Tuning and Effectiveness in Heritage Models
Abstract
:1. Introduction
2. Tuning Heritage Models
2.1. Purpose
2.2. Theory and Process
2.3. Scale: Time and Location
2.4. Materials and Heritage Elements
3. Effective Models
4. Conclusions
Author Contributions
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taboroff, J. Cultural Heritage and Natural Disasters: Incentives for Risk Management and Mitigation. In Managing Disaster Risk in Emerging Economies; Kreimer, A., Arnold, M., Eds.; World Bank: Washington, DC, USA, 2000; pp. 71–79. [Google Scholar]
- Zammit, N.; Bianco, L. Computation of Heritage Values: Towards a Holistic Method to Assess Built Heritage. Herit. Sustain. Dev. 2022, 4, 101–110. [Google Scholar] [CrossRef]
- Clark, K. Values in Cultural Resource Management. In Heritage Values in Contemporary Society; Smith, G.S., Messenger, P., Soderland, H., Eds.; Left Coast Press: Walnut Creek, CA, USA, 2010; pp. 89–100. [Google Scholar]
- Holtorf, C. Averting Loss Aversion in Cultural Heritage. Int. J. Herit. Stud. 2015, 21, 405–421. [Google Scholar] [CrossRef]
- Kennedy, C.J. The Role of Heritage Science in Conservation Philosophy and Practice. Hist. Environ. Policy Pract. 2015, 6, 214–228. [Google Scholar] [CrossRef]
- Sabbioni, C.; Cassar, M.; Brimblecombe, P.; Tidblad, J.; Kozlowski, R.; Drdácký, M.; Sáiz-Jiménez, C.; Grøntoft, T.; Wainwright, I.; Ariño, X. Global Climate Change Impact on Built Heritage and Cultural Landscapes. In Proceedings of the International Conference on Heritage, Weathering and Conservation, HWC, Madrid, Spain, 21–24 June 2006; pp. 395–401. [Google Scholar]
- Leissner, J.; Kilian, R.; Kotova, L.; Jacob, D.; Mikolajewicz, U.; Broström, T.; Ashley-Smith, J.; Schellen, H.L.; Martens, M.; van Schijndel, J.; et al. Climate for Culture: Assessing the Impact of Climate Change on the Future Indoor Climate in Historic Buildings Using Simulations. Herit. Sci. 2015, 3, 38. [Google Scholar] [CrossRef] [Green Version]
- Richards, J.; Brimblecombe, P. The Transfer of Heritage Modelling from Research to Practice. Herit. Sci. 2022, 10, 17. [Google Scholar] [CrossRef]
- Johnson, D.D.P.; Blumstein, D.T.; Fowler, J.H.; Haselton, M.G. The Evolution of Error: Error Management, Cognitive Constraints, and Adaptive Decision-Making Biases. Trends Ecol. Evol. 2013, 28, 474–481. [Google Scholar] [CrossRef]
- Richards, J.; Brimblecombe, P.; Engelstaedter, S. Modelling Temperature-Precipitation Pressures on African Timber Heritage. Int. J. Climatol. (under review).
- Brimblecombe, P.; Richards, J. Köppen Climates and Scheffer Index as Indicators of Timber Risk in Europe. Herit Sci. 2023, 11, 148. [Google Scholar] [CrossRef]
- Lloyd, H.; Brimblecombe, P.; Lithgow, K. Economics of Dust. Stud. Conserv. 2007, 52, 135–146. [Google Scholar] [CrossRef]
- Lloyd, H. Quantifying Housekeeping Challenge and Conservation Need. Heritage 2023, 6, 3757–3776. [Google Scholar] [CrossRef]
- Bionda, D. RUNSALT—A Graphical User Interface to the ECOS Thermodynamic Model for the Prediction of the Behaviour of Salt Mixtures under Changing Climate Conditions. 2005. Available online: http://science.sdf-eu.org/runsalt/ (accessed on 16 June 2023).
- Blades, N.; Kruppa, D.; Cassar, M. Development of a Web-Based Software Tool for Predicting the Occurrence and Effect of Air Pollutants inside Museum Buildings. In Proceedings of the ICOM Committee for Conservation 13th Triennial Meeting, Rio de Janeiro, Brazil, 20–27 September 2002; ICOM, Ed.; James & James: London, UK, 2002. [Google Scholar]
- Kupczak, A.; Jędrychowski, M.; Strojecki, M.; Krzemień, L.; Bratasz, Ł.; Łukomski, M.; Kozłowski, R. HERIe: A Web-Based Decision-Supporting Tool for Assessing Risk of Physical Damage Using Various Failure Criteria. Stud. Conserv. 2018, 63, 151–155. [Google Scholar] [CrossRef]
- Grøntoft, T.; Stoveland, L.P. Painted Wood Climate Risk Analysis by the HERIe Model of Building Protection and Conservation Heating Scenarios in Norwegian Medieval Stone Churches. Heritage 2023, 6, 3089–3112. [Google Scholar] [CrossRef]
- Thickett, D. Practical Use of Damage Functions for Environmental Preventive Conservation and Sustainability—Examples from Naturally Ventilated Buildings. Heritage 2023, 6, 2633–2649. [Google Scholar] [CrossRef]
- Godts, S.; Steiger, M.; Orr, S.A.; Stahlbuhk, A.; Desarnaud, J.; De Clercq, H.; Cnudde, V.; De Kock, T. Modeling Salt Behavior with ECOS/RUNSALT: Terminology, Methodology, Limitations, and Solutions. Heritage 2022, 5, 3648–3663. [Google Scholar] [CrossRef]
- Chabas, A.; Kloppmann, W.; Sizun, J.P.; Wille, G.; Coman, A.; Petitmangin, A.; Nowak, S.; Martin, E.; Jurgens, M.A. Sources and Chronology of Soluble Salt Formation in a Medieval Dovecote Caught up in Urbanisation: A Resilience Story? Env. Earth Sci. 2022, 81, 550. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H. The Synergic Impacts of Salt Mixture and Frost Damage on Rock Decay: Implications for the Deterioration of Rock-Hewn Heritages. Herit. Sci. 2023. [Google Scholar] [CrossRef]
- Hu, T.; Brimblecombe, P.; Zhang, Z.; Song, Y.; Liu, S.; Zhu, Y.; Duan, J.; Cao, J.; Zhang, D. Capillary Rise Induced Salt Deterioration on Ancient Wall Paintings at the Mogao Grottoes. Sci. Total Environ. 2023, 881, 163476. [Google Scholar] [CrossRef]
- Pintér, F. The Combined Use of Ion Chromatography and Scanning Electron Microscopy to Assess Salt-Affected Mineral Materials in Cultural Heritage. J. Am. Inst. Conserv. 2021, 61, 85–99. [Google Scholar] [CrossRef]
- Perez, H.; Tah, J.H.M.; Mosavi, A. Deep Learning for Detecting Building Defects Using Convolutional Neural Networks. Sensors 2019, 19, 3556. [Google Scholar] [CrossRef] [Green Version]
- Hatır, M.E.; İnce, İ.; Korkanç, M. Intelligent Detection of Deterioration in Cultural Stone Heritage. J. Build. Eng. 2021, 44, 102690. [Google Scholar] [CrossRef]
- Hart, A.; Wyatt, J. Evaluating Black-Boxes as Medical Decision Aids: Issues Arising from a Study of Neural Networks. Med. Inf. 1990, 15, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Song, Y. Intangible Cultural Heritage Management Using Machine Learning Model: A Case Study of Northwest Folk Song Huaer. Sci. Program. 2022, 2022, 1383520. [Google Scholar] [CrossRef]
- Bretti, G.; Ceseri, M. Climate Change Effects on Carbonation Process: A Scenario-Based Study. Heritage 2023, 6, 236–257. [Google Scholar] [CrossRef]
- Hart, S.; Raymond, K.; Williams, C.J.; Rutherford, W.A.; DeGayner, J. Modeling Earthen Treatments for Climate Change Effects. Heritage 2023, 6, 4214–4226. [Google Scholar] [CrossRef]
- Brimblecombe, P.; Richards, J. Moisture as a Driver of Long-Term Threats to Timber Heritage—Part II: Risks Imposed on Structures at Local Sites. Heritage 2022, 5, 2966–2986. [Google Scholar] [CrossRef]
- Manachini, B. Alien Insect Impact on Cultural Heritage and Landscape: An Underestimated Problem. Conserv. Sci. Cult. Herit. 2015, 15, 61–72. [Google Scholar] [CrossRef]
- Strlič, M.; Thickett, D.; Taylor, J.; Cassar, M. Damage Functions in Heritage Science. Stud. Conserv. 2013, 58, 80–87. [Google Scholar] [CrossRef]
- Richards, J.; Brimblecombe, P. Moisture as a Driver of Long-Term Threats to Timber Heritage—Part I: Changing Heritage Climatology. Heritage 2022, 5, 1929–1946. [Google Scholar] [CrossRef]
- Verney-Carron, A.; Sessegolo, L.; Lefèvre, R.-A.; Brimblecombe, P. Modelling the Alteration of Medieval Stained Glass as a Function of Climate and Pollution: Comparison between Different Methodologies. Heritage 2023, 6, 3074–3088. [Google Scholar] [CrossRef]
- Sesana, E.; Gagnon, A.S.; Ciantelli, C.; Cassar, J.; Hughes, J.J. Climate Change Impacts on Cultural Heritage: A Literature Review. WIREs Clim. Change 2021, 12, e710. [Google Scholar] [CrossRef]
- Vidal, F.; Vicente, R.; Mendes Silva, J. Review of Environmental and Air Pollution Impacts on Built Heritage: 10 Questions on Corrosion and Soiling Effects for Urban Intervention. J. Cult. Herit. 2019, 37, 273–295. [Google Scholar] [CrossRef]
- Inkpen, R.J.; Viles, H.A.; Moses, C.; Baily, B.; Collier, P.; Trudgill, S.T.; Cooke, R.U. Thirty Years of Erosion and Declining Atmospheric Pollution at St Paul’s Cathedral, London. Atmos. Environ. 2012, 62, 521–529. [Google Scholar] [CrossRef]
- Bonazza, A.; Brimblecombe, P.; Grossi, C.M.; Sabbioni, C. Carbon in Black Crusts from the Tower of London. Environ. Sci. Technol. 2007, 41, 4199–4204. [Google Scholar] [CrossRef]
- Del Monte, M.; Ausset, P.; Lefèvre, R.A.; Thiébault, S. Evidence of Pre-Industrial Air Pollution from the Heads of the Kings of Juda Statues from Notre Dame Cathedral in Paris. Sci. Total Env. 2001, 273, 101–109. [Google Scholar] [CrossRef]
- Wilhelm, K.; Longman, J.; Orr, S.A.; Viles, H. Stone-Built Heritage as a Proxy Archive for Long-Term Historical Air Quality: A Study of Weathering Crusts on Three Generations of Stone Sculptures on Broad Street, Oxford. Sci. Total Environ. 2021, 759, 143916. [Google Scholar] [CrossRef]
- Thornbush, M.; Viles, H. The Changing Façade of Magdalen College, Oxford: Reconstructing Long-Term Soiling Patterns from Archival Photographs and Traffic Records. J. Arch. Conserv. 2005, 11, 40–57. [Google Scholar] [CrossRef]
- Grossi, C.M.; Brimblecombe, P. Past and Future Colouring Patterns of Historic Stone Buildings. Mater. Construcción 2008, 58, 143–160. [Google Scholar] [CrossRef] [Green Version]
- Brimblecombe, P. Air Pollution and Architecture: Past, Present and Future. J. Arch. Conserv. 2000, 6, 30–46. [Google Scholar] [CrossRef]
- Brimblecombe, P.; Grossi, C.M. Millennium-Long Damage to Building Materials in London. Sci. Total Env. 2009, 407, 1354–1361. [Google Scholar] [CrossRef]
- Grøntoft, T. Historical Dry Deposition of Air Pollution in the Urban Background in Oslo, Norway, Compared to Western European Data. Atmos. Environ. 2021, 267, 118777. [Google Scholar] [CrossRef]
- Bonazza, A.; Sardella, A. Climate Change and Cultural Heritage: Methods and Approaches for Damage and Risk Assessment Addressed to a Practical Application. Heritage 2023, 6, 3578–3589. [Google Scholar] [CrossRef]
- Kapsomenakis, J.; Douvis, C.; Poupkou, A.; Zerefos, S.; Solomos, S.; Stavraka, T.; Melis, N.S.; Kyriakidis, E.; Kremlis, G.; Zerefos, C. Climate Change Threats to Cultural and Natural Heritage UNESCO Sites in the Mediterranean. Environ. Dev. Sustain. 2022, 1–26. [Google Scholar] [CrossRef]
- Saha, A.; Pal, S.C.; Santosh, M.; Janizadeh, S.; Chowdhuri, I.; Norouzi, A.; Roy, P.; Chakrabortty, R. Modelling Multi-Hazard Threats to Cultural Heritage Sites and Environmental Sustainability: The Present and Future Scenarios. J. Clean. Prod. 2021, 320, 128713. [Google Scholar] [CrossRef]
- Daly, C.; Engel Purcell, C.; Donnelly, J.; Chan, C.; MacDonagh, M.; Cox, P. Climate Change Adaptation Planning for Cultural Heritage, a National Scale Methodology. J. Cult. Her. Manag. Sustain. Dev. 2021, 11, 313–329. [Google Scholar] [CrossRef]
- Tola, H.G.; Brimblecombe, P. Environmental Pressures at Dirre Sheikh Hussein Sanctuary. Heritage 2022, 5, 2661–2672. [Google Scholar] [CrossRef]
- Hernández-Montes, E.; Hdz-Gil, L.; Coletti, C.; Dilaria, S.; Germinario, L.; Mazzoli, C. Prediction Model for the Evolution of the Deterioration of Bricks in Heritage Buildings in Venice Caused by Climate Change. Heritage 2023, 6, 483–491. [Google Scholar] [CrossRef]
- Brimblecombe, P.; Richards, J. Temporal Resolution of Climate Pressures on Façades in Oxford 1815–2021. Theor. Appl. Clim. 2023, 153, 561–572. [Google Scholar] [CrossRef]
- Bonazza, A.; Messina, P.; Sabbioni, C.; Grossi, C.M.; Brimblecombe, P. Mapping the Impact of Climate Change on Surface Recession of Carbonate Buildings in Europe. Sci. Total Environ. 2009, 407, 2039–2050. [Google Scholar] [CrossRef]
- Vyshkvarkova, E.; Sukhonos, O. Climate Change Impact on the Cultural Heritage Sites in the European Part of Russia over the Past 60 Years. Climate 2023, 11, 50. [Google Scholar] [CrossRef]
- Ryhl-Svendsen, M.; Smedemark, S.H. Mass-Transfer Air Pollution Modeling in Heritage Buildings. Heritage 2023, 6, 4768–4786. [Google Scholar] [CrossRef]
- Richards, J.; Orr, S.A.; Viles, H. Reconceptualising the Relationships between Heritage and Environment within an Earth System Science Framework. J. Cult. Herit. Manag. Sustain. Dev. 2019, 10, 122–129. [Google Scholar] [CrossRef] [Green Version]
- Al-Maiyah, S.; Elkadi, H. The Role of Daylight in Preserving Identities in Heritage Context. Renew. Sustain. Energy Rev. 2007, 11, 1544–1557. [Google Scholar] [CrossRef]
- Matthews, T.; Grant-Smith, D. Managing Ensemble Scale Heritage Conservation in the Shandon Architectural Conservation Area in Cork, Ireland. Cities 2017, 62, 152–158. [Google Scholar] [CrossRef] [Green Version]
- Pineda, P.; Iranzo, A. Analysis of Sand-Loaded Air Flow Erosion in Heritage Sites by Computational Fluid Dynamics: Method and Damage Prediction. J. Cult. Herit. 2017, 25, 75–86. [Google Scholar] [CrossRef]
- Richards, J.; Mayaud, J.; Zhan, H.; Wu, F.; Bailey, R.; Viles, H. Modelling the Risk of Deterioration at Earthen Heritage Sites in Drylands. Earth Surf. Process Landf. 2020, 45, 2401–2416. [Google Scholar] [CrossRef]
- Cui, K.; Wu, G.; Du, Y.; An, X.; Wang, Z. The Coupling Effects of Freeze-Thaw Cycles and Salinization Due to Snowfall on the Rammed Earth Used in Historical Freeze-Thaw Cycles Relics in Northwest China. Cold Reg. Sci. Technol. 2019, 160, 288–299. [Google Scholar] [CrossRef]
- Deprez, M.; De Kock, T.; De Schutter, G.; Cnudde, V. A Review on Freeze-Thaw Action and Weathering of Rocks. Earth Sci. Rev. 2020, 203, 103143. [Google Scholar] [CrossRef]
- Hanazato, T.; Niitsu, Y.; Morii, M.; Minowa, C.; Nitto, K.; Yokoo, T. Seismic and Wind Performance of Five-Storied Pagoda of Timber Heritage Structure Affected by Great East Japan Earthquake of 2011 and Typhoon Jelawat of 2012. In Proceedings of the Structural Analysis of Historical Constructions: Anamnesis, diagnosis, therapy, controls—Proceedings of the 10th International Conference on Structural Analysis of Historical Constructions, SAHC, Leuven, Belgium, 13–15 September 2016; CRC Press/Balkema: London, UK, 2016; pp. 1343–1348. [Google Scholar]
- Ravanelli, R.; Riguzzi, F.; Anzidei, M.; Vecchio, A.; Nigro, L.; Spagnoli, F.; Crespi, M. Sea Level Rise Scenario for 2100 A.D. for the Archaeological Site of Motya. Rend. Lincei 2019, 30, 747–757. [Google Scholar] [CrossRef]
- West Dean College MA Collections Care & Conservation Management. Available online: https://www.westdean.ac.uk/study/degrees-and-diplomas/courses/ma-collections-care-and-conservation-management (accessed on 13 June 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richards, J.; Brimblecombe, P. Tuning and Effectiveness in Heritage Models. Heritage 2023, 6, 5516-5523. https://doi.org/10.3390/heritage6070290
Richards J, Brimblecombe P. Tuning and Effectiveness in Heritage Models. Heritage. 2023; 6(7):5516-5523. https://doi.org/10.3390/heritage6070290
Chicago/Turabian StyleRichards, Jenny, and Peter Brimblecombe. 2023. "Tuning and Effectiveness in Heritage Models" Heritage 6, no. 7: 5516-5523. https://doi.org/10.3390/heritage6070290
APA StyleRichards, J., & Brimblecombe, P. (2023). Tuning and Effectiveness in Heritage Models. Heritage, 6(7), 5516-5523. https://doi.org/10.3390/heritage6070290