Evaluating the Effect of Adaptive Reuse in the Energy Performance of Historic Buildings: A Case Study from Türkiye
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study: 19th Century Construction in Gaziantep
2.2. Energy Performance Analysis and Circularity
2.3. CIBSE TM59 and PMV Fanger Model Analysis
3. Results
3.1. Defining the Phases of Development
3.2. Evaluation of Thermal Comfort, Energy, and Carbon Performance
4. Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Anaç, M.; Arun, G. HBIM destekli arşiv modeli. J. Fac. Eng. Archit. Gazi Univ. 2024, 39, 443–459. [Google Scholar] [CrossRef]
- UNEP. Emissions Gap Report 2018; United Nations Environment Programme: Nairobi, Kenya, 2018. [Google Scholar]
- Atmaca, A.; Atmaca, N. Comparative life cycle energy and cost analysis of post-disaster temporary housings. Appl. Energy 2016, 171, 429–443. [Google Scholar] [CrossRef]
- Houghton, J.T. Climate change and sustainable energy. Weather 2006, 60, 179–785. [Google Scholar] [CrossRef]
- Moran, F.; Blight, T.; Natarajan, S.; Shea, A. The use of Passive House Planning Package to reduce energy use and CO2 emissions in historic dwellings. Energy Build. 2014, 75, 216–227. [Google Scholar] [CrossRef]
- TUİK. Bina ve Konut Nitelikleri Araştırması; TUİK: Çankaya, Türkiye, 2021. Available online: https://data.tuik.gov.tr/Bulten/Index?p=Survey-on-Building-and-Dwelling-Characteristics-2021-45870 (accessed on 20 August 2024).
- Heritage Count: There’s No Place Like Old Homes-Re-Use and Recycle to Reduce Carbon; Historic England Archive: Swindon, UK, 2020.
- Martínez-Molina, A.; Tort-Ausina, I.; Cho, S.; Vivancos, J.-L. Energy efficiency and thermal comfort in historic buildings: A review. Renew. Sustain. Energy Rev. 2016, 61, 70–85. [Google Scholar] [CrossRef]
- IEA. Available online: https://www.iea.org/ (accessed on 25 May 2024).
- Şahin, C.D.; Arsan, Z.D.; Tunçoku, S.S.; Broström, T.; Akkurt, G.G. A transdisciplinary approach on the energy efficient retrofitting of a historic building in the Aegean Region of Turkey. Energy Build. 2015, 96, 128–139. [Google Scholar] [CrossRef]
- Todorović, M.S.; Ećim-Đurić, O.; Nikolić, S.; Ristić, S.; Polić-Radovanović, S. Historic building’s holistic and sustainable deep energy refurbishment via BPS, energy efficiency and renewable energy—A case study. Energy Build. 2015, 35, 130–137. [Google Scholar] [CrossRef]
- Webb, A.L. Energy retrofits in historic and traditional buildings: A review of problems and methods. Renew. Sustain. Energy Rev. 2017, 77, 748–759. [Google Scholar] [CrossRef]
- Changeworks. Energy Heritage: A Guide to Improving Energy Efficiency in Traditional and Historic Homes; Changeworks: Edinburgh, UK, 2008. [Google Scholar]
- Lidelöw, S.; Örn, T.; Luciani, A.; Rizzo, A. Energy-efficiency measures for heritage buildings: A literature review. Sustain. Cities Soc. 2019, 45, 231–242. [Google Scholar]
- Plevoets, B.; Cleempoel, K.V. Adaptive Reuse of the Built Heritage. In Concepts and Cases of an Emerging Discipline; Routledge: London, UK, 2019. [Google Scholar] [CrossRef]
- Bullen, P.A.; Love, P.E. Adaptive reuse of heritage buildings. Struct. Surv. 2011, 19, 411–421. [Google Scholar]
- Yung, E.H.; Chan, E.H. Implementation challenges to the adaptive reuse of heritage buildings: Towards the goals of sustainable, low carbon cities. Habitat Int. 2012, 36, 352–361. [Google Scholar] [CrossRef]
- Mısırlısoy, D.; Günçe, K. Adaptive reuse strategies for heritage buildings: A holistic approach. Sustain. Cities Soc. 2016, 26, 91–98. [Google Scholar] [CrossRef]
- Rock. Guidelines for sustainable adaptive reuse for CH. Regeneration and Optimization of Cultural Heritage in Creative and Knowledge Cities. 2017. Available online: https://www.fuelpovertylibrary.info/sites/default/files/EAGA41%20%282008%29%20GUIDANCE%20Energy%20Heritage%20-%20A%20guide%20to%20improving%20energy%20efficiency%20in%20traditional%20and%20historic%20buildings.pdf (accessed on 25 May 2024).
- Bakan, M.K.; Fouseki, K.; Altamirano, H. Heritage conservation and energy efficiency in adaptive reuse projects the case of Gaziantep, Türkiye. J. Cult. Herit. Menag. Sustain. Dev. 2024. ahead-of-print. [Google Scholar] [CrossRef]
- Hegazi, Y.S.; Shalaby, H.A.; Mohamed, M.A.A. Adaptive Reuse Decisions for Historic Buildings in Relation to Energy Efficiency and Thermal Comfort—Cairo Citadel, a Case Study from Egypt. Sustainability 2021, 13, 10531. [Google Scholar] [CrossRef]
- 3ENCULT. Energy Efficiency Solutions for Historic Buildings: A Handbook; 3ENCULT: Birkhäuser, Basel, 2015. [Google Scholar]
- EFFESUS Consortium. Energy Efficiency in European Historic Urban Districts: A Practical Guidance; EFFESUS Consortium, Fraunhofer Center for International Management and Knowledge Economy: Leipzig, Germany, 2016; Available online: https://www.effesus.eu/wp-content/uploads/2016/06/EFFESUS_Booklet_Final-Version (accessed on 20 August 2024).
- BSI Standards Publication; EN 16883; Conservation of Cultural Heritage–Guidelines for Improving the Energy Performance of Historic Buildings. CEN: Brussels, Belgium, 2017.
- May, N.; Griffiths, N. Planning Responsible Retrofit of Traditional Buildings; Sustainable Traditional Buildings Alliance (STBA): London, UK, 2015. [Google Scholar]
- Bakan, M.K.; Altamirano, H.; Fouseki, K. The effect of underground chambers on the moisture balance of historical buildings in a hot and dry climate. In Proceedings of the 2nd International Conference on Moisture in Buildings 2023 (ICMB23), London, UK, 3–4 July 2023. [Google Scholar]
- Anaç, M.; Cuce, P.M.; Cuce, E. Passive sustainability strategies in traditional Gaziantep residences: A critical report on historical development. Int. J. Low-Carbon Technol. 2024, 19, 245–256. [Google Scholar] [CrossRef]
- Fouseki, K.; Guttormsen, T.; Swensen, G. Heritage and Sustainable Urban Transformations: Deep Cities; Routledge: London, UK, 2019; ISBN 9780429462894. [Google Scholar]
- Gaziantep Valiliği, Gaziantep İli Kültür Envanteri; Merinos yayıncılık: Gaziantep, Türkiye, 2005.
- T. S. M. Service. Extreme Maximum, Minimum and Average Temperatures Measured in Long Period (°C). 2024. Available online: https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=undefined&m=GAZIANTEP (accessed on 24 May 2024).
- Weather and Climate. 2023. Available online: https://weatherandclimate.com/turkey/gaziantep (accessed on 24 May 2024).
- Anaç, M.; Arun, G. HBIM supported archive model. J. Fac. Eng. Archit. Gazi Univ. 2024, 39, 443–469. [Google Scholar]
- Günaydın, A.S.; Altunkasa, M. Tarihî kent merkezlerinin koruma ve geliştirme stratejilerinin belirlenmesi: Gaziantep örneği. Bingöl Üniversitesi Sos. Bilim. Enstitüsü Derg. 2019, 9, 51–70. [Google Scholar] [CrossRef]
- Günel, E.; Çolak, A. Mimarlıkta bağlam ve bağlam kriterleri; Gaziantep Bey mahallesi geleneksel evleri örneği. Çü Fen Ve Mühendislik Bilim. Derg. 2019, 38, 54–66. [Google Scholar]
- Kasapbaşı, E. Gaziantep 1960–1980 Dönemi Kent Konutu Mekan Kurgusunun Analizi; Çukurova Üniversity: Adana, Türkiye, 2017. [Google Scholar]
- Kuban, D. Türkiye’de Kentsel Koruma Kent Tarihleri ve Koruma Yöntemleri; Tarih Vakfı Yurt Yayınları: İstanbul, Türkiye, 2021. [Google Scholar]
- Akın, G. Doğu ve Güneydoğu Anadoludaki Tarihsel Ev Tiplerinde Anlam; Istanbul Technical University: Istanbul, Türkiye, 1984. [Google Scholar]
- Kanalıcı, A.K. Geleneksel Gaziantep Evleri Yapı Üretim Analizi; Near East University: Lefkoşa, Cyprus, 2012. [Google Scholar]
- Yıldırıö, E.G.; Çağdaş, G. Gaziantep Geleneksel Mimari Dokusunun Sosyo-Kültürel Bağlamda. Gaziantep Univ. J. Soc. Sci. 2018, 17, 508–532. [Google Scholar]
- Deringöl, T. Sürdürülebilir Çağdaş Konut Tasarımında Gaziantep’in Yerel Mimarisinden Öğrenilenler; Selcuk University: Konya, Türkiye, 2015. [Google Scholar]
- Ünal, Z. Bilgisayar Destekli Tarihi Çevre Koruma Bilgi Sistemi Oluşturulması ve Gaziantep Kentsel Sit Alanında Örneklenmesi; Yıldız Technical University: Istanbul, Türkiye, 1998. [Google Scholar]
- Atalar, A. Osmanlı Dönemi Antep Evleri; Merinos: Gaziantep, Türkiye, 2004. [Google Scholar]
- Meteonorm. Introduction to Meteonorm. Available online: https://meteonorm.com/en/ (accessed on 15 September 2024).
- CIBSE, TM59. Design Methodology for the Assessment of Overheating Risk in Homes. 2017. Available online: https://www.cibse.org/knowledge-research/knowledge-portal/technical-memorandum-59-design-methodology-for-the-assessment-of-overheating-risk-in-homes (accessed on 19 July 2024).
- ANSI/ASHRAE Standard 55-2017; Thermal Enviromental Conditions for Human Occupancy. American Society of Heating, Refrigerating and Air-Conditioning Engineers, American National Standards Institute: Atlanta, GA, USA, 2017.
- Kürşat, B. Gaziantep’in Geleneksel Taş Evlerinde Enerji Verimliliği. Master Thesis, Hasan Kalyoncu University, Gaziantep, Türkiye, 2023. [Google Scholar]
- Thompson, S. Impacts of Variable Air Infiltration Rates and Insulation Installation on Residential Energy Performance; Sustainability house: Edwardstown, Australia, 2013. [Google Scholar]
- Çengel, Y. Heat Transfer: A Practical Approach; McGraw-Hill: New York, NY, USA, 1998; pp. 177–192. ISBN 0-07-115223-7. [Google Scholar]
- Demirbas, M.F. Thermal energy storage and phase-change materials: An overview. Energy Sources Part B Econ. Plan. Policy 2006, 1, 85–95. [Google Scholar] [CrossRef]
- Durmuş, G.; Görhan, G. Doğal Taş Plakaların Isıl İletkenlik Bakımından Termografik Görüntülerinin İncelenmesi. Selcuk Univ. J. Eng. Sci. 2009, 8, 48–57. [Google Scholar]
- Bozkurt, Y. Ağaç malzeme ve ısı münasebetleri. J. Fac. For. Istanb. Univ. 2014, 73–88. [Google Scholar]
- Materials for Thermal Calculation Property Tables and Charts. 2016. Available online: https://cecs.wright.edu/people/faculty/sthomas/htappendix01.pdf (accessed on 25 May 2024).
- IZODER, Izoder TS 825 Hesap Programı, Türkiye. 2007. Available online: https://www.izoder.org.tr/hesap-makinesi/ts_825_yardim.pdf (accessed on 25 May 2024).
- Walker, R.; Pavía, S. Thermal and hygric properties of insulation materials suitable for historic fabrics. In Proceedings of the III International Congress on Construction and Building Research, Madrid, Spain, 14–16 December 2015. [Google Scholar]
- Bakan, M.K.; Fouseki, K.; Altamirano, H. Investigating the Role of Thermal Comfort Perception on Negotiating Heritage Conservation and Energy Efficiency Decisions through System Dynamics. Buildings 2024, 14, 1800. [Google Scholar] [CrossRef]
- Kyritsi, E.; Philokyprou, M.; Kyriakidis, A.; Michael, A.; Michopoulos, A. Energy retrofitting of heritage buildings: An integrated methodology. IOP Conf. Ser. Earth Environ. Sci. 2023, 1196, 012108. [Google Scholar] [CrossRef]
- Balçık, S.; Yamaçlı, R. Mimarlık Mirası Yapıların İşlevlendirilmesi ve Enerji Verimliliği. Inonu Univ. J. Art Des. 2022, 12, 29–40. [Google Scholar]
Phases and Dates | Characteristics and Changes | |
---|---|---|
Aynur Hanım Konağı first Restitution | Aynur Hanım Konağı was built in 1890. The building consists of 3 blocks: BN1 accommodation, BN2 bathroom and BN3 storage. The building material of all the buildings is the traditional building material of Havara and Keymik stone. | |
Aynur Hanım Konağı final restoration | BN2 and BN3 blocks do not exist in the current state of the hotel. BN4, BN5, and BN6 structures were added during the restoration of the building. The walls are made of Keymik and Havara stone. But the floors were built in concrete. The BN4 is a hotel, BN5 is used as a bathroom with access from the hotel rooms, and BN6 is used as a common toilet. |
ID | Material | Density (g/m3) | Heat Conduction Coefficient (W/mK) | Heat Capacity | Thickness | Resource |
---|---|---|---|---|---|---|
M-01 | Iron | 7870 | 8.020 | 3.520 | [48] | |
M-02 | Urfa Stone | 2570 | 1.420 | 1.410 | 64 cm | [49] |
M-03 | Marble | 2360 | 3.140 | 8.700 | 4 cm | [50] |
M-04 | Limestone | 2600 | 2.100 | 9.200 | 6 cm | [50] |
M-05 | Wood (Poplar) | 4100 | 0.088 | 0.226 | 7.5 cm | [51] |
M-06 | Glass (Single clear) | 2500 | 1.160 | 7.950 | 3 mm | [52] |
M-07 | Roof Tile | 1900 | 0.840 | 8.000 | 12 cm | [52] |
M-08 | White plaster | 1682 | 0.819 | 8.370 | 3 cm | [52] |
M-09 | Black plaster | 1726 | 0.836 | 8.670 | X | [53] |
M-10 | Lime Plaster | 1820 | 0.800 | 8.639 | X | [54] |
M-11 | Brick | 2025 | 0.600 | 8.000 | X | [50] |
M-12 | Zinc coating | 7140 | 1.160 | 3.890 | X | [52] |
M-13 | Bulk Concrete | 2100 | 1.400 | 8.400 | X | [52] |
M-14 | Soil | 2180 | 1.490 | 8.400 | X | [49] |
1. Restitution (1890–1940) | 4. Restoration | ||||||
---|---|---|---|---|---|---|---|
Block | BN1 | BN2 | BN3 | BN1 | BN4 | BN5 | BN6 |
Function | Home | Storage | WC | Hotel | Hotel | Bathroom | Toilet |
Operating schedule | Operating hours: 24 h | Factor 1 | Operating hours:24 h | Factor 0.50 | |||
Material of walls | M-01 M-02 | M-01 M-02 | M-01 M-02 | M-01 M-02 | M-01 M-02 | M-01 M-02 | M-01 M-02 |
Material of windows | M-05 M-06 | M-05 M-06 | M-05 M-06 | M-05 M-06 | M-05 M-06 | M-05 M-06 | M-05 M-06 |
Material of floors | M-02 M-04 M-05 | M-14 | M-14 | M-02 M-04 M-05 | M-05 M-13 | M-05 M-13 | M-05 M-13 |
Material of roof | M-05 M-07 | M-05 M-07 | M-05 M-07 | M-05 M-07 | M-05 M-07 | M-05 M-07 | M-05 M-07 |
Infiltration | |||||||
HVAC | - | - | - | air-con | air-con | air-con | |
Lighting | incandescent light | incandescent light | incandescent light | LED light | LED light | LED light | LED light |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alasmar, R.; Anaç, M.; Bakan, M.K. Evaluating the Effect of Adaptive Reuse in the Energy Performance of Historic Buildings: A Case Study from Türkiye. Heritage 2024, 7, 6085-6100. https://doi.org/10.3390/heritage7110285
Alasmar R, Anaç M, Bakan MK. Evaluating the Effect of Adaptive Reuse in the Energy Performance of Historic Buildings: A Case Study from Türkiye. Heritage. 2024; 7(11):6085-6100. https://doi.org/10.3390/heritage7110285
Chicago/Turabian StyleAlasmar, Reham, Merve Anaç, and Merve Karabeyeser Bakan. 2024. "Evaluating the Effect of Adaptive Reuse in the Energy Performance of Historic Buildings: A Case Study from Türkiye" Heritage 7, no. 11: 6085-6100. https://doi.org/10.3390/heritage7110285
APA StyleAlasmar, R., Anaç, M., & Bakan, M. K. (2024). Evaluating the Effect of Adaptive Reuse in the Energy Performance of Historic Buildings: A Case Study from Türkiye. Heritage, 7(11), 6085-6100. https://doi.org/10.3390/heritage7110285