund, S., Weiss, T., Vollbrecht, A., Eds.; Geological Society, Special Publications: London, UK, 2002; Volume 205, pp. 431–439. [Google Scholar]
- Folk, R.L. Petrology of Sedimentary Rocks; Hemphill Publishing Company: Austin, TX, USA, 1980. [Google Scholar]
- Ruedrich, J.; Siegesmund, S. Salt and ice crystallisation in porous sandstones. Environ. Geol. 2007, 52, 225–249. [Google Scholar] [CrossRef]
- Sebastián, E.; Cultrone, G.; Benavente, D.; Fernandez, L.L.; Elert, K.; RodriguezNavarro, C. Swelling damage in clay-rich sandstones used in the church of San Mateo in Tarifa (Spain). J. Cult. Herit. 2008, 9, 66–76. [Google Scholar] [CrossRef]
- Benavente, D.; Cultrone, G.; Gómez-Heras, M. The combined influence of mineralogical, hygric and thermal properties on the durability of porous building stones. Eur. J. Mineral. 2008, 20, 673–685. [Google Scholar] [CrossRef]
- Zhao, J.; Plagge, R. Characterization of hygrothermal properties of sandstones—Impact of anisotropy on their thermal and moisture behaviors. Energy and Buildings 2015, 107, 479–494. [Google Scholar] [CrossRef]
- Fořt, J. Effect of Sandstone Anisotropy on its Heat and Moisture Transport Properties. Mater. Sci. 2015, 21, 455–459. [Google Scholar] [CrossRef]
- Ludovico-Marques, M.; Chastre, C. Effect of consolidation treatments on mechanical behaviour of sandstone. Constr. Build. Mater. 2014, 70, 473–482. [Google Scholar] [CrossRef]
- Siegesmund, S.; Dürrast, H. Physical and mechanical properties of rocks. In Stone in Architecture; Springer: Berlin/Heidelberg, Germany, 2011; pp. 97–225. [Google Scholar]
- Charola, A.E. Water Repellents and Other “Protective” Treatments: A Critical Review. In Proceedings of the Hydrophobe III–3rd International Conference on Surface Technology with Water Repellent Agents, Hannover, Germany, 25–26 September 2001; pp. 3–20. [Google Scholar]
- Angeli, M.; Bigas, J.P.; Benavente, D.; Menéndez, B.; Hébert, R.; David, C. Salt crystallization in pores: Quantification and estimation of damage. Environ. Geol. 2007, 52, 205–213. [Google Scholar] [CrossRef] [Green Version]
- McKinley, J.M.; Warke, P.A. Controls on permeability: Implications for stone weathering. Geol. Soc. Lond. Spec. Publ. 2007, 271, 225–236. [Google Scholar] [CrossRef]
- McAllister, D.; Warke, P.; McCabe, S.; Gomez-Heras, M. Evaporative moisture loss from heterogeneous stone: Material-environment interactions during drying. Geomorphol. 2016, 273, 308–322. [Google Scholar] [CrossRef] [Green Version]
- Zoghlami, K.; López-Arce, P.; Zornoza-Indart, A. Differential stone decay of the Spanish tower façade in Bizerte, Tunisia. J. Mater. Civ. Eng. 2017, 29, 05016005. [Google Scholar] [CrossRef]
Hydrophobic Cream Property | Description |
---|---|
Composition | Silane/siloxane masonry cream containing: hydrocarbons (C11–C14); isoalkanes; cyclics; <2% aromatics; and triethoxyoctylsilane |
Density | 0.86 g/cm3 |
Coverage | 5 m2 per litre (single coat recommended) |
Curing time (time between application and post-application experiments) | 28 days |
Equation Name | Equation | Values |
---|---|---|
Mass rate of change, Δm | Δm = change of mass per time for a single determination (kg/s); m1 = mass of test assembly at time t1 (s); m2 = mass of test assembly at time t2 (s). Water vapour flow rate, G, is then calculated as the mean of at least five successive determinations of Δm. | |
Vapour pressure difference, Δp | RH= relative humidity, and T = temperature (°C) | |
Water vapour permeance, W | G = water vapour flow rate through the specimen (kg/s), A = area of specimen (m2), and Δp = water vapour pressure difference. | |
Water vapour permeability, δ | W = water vapour permeance [kg/(m2·s·Pa)], and d = thickness of the sample (m). | |
Water vapour diffusion resistance factor, µ | δair = water vapour permeability of air at 23 °C (for this experiment). |
A-C | A-L | |||
---|---|---|---|---|
Interior | Exterior | Interior | Exterior | |
Bulk mineralogy | Quartz; albite; orthoclase; calcite; dolomite | Quartz; albite; orthoclase; calcite; hematite; kaolinite; illite | Quartz; albite; orthoclase; dolomite; mica; kaolinite; illite; hematite | Quartz; albite; orthoclase; dolomite; mica; kaolinite; illite; hematite |
Clay mineralogy | kaolinite; smectite (expansive); illite-smectite (non-expansive) | kaolinite; illite | illite-smectite (non-expansive); kaolinite | kaolinite; illite |
Clay distribution | Weathered lithics; weathered feldspars; lining pores | Infilling pores; coating grains | Matrix; grain coatings; weathered feldspars | Matrix; infilling pores; coating grains |
Average grain size (mm) | 0.11 | 0.15 | ||
Sandstone classification 1 | Lithic arkose | Lithic arkose |
Porosity, Po (%) | Bulk Density (g/cm3) | Capillary Absorption Coefficient, CU [kg/(m2·h0.5] | Capillary Absorption Coefficient, CT [kg/(m2·h0.5] | ||
---|---|---|---|---|---|
A-C | 14.7 ± 4.16 1 (21) | 2.39 ± 0.12 (21) | – 0.95 ± 1.69 1 (6) | + 0.17 ± 0.23 1 (6) | – 0.37 ± 0.22 (6) |
A-L | 19.3 ± 3.37 (21) | 2.24 ± 0.10 (21) | – 1.98 ± 0.28 (6) | + 1.49 ± 0.41 (6) | – 0.24 ± 0.11 (6) |
Resistance Factor, µ | Resistance Factor, µt | Change in Resistance, % | Porosity, Po (%) | |
A-C1 | 42.3 | 44.1 | 4.3 | 11.5 |
A-C2 | 50.1 | 58.3 | 16.4 | 11.7 |
A-C3 | 32.6 | 41.1 | 26.1 | 10.6 |
A-L1 | 27.1 | 28.1 | 3.7 | 22.8 |
A-L2 | 23.7 | 26.8 | 13.1 | 22.6 |
A-L3 | 31.2 | 36.7 | 17.6 | 17.4 |
A-CU | A-CT | A-LU | A-LT | |
---|---|---|---|---|
Po (%) | 15.4 ± 4.38 | 14.9 ± 4.40 | 17.9 ± 4.31 | 19.7 ± 3.52 |
Po-w (%) | 16.0 ± 4.22 | 14.0 ±4.55 | 18.5 ±4.96 | 19.3 ± 3.62 |
Vp (m/s) | 3219.6 ± 433.8 | 3546.0 ± 399.6 | 3206.1 ±279.3 | 3284.6 ± 162.8 |
Vp-w (m/s) | 3114.4 ± 215.7 | 3359.0 ± 287.2 | 3117.8 ± 104.5 | 3133.4 ± 160.2 |
C [kg/(m2·h0.5] | 1.65 ± 1.86 | 0.34 ± 0.22 | 1.33 ± 0.55 | 0.27 ± 0.07 |
Cw [kg/(m2·h0.5] | 2.30 ± 2.05 | 0.42 ± 0.29 | 1.57 ± 0.55 | 0.34 ± 0.13 |
d (%) | 0.32 ± 0.15 | −0.25 ± 0.17 | 0.42 ± 0.20 | −0.16 ± 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Jongh, M.; Benavente, D.; Young, M.; Graham, C.; Lee, M. The Long-Term Efficiency and Compatibility of Hydrophobic Treatments in Protecting Vulnerable Sandstone at Arbroath Abbey (Scotland). Heritage 2023, 6, 4864-4885. https://doi.org/10.3390/heritage6070259
de Jongh M, Benavente D, Young M, Graham C, Lee M. The Long-Term Efficiency and Compatibility of Hydrophobic Treatments in Protecting Vulnerable Sandstone at Arbroath Abbey (Scotland). Heritage. 2023; 6(7):4864-4885. https://doi.org/10.3390/heritage6070259
Chicago/Turabian Stylede Jongh, Marli, David Benavente, Maureen Young, Callum Graham, and Martin Lee. 2023. "The Long-Term Efficiency and Compatibility of Hydrophobic Treatments in Protecting Vulnerable Sandstone at Arbroath Abbey (Scotland)" Heritage 6, no. 7: 4864-4885. https://doi.org/10.3390/heritage6070259
APA Stylede Jongh, M., Benavente, D., Young, M., Graham, C., & Lee, M. (2023). The Long-Term Efficiency and Compatibility of Hydrophobic Treatments in Protecting Vulnerable Sandstone at Arbroath Abbey (Scotland). Heritage, 6(7), 4864-4885. https://doi.org/10.3390/heritage6070259