Feasibility of Ecofriendly Mortars with Different Hemp Additions for Use in Building Sector
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mortars Elaboration
2.3. Experimental Program
3. Results and Discussion
3.1. Physical Characterisation of Mortars
3.2. Mechanical Characterisation of Mortars
3.3. Durability Tests
4. Conclusions
- Hemp fibre is positioned as the best morphology to be added in the manufacture of masonry mortars. It was proven that cement mortars with hemp fibre have greater resistance to bending, less shrinkage and greater durability against freeze–thaw cycles compared to traditional mortars. In this sense, this type of mortar has better technical performance for use in construction works.
- On the other hand, mortars with the addition of powder and pellets do not present an optimum performance for use as a cladding material in buildings. Their mechanical properties, durability and water absorption capacity make it difficult to use them in outdoor environments subject to weather conditions. However, this type of mortar makes it possible to reduce the consumption of natural aggregates in construction and to obtain a lower density and thermal conductivity coefficient. For all the above reasons, it is considered appropriate to recommend the use of this type of material for filling floor screeds and for use in masonry works without major requirements.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gioffré, M.; Vincenzini, A.; Cavalagli, N.; Gusella, V.; Caponero, M.A.; Terenzi, A.; Pepi, C. A novel hemp-fiber bio-composite material for strengthening of arched structures: Experimental investigation. Constr. Build. Mater. 2021, 308, 124969. [Google Scholar] [CrossRef]
- Giordano, E.; Mendes, N.; Masciotta, M.G.; Clementi, F.; Haji Sadeghi, N.; André Silva, R.; Oliveira, D.V. Expeditious damage index for arched structures based on dynamic identification testing. Constr. Build. Mater. 2020, 265, 120236. [Google Scholar] [CrossRef]
- Brencich, A.; Moriducci, R. Masonry Arches: Historical Rules and Modern Mechanics. Int. J. Archit. Herit. 2007, 1, 165–189. [Google Scholar] [CrossRef]
- Sedan, D.; Pagnoux, C.; Smith, A.; Chotard, T. Mechanical properties of hemp fibre reinforced cement: Influence of the fibre/matrix interaction. J. Eur. Ceram. Soc. 2008, 28, 183–192. [Google Scholar] [CrossRef]
- Candamano, S.; Crea, F.; Coppola, L.; De Luca, P.; Coffetti, D. Influence of acrylic latex and pre-treated hemp fibers on cement-based mortar properties. Constr. Build. Mater. 2021, 273, 121720. [Google Scholar] [CrossRef]
- Onuaguluchi, O.; Banthia, N. Plant-based natural fibre reinforced cement composites: A review. Cem. Concr. Compos. 2016, 68, 96–108. [Google Scholar] [CrossRef]
- Thyavihalli Girijappa, Y.G.; Mavinkere Rangappa, S.; Parameswaranpillai, J.; Siengchin, S. Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Comprehensive Review. Front. Mater. 2019, 6, 226. [Google Scholar] [CrossRef] [Green Version]
- Hamada, H.M.; Shi, J.; Al Jawahery, M.S.; Majdi, A.; Yousif, S.; Kaplan, G. Application of natural fibres in cement concrete: A critical review. Mater. Today Commun. 2023, 35, 105833. [Google Scholar] [CrossRef]
- Mathavan, M.; Sakthieswaran, N.; Ganesh Babu, O. Experimental investigation on strength and properties of natural fibre reinforced cement mortar. Mater. Today Proc. 2021, 37, 1066–1070. [Google Scholar] [CrossRef]
- Srikavi, A.; Mekala, M. Characterization of Sunn hemp fibers as a substitute for synthetic fibers in composites and various applications. Ind. Crops Prod. 2023, 192, 116135. [Google Scholar] [CrossRef]
- Bollino, F.; Giannella, V.; Armentani, E.; Sepe, R. Mechanical behavior of chemically-treated hemp fibers reinforced composites subjected to moisture absorption. J. Mater. Res. Technol. 2023, 22, 762–775. [Google Scholar] [CrossRef]
- Merta, I.; Tschegg, E.K. Fracture energy of natural fibre reinforced concrete. Constr. Build. Mater. 2013, 40, 991–997. [Google Scholar] [CrossRef]
- Ferreira, S.R.; Pepe, M.; Matrinelli, E.; Andrade Silva, F.; Toledo Filho, R.D. Influence of natural fibers characteristics on the interface mechanics with cement based matrices. Compos. Part B Eng. 2018, 140, 183–196. [Google Scholar] [CrossRef]
- Li, X.; Tabil, L.; Panigrahi, S. Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review. J. Polym. Environ. 2007, 15, 25–33. [Google Scholar] [CrossRef]
- Keener, T.J.; Stuart, R.K.; Brown, T.K. Maleated coupling agents for natural fibre composites. Compos. Part A Appl. Sci. Manuf. 2004, 35, 357–362. [Google Scholar] [CrossRef]
- Stocchi, A.; Lauke, B.; Vázquez, A.; Bernal, C. A novel fiber treatment applied to woven jute fabric/vinylester laminates. Compos. Part A Appl. Sci. Manuf. 2007, 38, 1337–1343. [Google Scholar] [CrossRef]
- Andrade Silva, F.; Toledo Filho, R.D.; Almeida, J.; Moraes Rego, E. Physical and mechanical properties of durable sisal fiber–cement composites. Constr. Build. Mater. 2010, 24, 777–785. [Google Scholar] [CrossRef]
- Ferreira, S.R.; Andrade Silva, F.; Lopes Lima, P.R.; Toledo Filho, R.D. Effect of fiber treatments on the sisal fiber properties and fiber–matrix bond in cement based systems. Constr. Build. Mater. 2015, 101, 730–740. [Google Scholar] [CrossRef]
- Prasad Kundi, S.; Chakraborty, S.; Chakraborty, S. Effectiveness of the surface modified jute fibre as fibre reinforcement in controlling the physical and mechanical properties of concrete paver blocks. Constr. Build. Mater. 2018, 191, 554–563. [Google Scholar] [CrossRef]
- Sawsen, C.; Fouzia, K.; Mohamed, B.; Moussa, G. Effect of flax fibers treatments on the rheological and the mechanical behavior of a cement composite. Constr. Build. Mater. 2015, 79, 229–235. [Google Scholar] [CrossRef]
- Ishak, M.R.; Leman, Z.; Sapuan, S.M.; Salleh, M.Y.; Misri, S. The effect of sea water treatment on the impact and flexural strength of sugar palm fibre reinforced epoxy composites. Int. J. Mech. Eng. 2009, 4, 316–320. [Google Scholar]
- Jiang, D.; Cui, S.; Xu, F.; Tuo, T. Impact of leaf fibre modification methods on compatibility between leaf fibres and cement-based materials. Constr. Build. Mater. 2015, 94, 502–512. [Google Scholar] [CrossRef]
- He, L.; Tian, Y.; Wang, L. Study on Ramie Fiber Reinforced Polypropylene Composites (RF-PP) and its Mechanical Properties. Adv. Mater. Res. 2008, 41–42, 313–316. [Google Scholar] [CrossRef]
- Boopathi, L.; Sampath, P.S.; Mylsamy, K. Investigation of physical, chemical and mechanical properties of raw and alkali treated Borassus fruit fiber. Compos. Part B Eng. 2012, 43, 3044–3052. [Google Scholar] [CrossRef]
- Syed Mohsin, S.M.; Baarimah, A.O.; Jokhio, G.A. Effect of kenaf fiber in reinforced concrete slab. In IOP Conference Series: Materials Science and Engineering; Universiti Malaysia Pahang (UMP) Pekan Campus Library: Pahang, Malaysia, 2018; Volume 342. [Google Scholar] [CrossRef]
- Malkapuram, R.; Kumar, V.; Yuvraj Singh, N. Recent Development in Natural Fiber Reinforced Polypropylene Composites. J. Reinf. Plast. Compos. 2009, 28, 1169–1189. [Google Scholar] [CrossRef]
- Yan, L.; Chouw, N.; Huang, L.; Kasal, B. Effect of alkali treatment on microstructure and mechanical properties of coir fibres, coir fibre reinforced-polymer composites and reinforced-cementitious composites. Constr. Build. Mater. 2016, 112, 168–182. [Google Scholar] [CrossRef]
- Yu, X.; Li, G.; Zhao, H.; Ma, Y.; Li, Q.; Chen, Y.; Li, W. Influence of chemically-modified cotton straw fibers on the properties of asphalt mortar. Case Stud. Constr. Mater. 2023, 18, e01787. [Google Scholar] [CrossRef]
- Venicius, M.; Rujiyama, R.; Darwish, F.; Terto Alves, G. On the Strengthening of Cement Mortar by Natural Fibers. Mater. Res. 2015, 18, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Killic, R.; Tayeh, B.A.; Nur, D.; Kaplan, G.; Tobbala, D.E. The effect of animal and synthetic fibers on the physico-mechanical durability and microstructure properties of natural hydraulic lime-based mortars. Mater. Today Commun. 2023, 35, 106041. [Google Scholar] [CrossRef]
- Rashmi, J.; Bochen, J.; Gołaszewska, M. Experimental studies on the effect of natural and synthetic fibers on properties of fresh and hardened mortar. Constr. Build. Mater. 2022, 347, 128550. [Google Scholar] [CrossRef]
- Miah, M.J.; Li, Y.; Chandra, S.; Babafemi, A.J.; Gook Jang, J. Mechanical strength, shrinkage, and porosity of mortar reinforced with areca nut husk fibers. Constr. Build. Mater. 2023, 363, 129688. [Google Scholar] [CrossRef]
- Rashid, B.; Leman, Z.; Jawaid, M.; Ishak, M.R.; Al-Oqla, F.M. Eco-Friendly Composites for Brake Pads from Agro Waste: A Review. Encycl. Mater. Compos. 2017, 3, 209–228. [Google Scholar] [CrossRef]
- Abdalla, J.A.; Skariah Thomas, B.; Hawileh, R.A. Use of hemp, kenaf and bamboo natural fiber in cement-based concrete. Mater. Today Proc. 2022, 65, 2070–2072. [Google Scholar] [CrossRef]
- Ingrao, C.; Lo Giudice, A.; Bacenetti, J.; Tricase, C.; Dotelli, G.; Fiala, M.; Siracusa, V.; Mbohwa, C. Energy and environmental assessment of industrial hemp for building applications: A review. Renew. Sustain. Energy Rev. 2015, 51, 29–42. [Google Scholar] [CrossRef]
- Arizzi, A.; Cultrone, G.; Brümmer, M.; Viles, H. A chemical, morphological and mineralogical study on the interaction between hemp hurds and aerial and natural hydraulic lime particles: Implications for mortar manufacturing. Constr. Build. Mater. 2015, 75, 375–384. [Google Scholar] [CrossRef]
- Rowell, R.M. It is noted that some parts have been poorly translated and a general review of the language is recommended. Adv. Biorefineries 2014, 813–818. [Google Scholar] [CrossRef]
- Khan, A.; Raghunathan, V.; Singaravelu, D.L.; Sanjay, M.R.; Siengchin, S.; Jawaid, M.; Alamry, K.A.; Asiri, A.M. Extraction and Characterization of Cellulose Fibers from the Stem of Momordica Charantia. J. Nat. Fibers 2022, 19, 2232–2242. [Google Scholar] [CrossRef]
- Ruano, G.; Bellomo, F.; López, G.; Bertuzzi, A.; Nallim, L.; Oller, S. Mechanical behaviour of cementitious composites reinforced with bagasse and hemp fibers. Constr. Build. Mater. 2020, 240, 117856. [Google Scholar] [CrossRef]
- Wambua, P.; Ivens, J.; Verpoest, I. Natural fibres: Can they replace glass in fibre reinforced plastics? Compos. Sci. Technol. 2003, 63, 1259–1264. [Google Scholar] [CrossRef]
- Çomak, B.; Bideci, A.; Salli, O. Effects of hemp fibers on characteristics of cement based mortar. Constr. Build. Mater. 2018, 169, 749–799. [Google Scholar] [CrossRef]
- Asprone, D.; Durante, M.; Prota, A.; Manfredi, G. Potential of structural pozzolanic matrix–hemp fiber grid composites. Constr. Build. Mater. 2011, 25, 2867–2874. [Google Scholar] [CrossRef]
- Poletanovic, B.; Dragas, J.; Ignjatovic, I.; Komljenovic, M.; Merta, I. Physical and mechanical properties of hemp fibre reinforced alkali-activated fly ash and fly ash/slag mortars. Constr. Build. Mater. 2020, 259, 119677. [Google Scholar] [CrossRef]
- Ghosn, S.; Cherkawi, N.; Hamad, B. Studies on Hemp and Recycled Aggregate Concrete. Int. J. Concr. Struct. Mater. 2020, 14, 54. [Google Scholar] [CrossRef]
- Bourmaud, A.; Le Duigou, A.; Baley, C. What is the technical and environmental interest in reusing a recycled polypropylene–hemp fibre composite? Polym. Degrad. Stab. 2011, 96, 1732–1739. [Google Scholar] [CrossRef]
- La Rosa, A.D.; Cozzo, G.; Latteri, A.; Recca, A.; Björklund, A.; Parrinello, E.; Cicala, G. Life cycle assessment of a novel hybrid glass-hemp/thermoset composite. J. Clean. Prod. 2013, 44, 69–76. [Google Scholar] [CrossRef]
- Miranda, J.; Valença, J.; Costa, H.; Júlio, E. Methodology for the restoration of heritage built in exposed concrete. The case study of ‘Piscina das Marés’, Portugal. Constr. Build. Mater. 2022, 328, 127040. [Google Scholar] [CrossRef]
- UNE 80103:2013; Test Methods of Cements. Physical Analysis. Actual Density Determination. AENOR: Madrid, Spain, 2013.
- UNE-EN 933-1:2012; Tests for Geometrical Properties of Aggregates—Part 1: Determination of Particle Size Distribution—Sieving Method. AENOR: Madrid, Spain, 2012.
- UNE-EN 13139/AC:2004; Aggregates for Mortar. AENOR: Madrid, Spain, 2004.
- UNE 146404:2018; Aggregates for Concrete. Determination of the Coefficient of Friability of the Sands. AENOR: Madrid, Spain, 2018.
- UNE-EN 1097-3:1999; Tests for Mechanical and Physical Properties of Aggregates—Part 3: Determination of Loose Bulk Density and Voids. AENOR: Madrid, Spain, 1999.
- UNE-EN 1097-6:2014; Tests for Mechanical and Physical Properties of Aggregates—Part 6: Determination of Particle Density and Water Absorption. AENOR: Madrid, Spain, 2014.
- Morón-Barrios, A.; Ferrández, D.; Saiz, P.; Atanes-Sánchez, E.; Morón, C. Study of the properties of lime and cement mortars made from recycled ceramic aggregate and reinforced with fibers. J. Build. Eng. 2021, 35, 102097. [Google Scholar] [CrossRef]
- UNE-EN 933-2:1996; Test for Geometrical Properties of Aggregates. Part 2: Determination of Particle Size Distribution. Test Sieves, Nominal Size of Apertures. AENOR: Madrid, Spain, 1996.
- NBE FL-90; Norma Básica de Edificación. Muros Resistentes de Fábrica de Ladrillo. Dirección General de Arquitectura y Tecnología de la Edificación, Ministerio de Obras Públicas y Urbanismo: Madrid, Spain, 1996.
- Haach, V.G.; Vasconcelos, G.; Lourenço, P.B. Influence of aggregates grading and water/cement ratio in workability and hardened properties of mortars. Constr. Build. Mater. 2011, 25, 2980–2987. [Google Scholar] [CrossRef]
- Bustos García, A. Morteros con Propiedades Mejoradas de Ductilidad por Adición de Fibras de Vidrio, Carbono y Basalto. Ph.D. Thesis, Universidad Politénica de Madrid, Madrid, Spain, 2018. [Google Scholar] [CrossRef]
- Ferrández, D.; Álvarez, M.; Saiz, P.; Zaragoza-Benzal, A. Recovery of Mineral Wool Waste and Recycled Aggregates for Use in the Manufacturing Processes of Masonry Mortars. Processes 2022, 10, 830. [Google Scholar] [CrossRef]
- Ferrández, D.; Yedra, E.; Morón, C.; Zaragoza, A.; Kosior-Kazberuk, M. Circular Building Process: Reuse of Insulators from Construction and Demolition Waste to Produce Lime Mortars. Buildings 2022, 12, 220. [Google Scholar] [CrossRef]
- UNE-EN 196-1:2018; Methods of Testing Cement—Part 1: Determination of Strength. AENOR: Madrid, Spain, 2018.
- UNE-EN 1015-2:1999/A1:2007; Methods of Test for Mortar for Masonry—Part 2: Bulk Sampling of Mortars and Preparation of test Mortars. AENOR: Madrid, Spain, 1999.
- Piña Ramírez, C. Comportamiento Físico-Mecánico y Térmico de los Morteros de Cemento Aditivados con Fibras Minerales Procedentes de Residuos de Construcción y Demolición. Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2018. [Google Scholar] [CrossRef]
- UNE-EN ISO 8990:1997; Determination of Steady-State Thermal Transmission Properties. Calibrated and Guarded Hot Box. AENOR: Madrid, Spain, 1997.
- UNE-EN 1015-18:2003; Methods of Test for Mortar for Masonry—Part 18: Determination of Water Absorption Coefficient due to Capillary Action of Hardened Mortar. AENOR: Madrid, Spain, 2003.
- UNE-EN 13279-2: 2014; Gypsum Binders and Gypsum Plasters—Part 2: Test Methods. AENOR: Madrid, Spain, 2014.
- UNE-EN 1936:2007; Natural Stone Test Methods—Determination of Real Density and Apparent Density, and of Total and Open Porosity. AENOR: Madrid, Spain, 2007.
- UNE-EN 14617-1:2013; Agglomerated Stone—Test Methods—Part 1: Determination of Apparent Density and Water Absorption. AENOR: Madrid, Spain, 2013.
- RILEM RC 25-PEM. Recommended tests to measure the deterioration of stone and to assess theeffectiveness of treatment methods. Mater. Struct. 1980, 13, 175–253. [Google Scholar]
- Saez, M.P.; Brúmmer, M.; Durán, J.A. A review of the factors affecting the properties and performance of hemp aggregate concretes. J. Build. Eng. 2020, 31, 101323. [Google Scholar] [CrossRef]
- UNE-EN 1015-11:2000/A1:2007; Methods of Test for Mortar for Masonry—Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar. AENOR: Madrid, Spain, 2007.
- EN 1015-2:1998/A1:2006; Methods of Test for Mortar for Masonry—Part 2: Bulk Sampling of Mortars and Preparation of Test Mortars. AENOR: Madrid, Spain, 2006.
- Mahesh, J.V.; Ramya, S.; Sreedhara, B.M.; Raveesh, R.M. Bond strength characteristics of masonry using hemp fibre and chicken mesh reinforced mortar. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Garcia Calvo, J.L.; Sánchez, M.; Fernández, L.; Alonso, M.C. Shrinkage behaviour and related corrosion performance of low-pH cementitious materials based on OPC or CAC. Mater. De Construcción 2016, 66. [Google Scholar] [CrossRef] [Green Version]
- UNE-EN 12371:2011; Natural Stone Test Methods—Determination of Frost Resistance. AENOR: Madrid, Spain, 2011.
- Álvarez, M.; Santos, P.; Lopes, P.; Abrantes, D.; Ferrández, D. Performance Characterisation of a New Plaster Composite Lightened with End-of-Life Tyres’ Recycled Materials for False Ceiling Plates. Materials 2022, 15, 5660. [Google Scholar] [CrossRef] [PubMed]
- Benmansour, N.; Agoudjil, B.; Gherabli, A.; Kareche, A.; Boudenne, A. Thermal and mechanical performance of natural mortar reinforced with date palm fibers for use as insulating materials in building. Energy Build. 2014, 81, 98–104. [Google Scholar] [CrossRef]
- Asim, M.; Moeen, G.; Jamshaid, H.; Raza, A.; Rehman, Z.; Hussain, U.; Satti, A.; Hayat, N.; Muhammad, S. Comparative experimental investigation of natural fibers reinforced light weight concrete as thermally efficient building materials. J. Build. Eng. 2020, 31, 101411. [Google Scholar] [CrossRef]
- Toledo, R.; Ghavami, K.; Sanjuan, M.A.; England, G.L. Free, restrained and drying shrinkage of cement mortar composites reinforced with vegetable fibres. Cem. Concr. Compos. 2005, 27, 537–546. [Google Scholar] [CrossRef]
- Morón, C.; Ferrández, D.; Saiz, P.; Yedra, E. Measuring system of capillary rising damp in cement mortars. Measurenment 2019, 135, 252–259. [Google Scholar] [CrossRef]
- Yedra, E.; Ferrández, D.; Morón, C.; Saiz, P. New test methods to determine water absorption by capillarity. Experimental study in masonry mortars. Constr. Build. Mater. 2022, 319, 125988. [Google Scholar] [CrossRef]
- Koisachevskyi, D.; Abahri, K.; Daubresse, A.; Prat, E.; Chaouche, M. Assessment of the hygrothermal, microstructural and chemical evolution of a hemp-based cementitious mortar under ETICS total weathering aging protocol. Constr. Build. Mater. 2022, 314, 125471. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, C.; Gao, S.; Wang, F. Predicting the bond strength between steel wire and mortar based on interfacial porosity and shrinkage. J. Build. Eng. 2023, 68, 106188. [Google Scholar] [CrossRef]
- UNE-EN 998-2:2018; Specification for Mortar for Masonry—Part 2: Masonry Mortar. AENOR: Madrid, Spain, 2018.
- UNE-EN 998-1:2018; Specification for Mortar for Masonry—Part 1: Rendering and Plastering Mortar. AENOR: Madrid, Spain1, 2018.
- Del Rio, M.; Santa-Cruz, J.; Villoria, P.; Santos, R.; González, M. Eco plaster mortars with addition of waste for high hardness coatings. Constr. Build. Mater. 2018, 158, 649–656. [Google Scholar] [CrossRef]
- Yedra, E.; Ferrández, D.; Morón, C.; Gómez, E. New System to Determine the Evolution of the Dynamic Young’s Modulus from Early Ages in Masonry Mortars. Appl. Sci. 2020, 10, 8129. [Google Scholar] [CrossRef]
- Morón, C.; Saiz, P.; Ferrández, D.; García-Fuentevilla, L. New System of Shrinkage Measurement through Cement Mortars Drying. Sensors 2017, 17, 522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page, J.; Sonebi, M.; Amziane, S. Design and multi-physical properties of a new hybrid hemp-flax composite material. Constr. Build. Mater. 2017, 139, 502–512. [Google Scholar] [CrossRef] [Green Version]
- Dávila, R.; Lopez, L.G.; Valdez, P.; Juárez, C.A.; Durán, A. Lechugilla natural fiber as internal curing agent in self compacting concrete (SCC): Mechanical properties, shrinkage and durability. Cem. Concr. Compos. 2020, 112, 103686. [Google Scholar] [CrossRef]
- Sun, C.; Chen, L.; Xiao, J.; Zuo, J.; Wu, H. Effects of eco powders from solid waste on freeze-thaw resistance of mortar. Constr. Build. Mater. 2022, 333, 127405. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, W.; Ge, Y.; Liu, P.; Zhang, A. Analysis of freeze-thaw damage and pore structure deterioration of mortar by low-field NMR. Constr. Build. Mater. 2022, 319, 126097. [Google Scholar] [CrossRef]
- Guler, S.; Funda, Z. Workability & mechanical properties of the single and hybrid basalt fiber reinforced volcanic ash-based cement mortars after freeze–thaw cycles. Structures 2023, 48, 1537–1547. [Google Scholar] [CrossRef]
- Iucolano, F.; Liguori, B.; Colella, C. Fibre-reinforced lime-based mortars: A possible resource for ancient masonry restoration. Constr. Build. Mater. 2013, 38, 785–789. [Google Scholar] [CrossRef]
- United Nations Fundation. Sustainable Development Goals. 2015. Available online: https://www.un.org/sustainabledevelopment/es/objetivos-de-desarrollo-sostenible/ (accessed on 6 June 2023).
CaO | SiO2 | SO3 | Al2O3 | Fe2O3 | K2O | TiO2 | MgO | SrO | NaO2 | MnO | P2O5 |
---|---|---|---|---|---|---|---|---|---|---|---|
64.94 | 19.71 | 4.12 | 3.76 | 3.24 | 0.32 | 0.16 | 1.87 | 0.08 | 0.30 | 0.08 | 0.13 |
Value Studied | Standard | Result |
---|---|---|
Fine Content (%) | UNE EN 933-1 [49] | 2.03 |
Fineness Modulus (%) | UNE-EN 13139 [50] | 4.13 |
Friability (%) | UNE-EN 146404 [51] | 21.21 |
Bulk Density (kg/m3) | UNE-EN 1097-3 [52] | 1594 |
Dry Density (kg/m3) | UNE-EN 1097-6 [53] | 2516 |
Water Absorption (%) | UNE-EN 1097-6 [53] | 0.98 |
Mortar | Cement (g) | Water (g) | Sand (g) | Hemp Additions (g) | Consistency (mm) | ||
---|---|---|---|---|---|---|---|
Fibre | Powder | Pellet | UNE-EN 1015-2:2007 [62] | ||||
Reference | 450 | 248 | 1350 | — | — | — | 174 |
Fibre | 450 | 248 | 1350 | 20 | — | — | 177 |
Powder | 450 | 248 | 900 | — | 30 | — | 178 |
Pellet | 450 | 320 | 450 | — | — | 90 | 169 |
Quartz | Potassium Feldspar | Plagioclase | Phyllosilicates | Calcite | Dolomite | Gypsum | Belite | Portlandite | Ettringite |
---|---|---|---|---|---|---|---|---|---|
52 | 15 | 12 | 7 | 5 | 1 | 2 | 2 | 3 | 3 |
Sample | Capillarity Absorption (kg/m2min0.5) | Open Porosity (%) | Total Water Absorption (%) |
---|---|---|---|
Reference | 0.54 ± 0.03 | 18.3 ± 2.1 | 31.7 ± 1.5 |
Fibre | 0.57 ± 0.05 | 19.1 ± 1.1 | 34.1 ± 1.4 |
Powder | 0.65 ± 0.06 | 22.5 ± 0.9 | 38.3 ± 0.5 |
Pellet | 0.72 ± 0.05 | 27.4 ± 1.2 | 43.3 ± 0.8 |
Sample | Bonding Strength (MPa) | Shore D Surface Hardness | MOEus (MPa) |
---|---|---|---|
Reference | 0.53 ± 0.04 | 86 ± 3 | 17,833 ± 301 |
Fibre | 0.45 ± 0.02 | 81 ± 5 | 10,314 ± 215 |
Powder | 0.41 ± 0.05 | 74 ± 2 | 7486 ± 216 |
Pellet | 0.34 ± 0.03 | 62 ± 4 | 4031 ± 287 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrández, D.; Álvarez Dorado, M.; Zaragoza-Benzal, A.; Leal Matilla, A. Feasibility of Ecofriendly Mortars with Different Hemp Additions for Use in Building Sector. Heritage 2023, 6, 4901-4918. https://doi.org/10.3390/heritage6070261
Ferrández D, Álvarez Dorado M, Zaragoza-Benzal A, Leal Matilla A. Feasibility of Ecofriendly Mortars with Different Hemp Additions for Use in Building Sector. Heritage. 2023; 6(7):4901-4918. https://doi.org/10.3390/heritage6070261
Chicago/Turabian StyleFerrández, Daniel, Manuel Álvarez Dorado, Alicia Zaragoza-Benzal, and Alberto Leal Matilla. 2023. "Feasibility of Ecofriendly Mortars with Different Hemp Additions for Use in Building Sector" Heritage 6, no. 7: 4901-4918. https://doi.org/10.3390/heritage6070261
APA StyleFerrández, D., Álvarez Dorado, M., Zaragoza-Benzal, A., & Leal Matilla, A. (2023). Feasibility of Ecofriendly Mortars with Different Hemp Additions for Use in Building Sector. Heritage, 6(7), 4901-4918. https://doi.org/10.3390/heritage6070261