Development of a Hyperspectral Imaging Protocol for Painting Applications at the University of Seville
Abstract
:1. Introduction
2. Materials and Methods
2.1. Application on Pigments
2.1.1. Reference Painted Panels
- -
- white lead (2PbCO3·Pb(OH)2)
- -
- lead-tin yellow (Pb2SnO4)
- -
- verdigris (Cu(CH3CO2)2·(H2O))
- -
- malachite (Cu2(CO3)(OH)2)
- -
- yellow ochre (Fe3+O(OH))
- -
- vermilion (HgS)
- -
- haematite (Fe2O3)
- -
- carmine red (C22H20O13)
- -
- ultramarine (Na7Al6Si6O24S3)
- -
- azurite (Cu3(CO3)2(OH)2)
2.1.2. Selected Areas from a 17th-Century Oil Painting
2.2. Hyperspectral Cameras
- -
- RGB images with correction for tristimulus values (red = 630, green = 532, blue = 465).
- -
- Punctual and average spectra for each pigment present on the selected areas, excluding those with traces of underdrawings, the translucent layers, and areas with gaps or imperfections.
- -
- Application of the 2D contour function, selecting the most representative wavelength to image the underdrawings. The images were converted to black and white.
- -
- Application of the PCA model function to obtain a PCA plot along with a false-colour image showing the distribution of different materials.
2.3. X-Ray Fluorescence (XRF)
2.4. Ultraviolet Luminescence Photography (UVL)
2.5. Infrared Reflectography (IRR)
3. Results and Discussion
3.1. Painted Panels
3.2. First Application on the 17th-Century Oil Painting Virgen Con Niño
3.2.1. Ultraviolet Luminescence Photography (UVL) and Infrared Reflectography (IRR)
3.2.2. X-Ray Fluorescence (XRF)
3.2.3. Hyperspectral Imaging
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- George, S.; Hardeberg, J.Y.; Linhares, J.; MacDonald, L.; Montagner, C.; Nascimento, S.; Picollo, M.; Pillay, R.; Vitorino, T.; Keats Webb, E. A Study of Spectral Imaging Acquisition and Processing For Cultural Heritage. In Digital Techniques for Documenting and Preserving Cultural Heritage; Arc Humanities Press: Yorkshire, UK, 2018; pp. 141–158. [Google Scholar]
- Shukla, A.; Kot, R. An Overview of Hyperspectral Remote Sensing and its applications in various Disciplines. IRA-Int. J. Appl. Sci. 2016, 5, 85. [Google Scholar] [CrossRef]
- Kubik, M. Chapter 5 Hyperspectral Imaging: A New Technique for the Non-Invasive Study of Artworks. Phys. Tech. Study Art Archaeol. Cult. Herit 2007, 2, 199–259. [Google Scholar]
- MacDonald, L.W.; Vitorino, T.; Picollo, M.; Pillay, R.; Obarzanowski, M.; Sobczyk, J.; Nascimento, S.; Linhares, J. Assessment of multispectral and hyperspectral imaging systems for digitisation of a Russian icon Enhanced Reader. Herit. Sci. 2017, 5, 1–6. [Google Scholar] [CrossRef]
- Li, G.H.; Chen, Y.; Sun, X.J.; Duan, P.Q.; Lei, Y.; Zhang, L.F. An automatic hyperspectral scanning system for the technical investigations of Chinese scroll paintings Enhanced Reader. Microchem. J. 2020, 155, 104699. [Google Scholar] [CrossRef]
- Cucci, C.; Casini, A.; Stefani, L.; Picollo, M.; Jussila, J. Bridging research with innovative products: A compact hyperspectral camera for investigating artworks: A feasibility study. In Optics for Arts, Architecture, and Archaeology VI; SPIE: Île-de-France, France, 2017; p. 1033106. [Google Scholar]
- Mounier, A.; Le Bourdon, G.; Aupetit, C.; Belin, C.; Servant, L.; Lazare, S.; Lefrais, Y.; Daniel, F. Hyperspectral imaging, spectrofluorimetry, FORS and XRF for the non-invasive study of medieval miniatures materials. Herit. Sci. 2014, 2, 24. [Google Scholar] [CrossRef]
- Gomez-Gonzalez, E.; Barriga-Rivera, A.; Fernandez-Muñoz, B.; Navas-Garcia, J.M.; Fernandez-Lizaranzu, I.; Munoz-Gonzalez, F.J.; Parrilla-Giraldez, R.; Requena-Lancharro, D.; Gil-Gamboa, P.; Rosell-Valle, C.; et al. Optical imaging spectroscopy for rapid, primary screening of SARS-CoV-2: A proof of concept. Sci. Rep. 2022, 12, 2356. [Google Scholar] [CrossRef]
- Amigo, J.M.; Babamoradi, H.; Elcoroaristizabal, S. Hyperspectral image analysis. A Tutorial. Anal. Chim. Acta. 2015, 896, 34–51. [Google Scholar] [CrossRef]
- Thomas, S.; Kuska, M.T.; Bohnenkamp, D.; Brugger, A.; Alisaac, E.; Wahabzada, M.; Behmann, J.; Mahlein, A.K. Benefits of hyperspectral imaging for plant disease detection and plant protection: A technical perspective. J. Plant Dis. Prot. 2018, 125, 5–20. [Google Scholar] [CrossRef]
- Cheng, J.-H.; Sun, D.-W. Recent Applications of Spectroscopic and Hyperspectral Imaging Techniques with Chemometric Analysis for Rapid Inspection of Microbial Spoilage in Muscle Foods. Compr. Rev. Food Sci. Food Saf. 2015, 14, 478–490. [Google Scholar] [CrossRef]
- Terra, L.R.; Roque, J.V.; Pola, C.C.; Gonçalves, I.M.; Soares, N.d.F.F.; Teófilo, R.F. Study of chemical compound spatial distribution in biodegradable active films using NIR hyperspectral imaging and multivariate curve resolution. J. Chemom. 2020, 34, e3193. [Google Scholar] [CrossRef]
- Hossain, A. Spectral simulation and method design of camouflage textiles for concealment of hyperspectral imaging in UV-Vis-IR against multidimensional combat background. J. Text. Inst. 2023, 114, 331–342. [Google Scholar] [CrossRef]
- Tahmasbian, I.; Morgan, N.K.; Hosseini Bai, S.; Dunlop, M.W.; Moss, A.F. Comparison of Hyperspectral Imaging and Near-Infrared Spectroscopy to Determine Nitrogen and Carbon Concentrations in Wheat. Remote Sens. 2021, 13, 1128. [Google Scholar] [CrossRef]
- Priyashantha, H.; Höjer, A.; Saedén, K.H.; Lundh, Å.; Johansson, M.; Bernes, G.; Geladi, P.; Hetta, M. Use of near-infrared hyperspectral (NIR-HS) imaging to visualize and model the maturity of long-ripening hard cheeses. J. Food Eng. 2020, 264, 109687. [Google Scholar] [CrossRef]
- Cosentino, A. Multispectral imaging system using 12 interference filters for mapping pigments. Conserv. Patrim. 2015, 21, 25–38. [Google Scholar] [CrossRef]
- Cucci, C.; Casini, A. Hyperspectral imaging for artworks investigation. In Data Handling in Science and Technology; Elsevier Ltd.: Amsterdam, The Netherlands, 2020; pp. 583–604. [Google Scholar]
- Amigo, J.M.; Grassi, S. Configuration of hyperspectral and multispectral imaging systems. In Data Handling in Science and Technology; Elsevier Ltd.: Amsterdam, The Netherlands, 2019; pp. 17–34. [Google Scholar]
- Qureshi, R.; Uzair, M.; Khurshid, K.; Yan, H. Hyperspectral document image processing: Applications, challenges and future prospects. Pattern Recognit. 2019, 90, 12–22. [Google Scholar] [CrossRef]
- Pillay, R.; Hardeberg, J.Y.; George, S. Hyperspectral imaging of art: Acquisition and calibration workflows. J. Am. Inst. Conserv. 2019, 58, 3–15. [Google Scholar] [CrossRef]
- Gillooly, T.; Deborah, H.; Hardeberg, J.Y. Path Opening for Hyperspectral Crack Detection of Cultural Heritage Paintings. In Proceedings of the 14th International Conference on Signal Image Technology and Internet Based Systems, SITIS 2018, Las Palmas de Gran Canaria, Spain, 26–29 November 2018; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2018; pp. 651–657. [Google Scholar]
- Liang, H. Advances in multispectral and hyperspectral imaging for archaeology and art conservation. Appl. Phys. A 2012, 106, 309–323. [Google Scholar] [CrossRef]
- Fischer, C.; Kakoulli, I. Multispectral and hyperspectral imaging technologies in conservation: Current research and potential applications. Stud. Conserv. 2006, 51, 3–16. [Google Scholar] [CrossRef]
- Bayarri, V.; Sebastián, M.A.; Ripoll, S. Hyperspectral Imaging Techniques for the Study, Conservation and Management of Rock Art. Appl. Sci. 2019, 9, 5011. [Google Scholar] [CrossRef]
- Rohani, N.; Pouyet, E.; Walton, M.; Cossairt, O.; Katsaggelos, A.K. Nonlinear Unmixing of Hyperspectral Datasets for the Study of Painted Works of Art. Angew. Chem. Int. Ed. 2018, 57, 10910–10914. [Google Scholar] [CrossRef]
- Cucci, C.; Webb, E.K.; Casini, A.; Ginanni, M.; Prandi, E.; Stefani, L.; Vitorino, T.; Picollo, M. Short-wave infrared reflectance hyperspectral imaging for painting investigations: A methodological study. J. Am. Inst. Conserv. 2019, 58, 16–36. [Google Scholar] [CrossRef]
- Sandak, J.; Sandak, A.; Legan, L.; Retko, K.; Kavčič, M.; Kosel, J.; Poohphajai, F.; Diaz, R.H.; Ponnuchamy, V.; Sajinčič, N.; et al. Nondestructive Evaluation of Heritage Object Coatings with Four Hyperspectral Imaging Systems Enhanced Reader. Coatings 2021, 11, 244. [Google Scholar] [CrossRef]
- Kolokoussis, P.; Skamantzari, M.; Tapinaki, S.; Karathanassi, V.; Georgopoulos, A. 3D and Hyperspectral Data Integration for Assessing Material Degradation in Medieval Masonry Heritage Buildings. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, XLIII-B2-2021, 583–590. [Google Scholar] [CrossRef]
- Delaney, J.K.; Picollo, M. JAIC special issue on “Reflectance hyperspectral imaging to support documentation and conservation of 2D artworks”. J. Am. Inst. Conserv. 2019, 58, 1–2. [Google Scholar] [CrossRef]
- Delaney, J.K.; Zeibel, J.G.; Thoury, M.; Littleton, R.; Palmer, M.; Morales, K.M.; de la Rie, R.; Hoenigswald, A. Visible and Infrared Imaging Spectroscopy of Picasso’s Harlequin Musician: Mapping and Identification of Artist Materials in Situ. Appl. Spectrosc. 2010, 64, 584–594. [Google Scholar] [CrossRef]
- Sciuto, C.; Cantini, F.; Chapoulie, R.; Cou, C.; De la Codre, H.; Gattiglia, G.; Granier, X.; Mounier, A.; Palleschi, V.; Sorrentino, G.; et al. What Lies Beyond Sight? Applications of Ultraportable Hyperspectral Imaging (VIS-NIR) for Archaeological Fieldwork. J. Field Archaeol. 2022, 47, 522–535. [Google Scholar]
- Babini, A.; Lombardo, T.; Schmidt-Ott, K.; George, S.; Hardeberg, J.Y. Acquisition strategies for in-situ hyperspectral imaging of stained-glass windows: Case studies from the Swiss National Museum. Herit. Sci. 2023, 11, 74. [Google Scholar] [CrossRef]
- Daveri, A.; Paziani, S.; Marmion, M.; Harju, H.; Vidman, A.; Azzarelli, M.; Vagnini, M. New perspectives in the non-invasive, in situ identification of painting materials: The advanced MWIR hyperspectral imaging. TrAC Trends Anal. Chem. 2018, 98, 143–148. [Google Scholar] [CrossRef]
- Padoan, R.; Steemers, T.; Klein, M.; Aalderink, B. Quantitative Hyperspectral Imaging of Historical Documents: Technique and Application. In Proceedings of the 9th International Conference ART Proc., Jerusalem, Israel, 25–30 May 2008; pp. 25–30. [Google Scholar]
- Snijders, L.; Zaman, T.; Howell, D. Using hyperspectral imaging to reveal a hidden precolonial Mesoamerican codex. J. Archaeol. Sci. Rep. 2016, 9, 143–149. [Google Scholar] [CrossRef]
- Bayliss, S.; van den Berg, K.J.; Burnstock, A.; de Groot, S.; van Keulen, H.; Sawicka, A. An investigation into the separation and migration of oil in paintings by Erik Oldenhof. Microchem. J. 2016, 124, 974–982. [Google Scholar] [CrossRef]
- Erhardt, D.; Tumosa, C.S.; Mecklenburg, M.F. Long-Term Chemical and Physical Processes in Oil Paint Films. Stud. Conserv. 2005, 50, 143–150. [Google Scholar] [CrossRef]
- Izzo, F.C.; van den Berg, K.J.; van Keulen, H.; Ferriani, B.; Zendri, E. Modern Oil Paints—Formulations, Organic Additives and Degradation: Some Case Studies; Issues in Contemporary Oil Paint; Springer International Publishing: Cham, Switzerland, 2014; pp. 75–104. [Google Scholar]
- Frey, F.; Heller, D.; Kushel, D.; Vitale, T.; Weaver, G. The AIC Guide to Digital Photography and Conservation Documentation, 2008th ed.; Warda, J., Ed.; American Institute for Conservation of Historic and Artistic Works: Washington, DC, USA, 2008. [Google Scholar]
- Thomson Cbe, G. Museum Environment; Routledge: Informa, UK, 2018. [Google Scholar]
- Clementi, C.; Miliani, C.; Verri, G.; Sotiropoulou, S.; Romani, A.; Brunetti, B.G.; Sgamellotti, A. Application of the Kubelka—Munk Correction for Self-Absorption of Fluorescence Emission in Carmine Lake Paint Layers. Appl. Spectrosc. 2009, 63, 1323–1330. [Google Scholar] [CrossRef]
- Dupuis, G.; Menu, M. Quantitative characterisation of pigment mixtures used in art by fibre-optics diffuse-reflectance spectroscopy. Appl. Phys. A 2006, 83, 469–474. [Google Scholar] [CrossRef]
- Gomes Gonçalves, Í.; Petter, C.O.; Lepkoski Machado, J. Quantification of Hematite and Goethite Concentrations in Kaolin Using Diffuse Reflectance Spectroscopy: A New Approach To Kubelka-Munk Theory. Clays Clay Miner. 2012, 60, 473–483. [Google Scholar] [CrossRef]
- Latour, G.; Elias, M.; Frigerio, J.-M. Determination of the Absorption and Scattering Coefficients of Pigments: Application to the Identification of the Components of Pigment Mixtures. Appl. Spectrosc. 2009, 63, 604–610. [Google Scholar] [CrossRef]
- Pozo-Antonio, J.S.; Cardell, C.; Sánchez, S.; Montes Rueda, J. Reflectance of Oil Paintings: Influence of Paint Layer Thickness and Binder Amount. Coatings 2022, 12, 601. [Google Scholar] [CrossRef]
- Cucci, C.; Casini, A.; Picollo, M.; Poggesi, M.; Stefani, L. Open issues in hyperspectral imaging for diagnostics on paintings: When high-spectral and spatial resolution turns into data redundancy. O3A Opt. Arts Archit. Archaeol. III 2011, 8084, 4131–4140. [Google Scholar]
- Datta, A.; Ghosh, S.; Ghosh, A. PCA, Kernel PCA and Dimensionality Reduction in Hyperspectral Images. In Advances in Principal Component Analysis; Springer Singapore: Singapore, 2018; pp. 19–46. [Google Scholar]
- Imani, M.; Ghassemian, H. Principal component discriminant analysis for feature extraction and classification of hyperspectral images. In Proceedings of the 2014 Iranian Conference on Intelligent Systems (ICIS), Bam, Iran, 4–6 February 2014; pp. 1–5. [Google Scholar]
- Deepa, P.; Thilagavathi, K. Feature extraction of hyperspectral image using principal component analysis and folded-principal component analysis. In Proceedings of the 2015 2nd International Conference on Electronics and Communication Systems (ICECS), Coimbatore, India, 26–27 February 2015; pp. 656–660. [Google Scholar]
- Imani, M.; Ghassemian, H. An overview on spectral and spatial information fusion for hyperspectral image classification: Current trends and challenges. Inf. Fusion 2020, 59, 59–83. [Google Scholar] [CrossRef]
- Pouyet, E.; Miteva, T.; Rohani, N.; de Viguerie, L. Artificial Intelligence for Pigment Classification Task in the Short-Wave Infrared Range. Sensors 2021, 21, 6150. [Google Scholar] [CrossRef]
- Radpour, R. An Alternative Approach to Mapping Pigments in Paintings with Hyperspectral Reflectance Image Cubes Using Artificial Intelligence Enhanced Reader; University of California: Los Angeles, CA, USA, 2019. [Google Scholar]
- Gomez-Gonzalez, E.; Fernandez-Muñoz, B.; Barriga-Rivera, A.; Navas-Garcia, J.M.; Fernandez-Lizaranzu, I.; Munoz-Gonzalez, F.J.; Parrilla-Giraldez, R.; Requena-Lancharro, D.; Guerrero-Claro, M.; Gil-Gamboa, P.; et al. Hyperspectral image processing for the identification and quantification of lentiviral particles in fluid samples. Sci. Rep. 2021, 11, 16201. [Google Scholar] [CrossRef]
- Janssens, K. Chapter 4 X-ray Based Methods of Analysis; Elsevier: Amsterdam, The Netherlands, 2004; pp. 129–226. [Google Scholar]
- Ferretti, M. X-ray Fluorescence Applications for the Study and Conservation of Cultural Heritage. In Radiation in Art and Archeometry; Elsevier: Amsterdam, The Netherlands, 2000; pp. 285–296. [Google Scholar]
- Mairinger, F. The ultraviolet and fluorescence study of paintings and manuscripts. In Radiation in Art and Archeometry; Elsevier: Amsterdam, The Netherlands, 2000; pp. 56–75. [Google Scholar]
- Mairinger, F. The infrared examination of paintings. In Radiation in Art and Archeometry; Elsevier: Amsterdam, The Netherlands, 2000; pp. 40–55. [Google Scholar]
- Van Asperen de Boer, J.R.J. Infrared Reflectography: A Method for the Examination of Paintings. Appl. Opt. 1968, 7, 1711. [Google Scholar] [CrossRef]
- Cosentino, A. FORS Spectral Database of Historical Pigments in Different Binders. E-Conserv. J. 2014, 2, 54–65. [Google Scholar] [CrossRef]
- Torrent, J.; Barrón, V. (Eds.) Diffuse Reflectance Spectroscopy. In Diffuse Reflectance Spectroscopy of Iron Oxides; University of Cordoba: Córdoba, Spain, 2008. [Google Scholar]
- Dupuis, G.; Elias, M.; Simonot, L. Pigment Identification by Fiber-Optics Diffuse Reflectance Spectroscopy. Appl. Spectrosc. 2002, 56, 1329–1336. [Google Scholar] [CrossRef]
- Ferrer, D.H.J.S.; Sandu, I.C.; George, S.; Hardeberg, J.Y. Old Man in Warnemünde (1907) Colouring Palette: A Case Study on the Use of Hyperspectral Imaging for Pigment Identification. In Color and Imaging Conference; Society for Imaging Science and Technology: Lillehammer, Norway, 2017; pp. 339–344. [Google Scholar]
- Kartsonak, M.; Koui, M.; Callet, P.; Cheilakou, E. Non-destructive identification of the coloring substances of the monuments studied using colorimetry. In Proceedings of the 4th International Conference on NDT, Crete, Greece, 11–14 October 2007. [Google Scholar]
- Cucci, C.; Delaney, J.K.; Picollo, M. Reflectance Hyperspectral Imaging for Investigation of Works of Art: Old Master Paintings and Illuminated Manuscripts. Acc. Chem. Res. 2016, 49, 2070–2079. [Google Scholar] [CrossRef]
- Derrick, M.R.; Stulik, D.C.; Landry, J.M. Infrared Spectroscopy in Conservation Science; The Getty Institute: Los Angeles, CA, USA, 1999. [Google Scholar]
- Murphy, R.; Chlingaryan, A.; Melkumyan, A. Predicting Wavelength Position of the Ferric Iron Absorption at −900 nm from Hyperspectral Data (1000–2500 nm). In Proceedings of the 36th APCOM Applications of Computers and Operations Research in the Mineral Industry, Porto Alegre, Brazil, 4–8 November 2013. [Google Scholar]
- Lefèvre, W. Inside the Camera Obscura—Optics and Art under the Spell of the Projected Image; Max Planck Institute for the History of Science: Berlin, Germany, 2007. [Google Scholar]
- Le Chanu, P. Contributions and Limitations of Scientific Examination and Analysis in the Detection of Forgeries of Old Masters’ Paintings; McCrone, W., Chartier, D.R., Weiss, R.J., Eds.; SPIE: San Jose, CA, USA, 1998; pp. 62–73. [Google Scholar]
- Antunes, V.; Valadas, S.; Serrão, V.; Carvalho, M.L.; Candeias, A.; Mirão, J.; Cardoso, A.; Pessanha, S.; Manso, M. Josefa d’ Óbidos workshop from panel to canvas. Multianalytical approach to materials and technical evolution of the most significant Portuguese painting workshop of the 17th century. J. Mol. Struct. 2019, 1188, 31–41. [Google Scholar] [CrossRef]
- Locquet, A.; Dong, J.; Citrin, D.S.; Melis, M. Terahertz pulsed imaging reveals the stratigraphy of a seventeenth-century oil painting. In Unconventional Optical Imaging; Fournier, C., Georges, M.P., Popescu, G., Eds.; SPIE: Île-de-France, France, 2018; p. 71. [Google Scholar]
- West Fitzhugh, E. Artists’ Pigments: A Handbook of Their History and Characteristic; National Gallery of Art: Washington, DC, USA, 2012. [Google Scholar]
- Eastaugh, N.; Walsh, V.; Chaplin, T.; Siddall, R. Pigment Compendium: A Dictionary and Optical Microscopy of Historical Pigments; Routledge Series in Conservation and Museology; Routledge: London, UK, 2008. [Google Scholar]
- Pronti, L.; Felici, A.C.; Ménager, M.; Vieillescazes, C.; Piacentini, M. Spectral Behavior of White Pigment Mixtures Using Reflectance, Ultraviolet—Fluorescence Spectroscopy, and Multispectral Imaging. Appl. Spectrosc. 2017, 71, 2616–2625. [Google Scholar] [CrossRef]
Name | Priming Layer (Square 1) | First Layer (Square 2) | Second Layer (Square 3) | Third Layer (Square 4) |
---|---|---|---|---|
W1 | White lead | White | Malachite | Yellow ochre |
W2 | White lead | Lead-tin yellow | Haematite | Azurite |
W3 | White lead | White lead | Lead-tin yellow | Vermilion |
W4 | White lead | Haematite | Azurite | White lead |
W5 | White lead | Haematite | Vermilion | Lead-tin yellow |
W6 | White lead | Lead-tin yellow | Haematite | Azurite |
W7 | White lead | White lead | Lead tin yellow | Vermilion |
W8 | White lead | Haematite | Vermilion | Lead-tin yellow |
R1 | Haematite | White lead | Lead-tin yellow | Vermilion |
R2 | Haematite | Haematite | Azurite | White lead |
R3 | Haematite | Haematite | Vermilion | Lead-tin yellow |
Name | Priming Layer | Pigment 1 (Square 1) | Pigment 2 (Square 2) | Pigment 3 (Square 3) | Pigment 4 (Square 4) |
---|---|---|---|---|---|
W9 | White lead | Vermilion | Yellow ochre | Malachite | Azurite |
R4 | Haematite | Malachite | Azurite | Vermilion | Yellow ochre |
TE1 | Binder: tempera based on egg | ||||
White lead | Malachite | Carmine | Ultramarine | Verdigris | |
LO1 | Binder: linseed oil | ||||
White lead | Malachite | Carmine | Ultramarine | Verdigris | |
AG1 | Binder: animal glue | ||||
White lead | Malachite | Carmine | Ultramarine | Verdigris |
Hyperspectral Cameras | Push-Broom | Snapshot | |
---|---|---|---|
VNIR | SWIR | VNIR | |
Focus distance | 48 cm | 47 cm | 31 cm |
Exposure | 3000 a.u. | 10,000 μs | 14 ms |
Speed | 3.38 sec per tile | 4.7 mm/s | - |
Frame period | 25,000 a.u. | 10,000 Hz | 1′23” |
Light position | 45° | 45° | 45° |
Irradiance | 0.1 × 10−3 W/m2 | 1.4 × 10−3 W/m2 | 0.8 × 10−3 W/m2 |
Pigment | Spectral Shape | Peak Positions (nm) | Shift (Linseed Oil) (nm) | Attenuation (Arabic Gum) (%) |
---|---|---|---|---|
Verdigris | Single peak between | 532–582 | From 550 to 532 | 4 |
Malachite | Single peak between | 525–548 | From 545 to 525 | 9 |
Carmine | S-shaped band | 600–620 | From 600 to 620 | 2 |
Ultramarine | Single peak and shoulder-like band | 448–471, 783 | From 468 to 448 | 5 |
Vermilion | Shoulder-like band | 617 | - | - |
Azurite | Main single peak and small shoulder-like band | 470, 740 | - | - |
Haematite | Shoulder-like band next to the main single peak | 600, 743 | - | - |
Yellow ochre | Double peak | 584, 752 | - | - |
Lead-tin yellow | S-shaped band | 500 | - | - |
White lead | Shoulder-like band | 600 | - | - |
Point | Area | Elements | Pigments | |
---|---|---|---|---|
1 | Virgin | Blue mantle | Ca 2, Mn 1, Pb 3, Fe 2 | Prussian Blue, White Lead, Umber Earth |
2 | Reddish dress | Ca 2, Fe 2, Cu 1, Hg 1, Pb 3 | Vermilion, Red Ochre, Bone Black, Copper-Based Pigment | |
3 | Light Brown Sleeve | Ca 2, Fe 1, Cu 1, Pb 3 | Red Ochre, Bone Black, Copper-based pigment | |
4 | Retouched area on the arm (yellowish) | Ca 2, Ti 2, Cr 1, Mn 1, Pb 3, Hg 1, Fe 1, Zn 1 | Umber Earth, Chrome Yellow, Vermilion, Titanium White, Zinc White | |
5 | Sleeve of the Virgin (light yellow) | Ca 2, Fe 1, Sn 2, Pb 3 | Lead-Tin Yellow, Yellow Ochre, White Lead | |
6 | Sleeve of the Virgin (dark yellow) | Ca 2, Mn 1, Fe 2, Cu 1, Sn 1, Hg 1, Pb 3 | Lead-Tin Yellow, Yellow Ochre, Umber Earth, Copper-based pigment | |
7 | Dress | Ca 3, Fe 1, Cu 1, Hg 1, Pb 3 | Vermilion, Red Ochre, Copper-based pigment | |
8 | Brownish collar | Ca 1, Pb 3, Hg 1, Cu 1, Fe 1 | Vermilion, Red Ochre, White Lead, Copper-based pigment | |
9 | Light collar | Ca 2, Fe 1, Zn 1, Pb 3 | Zinc White, Ochre, White Lead | |
10 | Brown sleeve | Ca 2, Fe 1, Cu 1, Pb 3 | Red Ochre, White lead, Copper-based pigment | |
11 | Dark brown sleeve | Ca 2, Ti 1, Cr 1, Mn 1, Fe 2, Zn 1, Pb 3 | Titanium White, Zinc White, Yellow Ochre, Umber Earth, Manganese Black, White lead, Chromium Yellow | |
12 | Lips | Ca 2, Fe 1, Hg 2, Pb 3 | Red Ochre, Vermilion, White Lead | |
13 | Cheek | Ca 1, Fe 1, Sn 1, Hg 1, Pb 3 | Lead-Tin Yellow, Vermilion, White Lead, Red Ochre | |
14 | Restored nostril | Ca 2, Ti 2, Cr 1, Fe 2, Zn 1, Hg 2, Pb 3 | Chromium Yellow, White Lead, Vermilion, Zinc White, White Lead, Red Ochre | |
15 | Eye (brown) | Fe 2, Ca 2, Mn 1, Cu 1, Hg 1, Pb 3 | Umber Earth, Vermilion, Copper-based pigment | |
16 | Eye (black) | Ca 3, Mn 1, Fe 2, Cu 1, Hg 1, Pb 3 | Manganese Black, Vermilion, Bone Black, Copper-based pigment | |
17 | Restored forehead | Ca 2, Ti 3, Mn 1, Fe 2, Cr 1, Zn 3, Hg 1, Pb 3 | Chrome Yellow, Umber earth, White Lead, Zinc White, Titanium White | |
18 | Hair (yellowish) | Ca 2, Mn 1, Fe 2, Cu 1, Hg 1, Pb 3 | Yellow Ochre, Umber Earth, Vermilion, Copper-based pigment | |
19 | Hair (brown) | Ca 2, Mn 1, Fe 2, Cu 1, Hg 1, Pb 3 | Umber Earth, Yellow Ochre, Vermilion, Copper-based pigment | |
20 | Ca 2, Mn 1, Fe 2, Zn 1, Cu 1, Hg 1, Pb 3 | Manganese Black, Red-Yellow Ochre, Vermilion, Zinc White, Copper-based pigment | ||
21 | Ca 3, Ti 1, Cr 1, Mn 1, Fe 2, Cu 1, Zn 1, Hg 1, Pb 3 | Titanium White, Zinc White, Manganese Black, Yellow Ochre, Vermilion, Chrome Yellow, White Lead, Copper-based pigment | ||
22 | Light Blue Dress | Pb 3, Ca 2, Fe 1 | White Lead, Prussian Blue | |
23 | Goldfinch (Black) | Ca 2, Mn 1, Fe 2, Cu 1, Hg 2, Pb 3 | Manganese Black, Bone Black, Vermilion, Copper-based pigment | |
24 | Goldfinch (Red) | Ca 2, Fe 1, Hg 3, Pb 3 | Vermilion, Red Ochre, White Lead | |
25 | Child | Cheek | Ca 2, Fe 1, Sn 1, Hg 1, Pb 3 | Lead-Tin Yellow, White Lead, Vermilion, Red Ochre |
26 | Reddish hand | Ca 2, Fe 1, Hg 2, Pb 3 | Vermilion, Red Ochre, White Lead | |
27 | Hair | Ca 2, Mn 1, Fe 2, Cu 1, Hg 1, Pb 3 | Yellow Ochre, Manganese Black, Vermilion, White Lead, Copper-based pigment | |
28 | Greyish mantle | Pb 3, Cu 1, Fe 2 | Prussian Blue, White lead, Azurite | |
29 | White mantle | Ca 2, Fe 1, Pb 3 | White lead, Yellow Ochre | |
30 | Dark skin tone of the leg | Ca 2, Fe 1, Hg 1, Pb 3 | Vermilion, White lead, Red Ochre | |
31 | Light skin tone of the leg | Ca 1, Fe 1, Sn 1, Hg 2, Pb 3 | Vermilion, White lead, Red Ochre, Lead-Tin Yellow | |
32 | Skin tone of the leg | Ca 2, Mn 1, Fe 2, Hg 1, Pb 3 | Vermilion, Manganese Black, Bone Black | |
33 | Background (brown) | Ca 3, Ti 1, Fe 2, Mn 1, Zn 1, Pb 2 | Titanium White, Zinc White, Bone Black, Manganese Black, Ochre |
Oil Painting | Panels | Test | |||||
---|---|---|---|---|---|---|---|
Motorized SWIR | Motorized VNIR | Portable VNIR | Motorized SWIR | Motorized VNIR | Portable VNIR | Camera | |
X | ✔ | X | ✔ | ✔ | Spectra of the pigments | Applications | |
Imaging of brushstrokes, craquelure, conservation state | 1. Drawing at ~1300–1400 nm 2. Very good im-age of brushstrokes, craquelure, sur-face conservation | 1. Drawing at ~800 nm but losing information on very opaque and multilayered areas 2. Good imaging of brushstroke, craquelure, and sur-face conservation state | Wavelength selection (2D contour function) | ||||
False separation due to IR information related to the vibrational bonds | Small separation (due to the abundance of mixtures from the oil technique) | False separation due to IR information related to the vibrational bonds | Very good separation | Good separation | PCA model | ||
Enhancement of the surface and brushes | Better differentiation on small selections | Enhancement of the surface, conservation state and brushstrokes | Very good visual differentiation even in similar colours | Good visual differentiation even in similar colours | PCA false colour image | ||
High penetration in depth | High image and spectra resolution, very good RGB image | 1. Portable, quick calibration, large area/whole painting 2. Classification method | High penetration in depth | High image and spectra resolution, very good RGB images | Portable, quick calibration, large areas/whole painting | Advantages | |
Small areas of analysis, rough surface | Small areas of analysis | Low resolution, noisy spectra | Small areas of analysis | Low resolution and noisy spectra | Disadvantages |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasco, G.; Aureli, H.; Fernández-Lizaranzu, I.; Moreno-Soto, J.; Križnar, A.; Parrilla-Giraldez, R.; Gómez-González, E.; Respaldiza Galisteo, M.A. Development of a Hyperspectral Imaging Protocol for Painting Applications at the University of Seville. Heritage 2024, 7, 5986-6007. https://doi.org/10.3390/heritage7110281
Vasco G, Aureli H, Fernández-Lizaranzu I, Moreno-Soto J, Križnar A, Parrilla-Giraldez R, Gómez-González E, Respaldiza Galisteo MA. Development of a Hyperspectral Imaging Protocol for Painting Applications at the University of Seville. Heritage. 2024; 7(11):5986-6007. https://doi.org/10.3390/heritage7110281
Chicago/Turabian StyleVasco, Giovanna, Hélène Aureli, Isabel Fernández-Lizaranzu, Javier Moreno-Soto, Anabelle Križnar, Rubén Parrilla-Giraldez, Emilio Gómez-González, and Miguel Angel Respaldiza Galisteo. 2024. "Development of a Hyperspectral Imaging Protocol for Painting Applications at the University of Seville" Heritage 7, no. 11: 5986-6007. https://doi.org/10.3390/heritage7110281
APA StyleVasco, G., Aureli, H., Fernández-Lizaranzu, I., Moreno-Soto, J., Križnar, A., Parrilla-Giraldez, R., Gómez-González, E., & Respaldiza Galisteo, M. A. (2024). Development of a Hyperspectral Imaging Protocol for Painting Applications at the University of Seville. Heritage, 7(11), 5986-6007. https://doi.org/10.3390/heritage7110281