Multianalytical Study of a Painting on Copper
Abstract
:1. Introduction
2. Materials and Methods
2.1. X-ray Fluorescence with Monte Carlo Simulation
- Determining the real X-ray emission, which is arguably the most important step due to its influence on the performance of the simulation.
- Describing the measurement geometry.
- Determining the X-ray detector response in terms of both energy efficiency and energy resolution, with the latter including the shape of the peak.
- Creating a preliminary model of the sample, considering both its layer structure and composition. This step is primarily based on the peaks observed in the XRF spectrum and a visual inspection of the sample, including its colors in the picture or the results of multiband photographic analysis.
- Performing a simulation of the measurement.
- Comparing the experimental and simulated spectra.
- If any discrepancies are observed, adjusting the sample’s structure or composition and repeating steps b and c. The estimation of the “discrepancy” is initially based on visual inspection and is then refined using a chi-squared test.
- E is the photon energy and Z the atomic number;
- I is the number of photons detected;
- I0 is the number of photons emitted by the X-ray source;
- μ(E,Z) is the so-called linear absorption coefficient;
- x is the path traveled inside the sample.
2.2. Multiband Imaging
2.3. Infrared Spectroscopy
2.4. Raman Spectroscopy
2.5. Optical Microscopy
3. Results and Discussion
3.1. Conservation Status
3.2. Metallic Support and Preparation Layer
3.3. Pigments
3.3.1. Flesh Tones
3.3.2. Red
3.3.3. White
3.3.4. Brown
3.3.5. Gold
3.3.6. Blue and Dark Areas
3.3.7. Grayish-Brown Background
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Komanecky, M.K.; Horovitz, I.; Eastaugh, N. Antwerp artists and the practice of painting on copper. Stud. Conserv. 1998, 43, 136–139. [Google Scholar] [CrossRef]
- Terenzi, M.G.; Ferrucci, F.; Amadori, M.L. Dipinti su Rame: Storia, Tecnica, Fenomeni di Degrado, Diagnostica; Indicazioni per la Conservazione e il Restauro; Collana Il: Padova, Italy, 2006. [Google Scholar]
- Maetzke, A.M. (Ed.) Piero della Francesca; L’opera, Monografie: Silvana, Milan, 2013. [Google Scholar]
- Madonna col Bambino e Santi, Angeli e Federico da Montefeltro (Pala di San Bernardino), Pinacoteca di Brera. Available online: https://pinacotecabrera.org/collezione-online/opere/vergine-con-il-bambino-angeli-e-santi-pala-montefeltro/ (accessed on 30 September 2023).
- Scotti, R. Barocco Andino. Arcangeli Guerrieri, Madonne e Dee, Santi Meticci; Ananke: Torino, Italy, 2009. [Google Scholar]
- Mauquoy-Hendrickx, M. Les Estampes des Wierix: Conservées au Cabinet des Estampes de la Bibliothèque Royale Albert Ier: Catalogue Raisonné Enrichi de Notes Prises dans Diverses Autres Collections; Bibliothèque Royale Albert Ier: Bruxelles, Belgium, 1983. [Google Scholar]
- Van Ruyven-Zeman, Z.; Leesberg, M. The Wierix Family; Sound & Vision Publishers: Ouderkerk aan den Ijssel, The Netherlands, 2004; Available online: https://books.google.it/books?id=-frkAAAAMAAJ (accessed on 30 September 2023).
- British Museum. Hieronymus Wierix. Available online: https://www.britishmuseum.org/collection/object/P_1859-0709-3031 (accessed on 30 September 2023).
- Sacristán-Ramírez, C. Audible Paintings: Religious Music and Devotion to the Infancy of Christ in the Art of the Viceroyalty of Peru. MAVCOR J. 2019, 3. [Google Scholar] [CrossRef]
- Horovitz, I. Paintings on copper supports: Techniques, deterioration and conservation. Conservator 1986, 10, 44–48. [Google Scholar] [CrossRef]
- Sherman, J. The theoretical derivation of fluorescent X-ray intensities from mixtures. Spectrochim. Acta 1955, 7, 283–306. [Google Scholar] [CrossRef]
- Shiraiwa, T.; Fujino, N. Theoretical Calculation of Fluorescent X-ray Intensities in Fluorescent X-ray Spectrochemical Analysis. Jpn. J. Appl. Phys. 1966, 5, 886. [Google Scholar] [CrossRef]
- Mantler, M. X-ray fluorescence analysis of multiple-layer films. Anal. Chim. Acta 1986, 188, 25–35. [Google Scholar] [CrossRef]
- De Boer, D.K.G. Calculation of X-ray fluorescence intensities from bulk and multilayer samples. X-ray Spectrom. 1990, 19, 145–154. [Google Scholar] [CrossRef]
- Cesareo, R.; Buccolieri, G.; Castellano, A.; Lopes, R.T.; De Assis, J.T.; Ridolfi, S.; Brunetti, A.; Bustamante, A. The structure of two-layered objects reconstructed using EDXRF-analysis and internal X-ray ratios. X-ray Spectrom. 2015, 44, 233–238. [Google Scholar] [CrossRef]
- Cesareo, R.; Brunetti, A. Metal sheets thickness determined by energy-dispersive X-ray fluorescence analysis. J. X-ray Sci. Technol. 2008, 16, 119–130. [Google Scholar]
- Cesareo, R. Gold, gildings, and tumbaga from the Moche tomb of the Lady of Cao: An EDXRF test for the internal ratio method. X-ray Spectrom. 2019, 48, 202–207. [Google Scholar] [CrossRef]
- Trojek, T.; Wegrzynek, D. X-ray fluorescence Kα/Kβ ratios for a layered specimen: Comparison of measurements and Monte Carlo calculations with the MCNPX code. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2010, 619, 311–315. [Google Scholar] [CrossRef]
- Pessanha, S.; Manso, M.; Antunes, V.; Carvalho, M.L.; Sampaio, J.M. Monte Carlo simulation of portable X-ray fluorescence setup: Non-invasive determination of gold leaf thickness in indo-Portuguese panel paintings. Spectrochim. Acta Part B At. Spectrosc. 2019, 156, 1–6. [Google Scholar] [CrossRef]
- Bottigli, U.; Brunetti, A.; Golosio, B.; Oliva, P.; Stumbo, S.; Vincze, L.; Randaccio, P.; Bleuet, P.; Simionovici, A.; Somogyi, A. Voxel-based Monte Carlo simulation of X-ray imaging and spectroscopy experiments. Spectrochim. Acta Part B At. Spectrosc. 2004, 59, 1747–1754. [Google Scholar] [CrossRef]
- Golosio, B.; Schoonjans, T.; Brunetti, A.; Oliva, P.; Masala, G.L. Monte Carlo simulation of X-ray imaging and spectroscopy experiments using quadric geometry and variance reduction techniques. Comput. Phys. Commun. 2014, 185, 1044–1052. [Google Scholar] [CrossRef]
- Brunetti, A.; Sanchez Del Rio, M.; Golosio, B.; Simionovici, A.; Somogyi, A. A library for X-ray–matter interaction cross sections for X-ray fluorescence applications. Spectrochim. Acta Part B At. Spectrosc. 2004, 59, 1725–1731. [Google Scholar] [CrossRef]
- Schoonjans, T.; Brunetti, A.; Golosio, B.; Del Rio, M.S.; Solé, V.A.; Ferrero, C.; Vincze, L. The xraylib library for X-ray-matter interactions. Recent developments. Spectrochim. Acta Part B At. Spectrosc. 2011, 66, 776–784. [Google Scholar] [CrossRef]
- Brunetti, A.; Golosio, B.; Schoonjans, T.; Oliva, P. Use of Monte Carlo simulations for Cultural Heritage X-ray fluorescence analysis. Spectrochim. Acta Part B At. Spectrosc. 2015, 108, 15–20. [Google Scholar] [CrossRef]
- Van Grieken, R.; Markowicz, A. (Eds.) Handbook of X-ray Spectrometry; Practical Spectroscopy Series; CRC Press: Boca Raton, FL, USA, 2001; Volume 29. [Google Scholar]
- Brunetti, A.; Steger, T.J. X-ray spectra background fitting by projection onto convex sets. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2000, 441, 504–509. [Google Scholar] [CrossRef]
- Steenstrup, S. A simple procedure for fitting a background to a certain class of measured spectra. J. Appl. Crystallogr. 1981, 14, 226–229. [Google Scholar] [CrossRef]
- Greenberg, D.; Steinhauser, S. Integrating Imaging and Analytical Technologies for Conservation Practice; The Getty Conservation Institute: Los Angeles, CA, USA, 2013. [Google Scholar]
- Cosentino, A. Identification of pigments by multispectral imaging; a flowchart method. Herit. Sci. 2014, 2, 8. [Google Scholar] [CrossRef]
- Jones, C.; Duffy, C.; Gibson, A.; Terras, M. Understanding multispectral imaging of cultural heritage: Determining best practice in MSI analysis of historical artefacts. J. Cult. Herit. 2020, 45, 339–350. [Google Scholar] [CrossRef]
- Dyer, J.; Verri, G.; Cupitt, J. Multispectral Imaging in Reflectance and Photo-Induced Luminescence modes: A User Manual; The British Museum: London, UK, 2013. [Google Scholar]
- Webb, E.K.; Robson, S.; MacDonald, L.; Garside, D.; Evans, R. Spectral and 3D cultural heritage documentation using a modified camera. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2018, 42, 1183–1190. [Google Scholar] [CrossRef]
- Derrik, M.R.; Stulik, D.; Landy, J.M. Infrared Spectroscopy in Conservation Science; The Getty Conservation Institute: Los Angeles, CA, USA, 1983. [Google Scholar] [CrossRef]
- Meilunas, R.J.; Bentsen, J.G.; Steinberg, A. Analysis of aged paint binders by ftir spectroscopy. Stud. Conserv. 1990, 35, 33–51. [Google Scholar] [CrossRef]
- Rosi, F.; Cartechini, L.; Monico, L.; Gabrieli, F.; Vagnini, M.; Buti, D.; Doherty, B.; Anselmi, C.; Brunetti, B.G.; Miliani, C. Tracking Metal Oxalates and Carboxylates on Painting Surfaces by Non-Invasive Reflection Mid-FTIR Spectroscopy; Metal Soap in Art. Cultural Heritage Science; Springer: Cham, Switzerland, 2019; pp. 173–193. [Google Scholar] [CrossRef]
- Smith, G.D.; Clark, R.J.H. Raman microscopy in archaeological science. J. Archaeol. Sci. 2004, 31, 1137–1160. [Google Scholar] [CrossRef]
- Jehlička, J.; Culka, A.; Bersani, D.; Vandenabeele, P. Comparison of seven portable Raman spectrometers: Beryl as a case study. J. Raman Spectrosc. 2017, 48, 1289–1299. [Google Scholar] [CrossRef]
- Innocenti, S.; Balbas, D.Q.; Pezzati, L.; Fontana, R.; Striova, J. Portable Sequentially Shifted Excitation Raman Spectroscopy to Examine Historic Powders Enclosed in Glass Vials. Sensors 2022, 22, 3560. [Google Scholar] [CrossRef]
- Rodriguez, S.H.; Appoloni, C.R.; Campos, P.H.O.V.; Gonçalves, B.; Kajiya, E.A.M.; Molari, R.; Rizzutto, M.A.; Winter, C. Non-Destructive and portable analyses helping the study and conservation of a Saraceni copper plate painting in the São Paulo museum of art. Microchem. J. 2020, 155, 104787. [Google Scholar] [CrossRef]
- Bacci, M. UV-VIS-NIR, FT-IR and FORS Spectroscopies; Modern Analytical Methods in Art and Archaeology; Chemical Analysis Series; Ciliberto, E., Spoto, G., Eds.; John Wiley & Sons: New York, NY, USA, 2000; Volume 155, pp. 321–361. [Google Scholar]
- Milani, C.; Rosi, F.; Daveri, A.; Brunetti, B.G. Reflation infrared spectroscopy for the non-invasive in situ study of artists’ pigments. Appl. Phisics A Mater. Sci. Process. 2012, 100, 295–307. [Google Scholar] [CrossRef]
- Vagnini, M.; Milani, C.; Cartechini, L.; Rocchi, P.; Brunetti, B.G.; Sgamellotti, A. FT-NIR spectroscopy for non-invasive identification of natural polymers and resins in easel paintings. Anal. Bioanal. Chem. 2009, 395, 2107–2118. [Google Scholar] [CrossRef]
- IRUG Database. Available online: https://www.irug.org/ (accessed on 4 January 2024).
- Corregidor, V.; Oliveira, A.R.; Rodrigues, P.A.; Alves, L.C. Paintings on copper by the Flemish artist Frans Francken II: PIXE characterization by external microbeam. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2015, 348, 291–295. [Google Scholar] [CrossRef]
- Martin, E.; Eveno, M.; Le Chanu, P. Painting on Copper: Herman van Swanevelt, landscapes with two shepherds and a woman on a donkey. Kermes Art Conserv. Restor. 1999, 12, 64–66. [Google Scholar]
- Van der Weerd, J.; van Loon, A.; Boon, J.J. FTIR studies of the effects of pigments on the aging of oil. Stud. Conserv. 2005, 50, 3–22. [Google Scholar] [CrossRef]
- Carlesi, S.; Picollo, M.; Ricci, M.; Becucci, M. The ageing of model pigment/linseed oil systems studied by means of vibrational spectroscopies and chemometrics. Vib. Spectrosc. 2018, 99, 86–92. [Google Scholar] [CrossRef]
- Bouchard, M.; Smith, D.C. Catalogue of 45 reference Raman spectra of minerals concerning research in art history or archaeology, especially on corroded metals and coloured glass. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2003, 59, 2247–2266. [Google Scholar] [CrossRef] [PubMed]
- Morsch, S.; Bastidas, P.D.; Rowland, S.M. AFM-IR insights into the chemistry of interfacial tracking. J. Mater. Chem. A 2017, 5, 24508–24517. [Google Scholar] [CrossRef]
- Genestar, C.; Pons, C. Earth pigments in painting: Characterisation and differentiation by means of FTIR spectroscopy and SEM-EDS microanalysis. Anal. Bioanal. Chem. 2005, 382, 269–274. [Google Scholar] [CrossRef]
- Helwig, K. The Characterisation of Iron Earth Pigments Using Infrared Spectroscopy. In Proceedings of the Second Infrared and Raman Users Group Conference (IRUG2), London, UK, 12–13 September 1995; Victoria & Albert Museum: London, UK, 1995; pp. 83–92. [Google Scholar]
- Bikiaris, D.; Daniilia, S.; Sotiropoulou, S.; Katsimbiri, O.; Pavlidou, E.; Moutsatsou, A.P.; Chryssoulakis, Y. Ochre-differentiation through micro-Raman and micro-FTIR spectroscopies: Application on wall paintings at Meteora and Mount Athos, Greece. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2000, 56, 3–18. [Google Scholar] [CrossRef]
- Bevilacqua, N.; Borgioli, L.; Gracia, I.A. I pigmenti Nell’arte: Dalla Preistoria Alla Rivoluzione Industriale; Il Prato: Padova, Italy, 2010. [Google Scholar]
- Vetter, W.; Latini, I.; Schreiner, M. Azurite in medieval illuminated manuscripts: A reflection-FTIR study concerning the characterization of binding media. Herit. Sci. 2019, 7, 21. [Google Scholar] [CrossRef]
- Lluveras, A.; Boularand, S.; Andreotti, A.; Vendrell-Saz, M. Degradation of azurite in mural paintings: Distribution of copper carbonate, chlorides and oxalates by SRFTIR. Appl. Phys. A Mater. Sci. Process. 2010, 99, 363–375. [Google Scholar] [CrossRef]
MBI Technique | Filter on Lens | Source of Radiation |
---|---|---|
UVR | XNite 330C | 4× TL-D BLB 18W (Philips, Amsterdam, The Netherlands) |
UVL | XNite CC1 + Zeiss T* UV | 4× TL-D BLB 18W (Philips, The Netherlands) |
VIS | XNite CC1 | 2× SuperLED 16W (6500 K) (Beghelli, Valsamoggia, Italy) |
VIL | XNite 715 nm | 2× SuperLED 16W (6500 K) (Beghelli, Italy) |
NIR 1 | XNite 715 nm | 2× BR125 IR 150W (Philips, The Netherlands) |
NIR 2 | XNite 1000 nm | 2× BR125 IR 150W (Philips, The Netherlands) |
Spot | Painting Layer (μm) | Prep. Layer (μm) | Copper Subst. (μm) |
---|---|---|---|
Dark blue on the blanket | 80 | 10 | 600 |
Light blue on the blanket | 130 | 10 | 600 |
Brownish-gray background | 27 | 5 | 600 |
Blue, Virgin’s mantle | 50 | 10 | 600 |
Brown, headboard | 100 | 10 | 600 |
Light red, Virgin’s vest, chest | 410 | 10 | 600 |
Dark red, Virgin’s red vest, chest, | 260 | 10 | 600 |
Virgin’s veil | 180 | 10 | 600 |
Flesh tone | 420 | 10 | 600 |
White pillow | 50 | 10 | 600 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iannaccone, R.; Ponzeletti, A.; Bartolozzi, G.; Malfatti, L.; Brunetti, A. Multianalytical Study of a Painting on Copper. Heritage 2024, 7, 301-323. https://doi.org/10.3390/heritage7010015
Iannaccone R, Ponzeletti A, Bartolozzi G, Malfatti L, Brunetti A. Multianalytical Study of a Painting on Copper. Heritage. 2024; 7(1):301-323. https://doi.org/10.3390/heritage7010015
Chicago/Turabian StyleIannaccone, Roberta, Alessandro Ponzeletti, Giovanni Bartolozzi, Luca Malfatti, and Antonio Brunetti. 2024. "Multianalytical Study of a Painting on Copper" Heritage 7, no. 1: 301-323. https://doi.org/10.3390/heritage7010015
APA StyleIannaccone, R., Ponzeletti, A., Bartolozzi, G., Malfatti, L., & Brunetti, A. (2024). Multianalytical Study of a Painting on Copper. Heritage, 7(1), 301-323. https://doi.org/10.3390/heritage7010015