Use of Computerised X-ray Tomography in the Study of the Fabrication Methods and Conservation of Ceramics, Glass and Stone Building Materials
Abstract
:1. Introduction
2. Methods of CXT
2.1. Image Acquisition
2.2. Basic Image Analysis
3. Ceramic Materials
3.1. Determination of Fabrication Technique
3.1.1. Features Detected by CXT
- Detection of joins between different basic construction units (CUs), such as coils;
- Detection of joins between different constituent parts of the vessel, known as construction parts (CPs), such as bases or handles;
- Mapping of voids remaining after burning out of organic temper, or the thermal decomposition of inorganic tempers like carbonates;
- Mapping of pores and their orientations within the ceramic fabric itself;
- Detection of non-plastic inclusions.
- CXT can also be used to discover internal features that result from other features of pottery manufacture or later treatment, such as:
- ▪
- cracks that form during various phases of drying;
- ▪
- slips applied;
- ▪
- sediments;
- ▪
- secondary mending operations.
- the initial form of the CUs;
- the source of energy for firing;
- the power, direction, and type (compressive or shear, discontinuous or continuous) of the pressures exerted;
- the tools used in interventions;
- the humidity of the clay.
3.1.2. Use of Experimental Archaeology
3.1.3. Exemplars of the Application of CXT to Fabrication Technique Determination
3.2. Studies of Temper Materials Themselves
3.3. Decoration
3.4. Uses of Ceramics
3.5. Validation of Typological Classification
3.6. Special CXT and Image Data Analysis Techniques
4. Glass Materials
4.1. Determination of Fabrication Technique
4.2. Detecting Glass Additives and Inclusions
4.3. K-Edge Imaging of Specific Elements
4.4. Corroded Glass and Glass Conservation
5. Stone Building Materials
5.1. CXT Applications to Building Stone
5.2. Issues in Making Comparisons between Pore Size Distributions
5.3. Conservation of Building Stones
5.4. Temporally Evolving Systems
6. Discussion
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Rigby, S.P. Structural Characterisation of Natural and Industrial Porous Materials: A Manual; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar]
- X-ray Computed Tomography (CT). Available online: https://serc.carleton.edu/research_education/geochemsheets/techniques/CT.html (accessed on 1 October 2024).
- Kozatsas, J.; Kotsakis, K.; Sagris, D.; David, K. Inside out: Assessing pottery forming techniques with micro-CT scanning. An example from Middle Neolithic Thessaly. J. Arch. Sci. 2018, 100, 102–119. [Google Scholar]
- Bertini, M.; Mokso, R.; Krupp, E.M. Unwinding the spiral: Discovering the manufacturing method of Iron Age Scottish glass beads. J. Archaeol. Sci. 2014, 43, 256–266. [Google Scholar] [CrossRef]
- Liu, Q.; Sun, M.; Sun, X.; Liu, B.; Ostadhassan, M.; Huang, W.; Chen, X.; Pan, Z. Pore network characterization of shale reservoirs through state-of-the-art X-ray computed tomography: A review. Gas Sci. Eng. 2023, 113, 204967. [Google Scholar] [CrossRef]
- Greene, A.F.; Hartley, C.W.; Doumani Dupuy, P.N.; Chinander, M. The digital radiography of archaeological pottery: Program and protocols for the analysis of production. J. Archaeol. Sci. 2017, 17, 120–135. [Google Scholar] [CrossRef]
- Mees, F.; Cornelis, E.; Jacobs, P.; Doménech Cárbo, M.T.; Römich, H. Microfocus X-ray computed tomography analysis of corroded glass objects. Eng. Geol. 2009, 103, 93–99. [Google Scholar] [CrossRef]
- Spataro, M.; Taylor, J.; O’Flynn, D. A technological study of Assyrian clay tablets from Nineveh, Tell Halaf and Nimrud: A pilot case study. Archaeol. Anthropol. Sci. 2023, 15, 68. [Google Scholar] [CrossRef]
- Sears, D.W.G.; Sears, H.; Ebel, D.S.; Wallace, S.; Friedrich, J.M. X-ray computed tomography imaging: A not-so-nondestructive technique. Meteorit. Planet. Sci. 2016, 51, 833–838. [Google Scholar] [CrossRef]
- Arif, M.; Mahmoud, Y.; Zhang, S.; Iglauer, S. X-ray tomography imaging of shale microstructures: A review in the context of multiscale correlative imaging. Int. J. Coal Geol. 2020, 233, 103641. [Google Scholar]
- Guibert, R.; Nazarova, M.; Voltolini, M.; Beretta, T.; Debenest, G.; Creux, P. Influence of Standard Image Processing of 3D X-ray Microscopy on Morphology, Topology and Effective Properties. Energies 2022, 15, 7796. [Google Scholar] [CrossRef]
- Takenouchi, K.; Yamahana, K. Fine pottery shaping techniques in Predynastic Egypt: A pilot study on non-destructive analysis using an X-ray CT scanning system. J. Archaeol. Sci. Rep. 2021, 37, 102989. [Google Scholar] [CrossRef]
- Coli, V.L.; Gomart, L.; Pisani, D.F.; Cohen, S.; Blanc-Féraud, L.; Leblond, J.; Binder, D. Microcomputed tomography for discriminating between different forming techniques in ancient pottery: New segmentation method and pore distribution recognition. Archaeometry 2021, 64, 84–99. [Google Scholar] [CrossRef]
- Lindahl, A.; Pikirayi, I. Ceramics and change: An overview of pottery production techniques in northern South Africa and eastern Zimbabwe during the first and second millennium AD. Archaeol. Anthropol. Sci. 2010, 2, 135–149. [Google Scholar] [CrossRef]
- Pierret, A.; Moran, C.J. Quantification of orientation of pore patterns in X-ray images of deformed clay. Microsc. Microanal. Microstruct. 1996, 7, 421–431. [Google Scholar] [CrossRef]
- Gait, J.; Bajnok, K.; Szilágyi, V.; Szenti, I.; Kukovecz, A.; Kis, Z. Quantitative 3D orientation analysis of particles and voids to differentiate hand-built pottery forming techniques using X-ray microtomography and neutron tomography. Archaeol. Anthropol. Sci. 2022, 14, 223. [Google Scholar] [CrossRef]
- Bouzakis, K.D.; Pantermalis, D.; Efstathiou, K.; Varitis, E.; Paradisiadis, G.; Mavroudis, I. An Investigation of Ceramic Forming Method Using Reverse Engineering Techniques: The Case of Oinochoai from Dion, Macedonia, Greece. J. Archaeol. Method. Theory 2011, 18, 111–124. [Google Scholar] [CrossRef]
- Sanger, M.; Thostenson, J.; Hill, M.; Cain, H. Fibrous twists and turns: Early ceramic technology revealed through computed tomography. Appl. Phys. A 2013, 111, 829–839. [Google Scholar] [CrossRef]
- Kulkova, M.; Kulkov, A. The identification of organic temper in Neolithic pottery from Russia and Belarus. Old Potter’s Alm. 2016, 21, 2–12. [Google Scholar]
- Menne, J.; Holzheid, A.; Heilmann, C. Multi-Scale Measurements of Neolithic Ceramics—A Methodological Comparison of Portable Energy-Dispersive XRF, Wavelength-Dispersive XRF, and Microcomputer Tomography. Minerals 2020, 10, 931. [Google Scholar] [CrossRef]
- Barron, A.; Fuller, D.Q.; Stevens, C.; Champion, L.; Winchell, F.; Denham, T. Snapshots in time: MicroCT scanning of pottery sherds determines early domestication of sorghum (Sorghum bicolor) in East Africa. J. Archaeol. Sci. 2020, 123, 105259. [Google Scholar] [CrossRef]
- Karl, S.; Kazimierski, K.S.; Hauzenberger, C.A. An interdisciplinary approach to studying archaeological vase paintings using computed tomography combined with mineralogical and geochemical methods. A Corinthian alabastron by the Erlenmeyer Painter revisited. J. Cult. Herit. 2018, 31, 63–71. [Google Scholar] [CrossRef]
- Amadori, M.L.; Cardellini, S.; Mengacci, V. Advances in Lead-Barium-Zinc-Silicate-Type Glazed Warming Bowl Related to the Chinese Xuande Reign (1426–1435). Heritage 2024, 7, 1496–1509. [Google Scholar] [CrossRef]
- Rao, H.; Wang, Q.; Ren, X.; Zhang, Z.; Huang, W.; Yuan, Q.; Jiang, X.; Yang, Y. Earliest use of birch bark tar in Northwest China: Evidence from organic residues in prehistoric pottery at the Changning site. Veg. Hist. Archaeobotany 2019, 28, 199–207. [Google Scholar] [CrossRef]
- Bernardini, F.; Vecchiet, A.; De Min, A.; Lenaz, D.; Mendoza Cuevas, A.; Gianoncelli, A.; Dreossi, D.; Tuniz, C.; Montagnari Kokelj, M. Neolithic pottery from the Trieste Karst (northeastern Italy): A multi-analytical study. Microchem. J. 2016, 124, 600–607. [Google Scholar] [CrossRef]
- Kahl, W.A.; Ramminger, B. Non-destructive fabric analysis of prehistoric pottery using high-resolution X-ray microtomography: A pilot study on the late Mesolithic to Neolithic site Hamburg-Boberg. J. Archaeol. Sci. 2012, 39, 2206–2219. [Google Scholar] [CrossRef]
- McKenzie-Clark, J.; Magnussen, J. The analysis of Italian Sigillata potters’ stamps using Dual Energy Computed Tomography (DECT) and X-ray imaging. J. Archaeol. Sci. Rep. 2018, 18, 420–429. [Google Scholar] [CrossRef]
- Machado, A.S.; Oliveira, D.F.; Gama Filho, H.S.; Latini, R.; Bellido, A.V.B.; Assis, J.T.; Anjos, M.J.; Lopes, R.T. Archeological ceramic artifacts characterization through computed microtomography and X-ray fluorescence. X-ray Spectrom. 2017, 46, 427–434. [Google Scholar] [CrossRef]
- Bernardini, F.; Leghissa, E.; Prokop, D.; Velušček, A.; De Min, A.; Dreossi, D.; Donato, S.; Tuniz, C.; Princivalle, F.; Montagnari Kokelj, M. X-ray computed microtomography of Late Copper Age decorated bowls with cross-shaped foots from central Slovenia and the Trieste Karst (North-Eastern Italy): Technology and paste characterisation. Archaeol. Anthropol. Sci. 2019, 11, 4711–4728. [Google Scholar] [CrossRef]
- Bernardini, F.; Vinci, G.; Prokop, D.L.; Barro Savonuzzi, L.; De Min, A.; Lenaz, D.; Princivalle, F.; Cocca, E.; Kasztovszky, Z.; Szilágyi, V.; et al. A multi-analytical study of Bronze Age pottery from the UNESCO site of Al-Khutm (Bat, Oman). Archaeol. Anthropol. Sci. 2020, 12, 163. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, L.; Wei, S.; Song, G.; Kenoyer, J.M.; Xiao, T.; Zhu, J.; Wang, C. Nondestructive Analysis of Dragonfly Eye Beads from the Warring States Period, Excavated from a Chu Tomb at the Shenmingpu Site, Henan Province, China. Microsc. Microanal. 2013, 19, 335–343. [Google Scholar] [CrossRef]
- Nykonenko, D.; Yatsuk, O.; Guidorzi, L.; Lo Giudice, A.; Tansella, F.; Cesareo, P.; Sorrentino, G.; Davit, P.; Gulmini, M.; Re, A. Glass beads from a Scythian grave on the island of Khortytsia (Zaporizhzhia, Ukraine): Insights into bead making through 3D imaging. Herit. Sci. 2023, 11, 238. [Google Scholar] [CrossRef]
- Cheng, Q.; Zhang, X.; Guo, J.; Wang, B.; Lei, Y.; Zhou, G.; Fu, Y. Application of computed tomography in the analysis of glass beads unearthed in Shanpula cemetery (Khotan), Xinjiang Uyghur autonomous region. Archaeol. Anthropol. Sci. 2019, 11, 937–945. [Google Scholar] [CrossRef]
- Zhang, X.; Leia, Y.; Cheng, Q.; Zhou, G. Application of computed tomography in the analysis of the manufacture of eye beads technique. Microchem. J. 2020, 156, 104798. [Google Scholar] [CrossRef]
- Rigby, S.P.; Stevens, L.; Meersmann, T.; Pavloskaya, G.E.; Rees, G.J.; Henderson, J.; Bryant, S.J.; Edler, K.J.; Fletcher, R.S. Structural and chemical heterogeneity in ancient glass probed using gas overcondensation, X-ray tomography, and solid-state NMR. Mater. Charact. 2020, 167, 110467. [Google Scholar] [CrossRef]
- Di Turo, F.; Moro, G.; Artesani, A.; Albertin, F.; Bettuzzi, M.; Cristofori, D.; Maria Moretto, L.; Traviglia, A. Chemical analysis and computed tomography of metallic inclusions in Roman glass to unveil ancient coloring methods. Sci. Rep. 2021, 11, 11187. [Google Scholar] [CrossRef] [PubMed]
- Saminpanya, S.; Saiyasombat, C.; Thammajak, N.; Samrong, C.; Footrakul, S.; Potisuppaiboon, N.; Sirisurawong, E.; Witchanantakul, T.; Rojviriy, C.A. Shedding New Light on Ancient Glass Beads by Synchrotron, SEM-EDS, and Raman Spectroscopy Techniques. Sci. Rep. 2019, 9, 16069. [Google Scholar] [CrossRef]
- Franceschin, G.; Zanini, R.; Iori, G.; Longo, E.; Divitini, G.; Trombac, G.; Traviglia, A. Non-destructive 3D exploration of silicate glass corrosion: A combined multiscale approach from the macro to the nanoscale. Phys. Chem. Chem. Phys. 2024, 26, 9697–9707. [Google Scholar] [CrossRef]
- Ngan-Tillard, D.J.M.; Huisman, D.J.; Corbella, F.; Van Nass, A. Over the rainbow? Micro-CT scanning to non-destructively study Roman and early medieval glass bead manufacture. J. Archaeol. Sci. 2018, 98, 7–21. [Google Scholar] [CrossRef]
- Roemich, H.; Zanini, F.; Wittstadt, K.; Weinitschke, C.M.; Sodini, N. Degradation phenomena on historic glass: Non-destructive characterization by synchrotron radiation. In Proceedings of the 9th International Conference on NDT of Art, Jerusalem, Israel, 25–30 May 2008. [Google Scholar]
- Cagno, S.; Nuyts, G.; Bugani, S.; De Vis, K.; Schalm, O.; Caen, J.; Helfen, L.; Cotte, M.; Reischig, P.; Janssens, K. Evaluation of manganese-bodies removal in historical stained glass windows via SR-μ-XANES/XRF and SR-μ-CT. J. Anal. At. Spectrom. 2011, 26, 2442. [Google Scholar] [CrossRef]
- Cnudde, V.; Cnudde, J.P.; Dupuis, C.; Jacobs, P.J.S. X-ray micro-CT used for the localization of water repellents and consolidants inside natural building stones. Mater. Charact. 2004, 53, 259–271. [Google Scholar] [CrossRef]
- Diamond, S. Mercury porosimetry—An inappropriate method for the measurement of pore size distributions in cement-based materials. Cem. Concr. Res. 2000, 30, 1517–1525. [Google Scholar] [CrossRef]
- Münch, B.; Holzer, L. Contradicting geometrical concepts in pore size analysis attained with electron microscopy and mercury intrusion. J. Am. Ceram. Soc. 2008, 91, 4059–4067. [Google Scholar] [CrossRef]
- Brunello, V.; Canevali, C.; Corti, C.; De Kock, T.; Rampazzi, L.; Recchia, S.; Sansonetti, A.; Tedeschi, C.; Cnudde, V. Understanding the Microstructure of Mortars for Cultural Heritage Using X-ray CT and MIP. Materials 2021, 14, 5939. [Google Scholar] [CrossRef] [PubMed]
- Bugani, S.; Camaiti, M.; Morselli, L.; Van de Casteele, E.; Cloetens, P.; Janssens, K. X-ray computed tomography as a non-destructive tool for stone conservation. In Proceedings of the 9th International Conference on NDT of Art, Jerusalem, Israel, 25–30 May 2008. [Google Scholar]
- Chae, S.R.; Moon, J.; Yoon, S.; Bae, S.; Levitz, P.; Winarski, R.; Monteiro, P.J.M. Advanced Nanoscale Characterization of Cement Based Materials Using X-ray Synchrotron Radiation: A Review. Int. J. Concr. Struct. Mater. 2013, 7, 95–110. [Google Scholar] [CrossRef]
- Cnudde, V.; Dewanckele, J.; Boone, M.; de Kock, T.; Boone, M.; Brabant, L.; Dusar, M.; de Ceukelaire, M.; de Clercq, H.; Hayen, R.; et al. High-resolution X-ray CT for 3D petrography of ferruginous sandstone for an investigation of building stone decay. Microsc. Res. Tech. 2011, 74, 1006–1017. [Google Scholar] [CrossRef]
- Dewanckele, J.; De Kock, T.; Boone, M.A.; Cnudde, V.; Brabant, L.; Boone, M.N.; Fronteau, G.; Van Hoorebeke, L.; Jacobs, P. 4D imaging and quantification of pore structure modifications inside natural building stones by means of high resolution X-ray CT. Sci. Total Environ. 2012, 416, 436–448. [Google Scholar] [CrossRef] [PubMed]
- Gibeaux, S.; Vázquez, P.; De Kock, T.; Cnudde, V.; Thomachot-Schneider, C. Weathering assessment under X-ray tomography of building stones exposed to acid atmospheres at current pollution rate. Constr. Build. Mater. 2018, 168, 187–198. [Google Scholar] [CrossRef]
- Cnudde, V.; de Kock, T.; Boone, M.; de Boever, W.; Bultreys, T.; van Stappen, J.; Vandevoorde, D.; Dewanckele, J.; Derluyn, H.; CÁrdenes, V.; et al. Conservation studies of cultural heritage: X-ray imaging of dynamic processes in building materials. Eur. J. Mineral. 2015, 27, 269–278. [Google Scholar] [CrossRef]
- Rigby, S.P. Do Pore exist?—Foundational Issues in Pore Structural Characterisation. Foundations 2024, 4, 225–248. [Google Scholar] [CrossRef]
- Dewanckele, J.; De Kock, T.; Fronteau, G.; Derluyn, H.; Vontobel, P.; Dierick, M.; Van Hoorebeke, L.; Jacobs, P.; Cnudde, V. Neutron radiography and X-ray computed tomography for quantifying weathering and water uptake processes inside porous limestone used as building material. Mater. Charact. 2014, 88, 86–99. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rigby, S.P. Use of Computerised X-ray Tomography in the Study of the Fabrication Methods and Conservation of Ceramics, Glass and Stone Building Materials. Heritage 2024, 7, 5687-5722. https://doi.org/10.3390/heritage7100268
Rigby SP. Use of Computerised X-ray Tomography in the Study of the Fabrication Methods and Conservation of Ceramics, Glass and Stone Building Materials. Heritage. 2024; 7(10):5687-5722. https://doi.org/10.3390/heritage7100268
Chicago/Turabian StyleRigby, Sean P. 2024. "Use of Computerised X-ray Tomography in the Study of the Fabrication Methods and Conservation of Ceramics, Glass and Stone Building Materials" Heritage 7, no. 10: 5687-5722. https://doi.org/10.3390/heritage7100268
APA StyleRigby, S. P. (2024). Use of Computerised X-ray Tomography in the Study of the Fabrication Methods and Conservation of Ceramics, Glass and Stone Building Materials. Heritage, 7(10), 5687-5722. https://doi.org/10.3390/heritage7100268