Integrating Emerging Technologies with Digital Twins for Heritage Building Conservation: An Interdisciplinary Approach with Expert Insights and Bibliometric Analysis
Abstract
:1. Introduction
2. Methodology
- Quantitative (Likert scale) Questions:
- “Rate the effectiveness of laser scanning in capturing accurate architectural details of heritage buildings (1–5).”
- “How effective do you find machine learning algorithms in predicting structural vulnerabilities in heritage buildings (1–5)?”
- “Evaluate the utility of BIM in the planning and execution of heritage conservation projects (1–5).”
- “Assess the impact of DTs in enhancing the maintenance and preservation of heritage sites (1–5).”
- Qualitative (open-ended) Questions:
- “Describe a project where you utilized laser scanning for heritage conservation. What were the key benefits and challenges?”
- “In your experience, how does machine learning contribute to the conservation of heritage buildings? Please provide examples.”
- “Discuss how BIM has changed the approach to heritage building conservation within your projects.”
- “Share your insights on the future potential of DTs in heritage conservation.”
3. Results
3.1. Bibliometric Analysis
3.1.1. Publication Trends in Cultural Heritage Preservation
3.1.2. Leading Journals, Authors, and Countries in Cultural Heritage Preservation Research
3.1.3. Research Gaps in Heritage Preservation
3.2. Content Analysis
Expert Insights and Professional Perspectives
3.3. Emerging Technology Synthesis for Heritage Conservation
3.3.1. Laser Scanning and DT Symbiosis
3.3.2. Information Standardization
3.3.3. Detailed Finite Element Modeling
3.3.4. Integration with 360° Photography
3.3.5. Automation in HBIM Processes
3.4. BIM and DT as a Heritage Conservation Nexus
3.4.1. Scan-to-BIM-to-DT Process
3.4.2. DT-HBIM for Preventive Conservation
3.5. IoT as the Connective Tissue for Dynamic DT
3.5.1. Integration of IoT with DT Models
Sensor Type | Application | Outcome | Reference |
---|---|---|---|
3D Laser Scanners | Detailed geometric documentation and structural analysis | Accurate 3D models for assessing structural health and planning conservation works | [30,114,115,116] |
Wireless Sensor Networks (WSN) | Real-time health monitoring of architectural heritage | Non-invasive monitoring of environmental parameters crucial for the preservation of heritage buildings | [117,118] |
Infrared Thermography (IRT) | Detection of moisture, insulation failures, and thermal anomalies | Identifying areas at risk of deterioration due to environmental factors, aiding in preventive conservation | [119] |
Environmental Sensors | Monitoring microclimate conditions within heritage sites | Ensuring the preservation of materials by controlling temperature, humidity, and other environmental factors | [120] |
Ground-Penetrating Radar (GPR) | Sub-surface imaging of foundations and buried structures | Non-invasive exploration of structural integrity and identification of hidden features without physical excavation | [121] |
Digital Image Correlation (DIC) | Monitoring of deformations and displacement over time | Provides a detailed analysis of structural movement, critical for assessing the stability and integrity of heritage structures | [122] |
Fiber Optic Sensors | Long-term structural health monitoring | Real-time, continuous monitoring of strains and stresses within structural elements, allowing for early detection of deterioration | [123] |
Ultrasonic Sensors | Material characterization and flaw detection | Assessing the condition of materials and detecting voids, cracks, and other defects in building elements | [124] |
3.5.2. Energy Efficiency in IoT for Cultural Heritage (CH)
3.6. Machine Learning for Predictive Conservation
3.6.1. Restitution of Damaged Heritage
Reference | Main Findings |
---|---|
[139] | Reviews various ML techniques for assessing the health condition of heritage buildings, including predictive models for damage scenarios and mechanical properties of materials. |
[144] | Uses conditional generative adversarial networks to predict missing/damaged parts of historical buildings. |
[151] | Demonstrates the effectiveness of CNN and SVM models in classifying damage severity levels in heritage buildings. |
[152] | Proposes SVM for automatically recognizing elements in existing buildings to create semantic information models from point cloud data. |
[153] | Uses deep learning methods, including transfer learning with pre-trained networks, for the classification and localization of defects in cultural heritage buildings in Iran. |
[154] | Develops learning models to analyze data from the digital documentation of heritage structures, proposing an ontology for heritage buildings and damage due to disasters. |
[155] | Discusses the development and application of machine learning in the fields of energy conservation and indoor environment, including predictive modeling for indoor culturable fungi concentration. |
[156] | Proposes a method to support preventive conservation programs through the analysis of maintenance requests using LSTM neural networks, achieving a prediction accuracy of 96.6%. |
[157] | Describes the use of machine learning algorithms for analyzing BIM data to improve decision-making in energy renovation projects. |
[158] | Surveys the application of machine learning to cultural heritage, analyzing the adoption and adaptation of ML algorithms for various CH applications. |
[159] | Discusses the potential of parametric modeling techniques in the restoration and reconstruction processes of heritage buildings through a BIM software plug-in. |
3.6.2. Ontology-Based Conservation
3.7. Enriching Heritage Experience with AR and VR
3.7.1. Underwater Archeological Sites
3.7.2. Engineering-Grade Devices
3.7.3. Digital Preservation of Cultural Elements
3.8. Bridging Disciplines
3.8.1. Ethical Frameworks for Digital Replication
Ethical Principles for Digital Workflows
Ethics by Design
3.8.2. The Convergence of Multidisciplinary Expertise
Multidisciplinary Decision-Making Methods
Non-Destructive Techniques for Conservation
3.9. Case Study
3.9.1. At-Turaif District
3.9.2. Bujairi Quarter
3.9.3. Buwaib Village
3.9.4. Rughabah Village
4. Discussion
5. Future Directions
6. Limitations
7. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Penića, M.; Svetlana, G.; Murgul, V. Revitalization of Historic Buildings as an Approach to Preserve Cultural and Historical Heritage. Procedia Eng. 2015, 117, 883–890. [Google Scholar] [CrossRef]
- Assmann, A. The future of cultural heritage and its challenges. In Cultural Sustainability; Routledge: London, UK, 2019; ISBN 978-1-351-12430-0. [Google Scholar]
- Tostões, A. Modern Built Heritage Conservation Policies: How to Keep Authenticity and Emotion in the Age of Digital Culture. Built Herit. 2018, 2, 17–34. [Google Scholar] [CrossRef]
- Harun, S.N. Heritage Building Conservation in Malaysia: Experience and Challenges. Procedia Eng. 2011, 20, 41–53. [Google Scholar] [CrossRef]
- Cucco, P.; Maselli, G.; Nesticò, A.; Ribera, F. An evaluation model for adaptive reuse of cultural heritage in accordance with 2030 SDGs and European Quality Principles. J. Cult. Herit. 2023, 59, 202–216. [Google Scholar] [CrossRef]
- Parnell, S. Defining a Global Urban Development Agenda. World Dev. 2016, 78, 529–540. [Google Scholar] [CrossRef]
- Kougias, I.; Taylor, N.; Kakoulaki, G.; Jäger-Waldau, A. The role of photovoltaics for the European Green Deal and the recovery plan. Renew. Sustain. Energy Rev. 2021, 144, 111017. [Google Scholar] [CrossRef]
- Achiaga, M.D.M.N. The EU Digital Decade: A New Set of Digital Targets for 2030. 31 August 2021. Available online: https://policycommons.net/artifacts/1811009/the-eu-digital-decade/2546932/ (accessed on 20 March 2024).
- Ramos, L.F.; Masciotta, M.G.; Morais, M.J.; Azenha, M.; Ferreira, T.; Pereira, E.B.; Lourenço, P.B. HeritageCARE: Preventive conservation of built cultural heritage in the South-West Europe. In Innovative Built Heritage Models; CRC Press: Boca Raton, FL, USA, 2018; ISBN 978-1-351-01479-3. [Google Scholar]
- López, F.J.; Lerones, P.M.; Llamas, J.; Gómez-García-Bermejo, J.; Zalama, E. A Review of Heritage Building Information Modeling (H-BIM). Multimodal Technol. Interact. 2018, 2, 21. [Google Scholar] [CrossRef]
- Biagini, C.; Capone, P.; Donato, V.; Facchini, N. Towards the BIM implementation for historical building restoration sites. Autom. Constr. 2016, 71, 74–86. [Google Scholar] [CrossRef]
- Masciotta, M.G.; Sanchez-Aparicio, L.J.; Oliveira, D.V.; Gonzalez-Aguilera, D. Integration of Laser Scanning Technologies and 360o Photography for the Digital Documentation and Management of Cultural Heritage Buildings. Int. J. Archit. Herit. 2023, 17, 56–75. [Google Scholar] [CrossRef]
- Crisan, A.; Pepe, M.; Costantino, D.; Herban, S. From 3D Point Cloud to an Intelligent Model Set for Cultural Heritage Conservation. Heritage 2024, 7, 1419–1437. [Google Scholar] [CrossRef]
- Casillo, M.; Colace, F.; Gupta, B.B.; Lorusso, A.; Marongiu, F.; Santaniello, D. A Deep Learning Approach to Protecting Cultural Heritage Buildings Through IoT-Based Systems. In Proceedings of the 2022 IEEE International Conference on Smart Computing (SMARTCOMP), Helsinki, Finland, 20–24 June 2022; pp. 252–256. Available online: https://ieeexplore.ieee.org/abstract/document/9821100 (accessed on 21 March 2024).
- Colace, F.; Elia, C.; Guida, C.G.; Lorusso, A.; Marongiu, F.; Santaniello, D. An IoT-based Framework to Protect Cultural Heritage Buildings. In Proceedings of the 2021 IEEE International Conference on Smart Computing (SMARTCOMP), Irvine, CA, USA, 23–27 August 2021; pp. 377–382. Available online: https://ieeexplore.ieee.org/abstract/document/9556237 (accessed on 21 March 2024).
- Boesgaard, C.; Hansen, B.V.; Kejser, U.B.; Mollerup, S.H.; Ryhl-Svendsen, M.; Torp-Smith, N. Prediction of the indoor climate in cultural heritage buildings through machine learning: First results from two field tests. Herit. Sci. 2022, 10, 176. [Google Scholar] [CrossRef]
- Chen, S.; Chen, J.; Yu, J.; Wang, T.; Xu, J. Prediction of Deterioration Level of Heritage Buildings Using a Logistic Regression Model. Buildings 2023, 13, 1006. [Google Scholar] [CrossRef]
- Battina, S.; Jaganathan, S. AI and Digital Twin Applications in 3D Information Models for Heritage Buildings: A Systematic Review. Int. J. Eng. Technol. Manag. Sci. 2023, 7, 122–131. [Google Scholar]
- Vuoto, A.; Funari, M.F.; Lourenço, P.B. Shaping Digital Twin Concept for Built Cultural Heritage Conservation: A Systematic Literature Review. Int. J. Archit. Herit. 2024, 18, 1762–1795. [Google Scholar] [CrossRef]
- Lazaraton, A. Quantitative Research Methods. In Handbook of Research in Second Language Teaching and Learning; Routledge: London, UK, 2005; ISBN 978-1-4106-1270-0. [Google Scholar]
- Ezzy, D. Qualitative Analysis; Routledge: London, UK, 2013; 200p, ISBN 978-1-315-01548-4. [Google Scholar]
- Universitetet i Agder [Internet]. SurveyXact. Available online: https://libguides.uia.no/kurs/surveyxact (accessed on 16 November 2024).
- Asher, J. How to Analyze Survey Data in Python. Available online: https://towardsdatascience.com/how-to-analyze-survey-data-in-python-c131764ea02e (accessed on 26 March 2024).
- Villegas, F. Thematic Analysis: What It Is and How to Do It. QuestionPro. 2022. Available online: https://www.questionpro.com/blog/thematic-analysis/ (accessed on 26 March 2024).
- Funari, M.F.; Hajjat, A.E.; Masciotta, M.G.; Oliveira, D.V.; Lourenço, P.B. A Parametric Scan-to-FEM Framework for the Digital Twin Generation of Historic Masonry Structures. Sustainability 2021, 13, 11088. [Google Scholar] [CrossRef]
- Omrany, H.; Al-Obaidi, K.M.; Husain, A.; Ghaffarianhoseini, A. Digital Twins in the Construction Industry: A Comprehensive Review of Current Implementations, Enabling Technologies, and Future Directions. Sustainability 2023, 15, 10908. [Google Scholar] [CrossRef]
- Banfi, F.; Brumana, R.; Salvalai, G.; Previtali, M. Digital Twin and Cloud BIM-XR Platform Development: From Scan-to-BIM-to-DT Process to a 4D Multi-User Live App to Improve Building Comfort, Efficiency and Costs. Energies 2022, 15, 4497. [Google Scholar] [CrossRef]
- Lucchi, E. Review of preventive conservation in museum buildings. J. Cult. Herit. 2018, 29, 180–193. [Google Scholar] [CrossRef]
- Noronha Pinto de Oliveira e Sousa, M.; Correa, F.R. Towards digital twins for heritage buildings: A workflow proposal. Int. J. Archit. Comput. 2023, 21, 712–729. [Google Scholar] [CrossRef]
- Rocha, G.; Mateus, L.; Fernandez, J.H.; Ferreira, V. A Scan-to-BIM Methodology Applied to Heritage Buildings. Heritage 2020, 3, 47–67. [Google Scholar] [CrossRef]
- Mihai, S.; Yaqoob, M.; Hung, D.V.; Davis, W.; Towakel, P.; Raza, M.; Karamanoglu, M.; Barn, B.; Shetve, D.; Prasad, R.V.; et al. Digital Twins: A Survey on Enabling Technologies, Challenges, Trends and Future Prospects. IEEE Commun. Surv. Tutor. 2022, 24, 2255–2291. [Google Scholar] [CrossRef]
- Gunasegaram, D.R.; Murphy, A.B.; Barnard, A.; DebRoy, T.; Matthews, M.J.; Ladani, L.; Gu, D. Towards developing multiscale-multiphysics models and their surrogates for digital twins of metal additive manufacturing. Addit. Manuf. 2021, 46, 102089. [Google Scholar] [CrossRef]
- Manzoor, B.; Othman, I.; Pomares, J.C. Digital Technologies in the Architecture, Engineering and Construction (AEC) Industry—A Bibliometric—Qualitative Literature Review of Research Activities. Int. J. Environ. Res. Public Health 2021, 18, 6135. [Google Scholar] [CrossRef]
- Hosamo, H.H.; Hosamo, M.H. Digital Twin Technology for Bridge Maintenance using 3D Laser Scanning: A Review. Adv. Civ. Eng. 2022, 2022, e2194949. [Google Scholar] [CrossRef]
- Han, D.; Hosamo, H.; Ying, C.; Nie, R. A Comprehensive Review and Analysis of Nanosensors for Structural Health Monitoring in Bridge Maintenance: Innovations, Challenges, and Future Perspectives. Appl. Sci. 2023, 13, 11149. [Google Scholar] [CrossRef]
- Badenko, V.; Zotov, D.; Fedotov, A. Hybrid processing of laser scanning data. E3S Web Conf. 2018, 33, 01047. [Google Scholar] [CrossRef]
- Lin, X.; Kundu, L.; Dick, C.; Obiodu, E.; Mostak, T.; Flaxman, M. 6G Digital Twin Networks: From Theory to Practice. IEEE Commun. Mag. 2023, 61, 72–78. [Google Scholar] [CrossRef]
- Jordan-Palomar, I.; Tzortzopoulos, P.; García-Valldecabres, J.; Pellicer, E. Protocol to Manage Heritage-Building Interventions Using Heritage Building Information Modelling (HBIM). Sustainability 2018, 10, 908. [Google Scholar] [CrossRef]
- Adeagbo, M.O.; Wang, S.-M.; Ni, Y.-Q. Revamping structural health monitoring of advanced rail transit systems: A paradigmatic shift from digital shadows to digital twins. Adv. Eng. Inform. 2024, 61, 102450. [Google Scholar] [CrossRef]
- Jiang, F.; Ma, L.; Broyd, T.; Chen, K. Digital twin and its implementations in the civil engineering sector. Autom. Constr. 2021, 130, 103838. [Google Scholar] [CrossRef]
- Adegoriola, M.I.; Lai, J.H.K.; Yung, E.H.K.; Chan, E.H.W. Development of a significant index model for assessing heritage building maintenance management challenges. Eng. Constr. Archit. Manag. 2024, 31, 3398–3428. [Google Scholar] [CrossRef]
- Trillo, C.; Aburamadan, R.; Makore, B.C.N.; Udeaja, C.; Moustaka, A.; Gyau Baffour Awuah, K.; Patel, D.A.; Mansuri, L.E. Towards Smart Planning Conservation of Heritage Cities: Digital Technologies and Heritage Conservation Planning. In Culture and Computing. Interactive Cultural Heritage and Arts; Rauterberg, M., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 133–151. [Google Scholar]
- Luther, W.; Baloian, N.; Biella, D.; Sacher, D. Digital Twins and Enabling Technologies in Museums and Cultural Heritage: An Overview. Sensors 2023, 23, 1583. [Google Scholar] [CrossRef]
- What Is a Knowledge Graph?|Ontotext Fundamentals. Available online: https://www.ontotext.com/knowledgehub/fundamentals/what-is-a-knowledge-graph/ (accessed on 27 March 2024).
- Ma, X. Knowledge graph construction and application in geosciences: A review. Comput. Geosci. 2022, 161, 105082. [Google Scholar] [CrossRef]
- Doerr, M. The CIDOC Conceptual Reference Module: An Ontological Approach to Semantic Interoperability of Metadata. AI Mag. 2003, 24, 75. [Google Scholar]
- Catalano, C.E.; Vassallo, V.; Hermon, S.; Spagnuolo, M. Representing quantitative documentation of 3D cultural heritage artefacts with CIDOC CRMdig. Int. J. Digit. Libr. 2020, 21, 359–373. [Google Scholar] [CrossRef]
- Xhako, A.; Katzourakis, A.; Evdaimon, T.; Zidianakis, E.; Partarakis, N.; Zabulis, X. Reviving Antiquity in the Digital Era: Digitization, Semantic Curation, and VR Exhibition of Contemporary Dresses. Computers 2024, 13, 57. [Google Scholar] [CrossRef]
- Costa, L.; Freitas, N.; da Silva, J.R. An Evaluation of Graph Databases and Object-Graph Mappers in CIDOC CRM-Compliant Digital Archives. J. Comput. Cult. Herit. 2022, 15, 44:1–44:18. [Google Scholar] [CrossRef]
- Werbrouck, J.; Pauwels, P.; Bonduel, M.; Beetz, J.; Bekers, W. Scan-to-graph: Semantic enrichment of existing building geometry. Autom. Constr. 2020, 119, 103286. [Google Scholar] [CrossRef]
- Bartolini, G.; Giuliani, F.; De Falco, A. Proof of Concept for Methodological Framework Including Point Clouds in the Non-Destructive Diagnosis of Historical Masonry Structures. Int. J. Archit. Herit. 2023, 1, 1–24. [Google Scholar]
- Maravelakis, E.; Giannioti, G.; Psalti, A.; Tsakoumaki, M.; Pocobelli, D.P.; Xinogalos, M.; Galanakis, D.; Bilalis, N.; Stavroulakis, G. 3D Modeling & Analysis Techniques for the Apollo Temple in Delphi. Buildings 2023, 13, 1730. [Google Scholar] [CrossRef]
- Prideaux, B.; Laws, E.; Faulkner, B. Events in Indonesia: Exploring the limits to formal tourism trends forecasting methods in complex crisis situations. In Crisis Management in Tourism; CABI: Oxfordshire, UK, 2007; pp. 353–374. [Google Scholar]
- Brilakis, I.; Lourakis, M.; Sacks, R.; Savarese, S.; Christodoulou, S.; Teizer, J.; Makhmalbaf, A. Toward automated generation of parametric BIMs based on hybrid video and laser scanning data. Adv. Eng. Inform. 2010, 24, 456–465. [Google Scholar] [CrossRef]
- Triantafyllidis, A.K.; Tsanas, A. Applications of Machine Learning in Real-Life Digital Health Interventions: Review of the Literature. J. Med. Internet Res. 2019, 21, e12286. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.D.; Chen, D. Performance Comparison of Deep Learning (DL)-Based Tabular Models for Building Mapping Using High-Resolution Red, Green, and Blue Imagery and the Geographic Object-Based Image Analysis Framework. Remote Sens. 2024, 16, 878. [Google Scholar] [CrossRef]
- Alshawabkeh, Y.; Baik, A.; Miky, Y. Integration of laser scanner and photogrammetry for heritage BIM enhancement. ISPRS Int. J. Geo-Inf. 2021, 10, 316. [Google Scholar] [CrossRef]
- Weinhaus, F.M.; Devarajan, V. Texture mapping 3D models of real-world scenes. ACM Comput. Surv. 1997, 29, 325–365. [Google Scholar] [CrossRef]
- Buckley, S.J.; Howell, J.A.; Enge, H.D.; Kurz, T.H. Terrestrial laser scanning in geology: Data acquisition, processing and accuracy considerations. J. Geol. Soc. 2008, 165, 625–638. [Google Scholar] [CrossRef]
- Kolar, P.; Benavidez, P.; Jamshidi, M. Survey of Datafusion Techniques for Laser and Vision Based Sensor Integration for Autonomous Navigation. Sensors 2020, 20, 2180. [Google Scholar] [CrossRef]
- Leon, I.; Pérez, J.J.; Senderos, M. Advanced Techniques for Fast and Accurate Heritage Digitisation in Multiple Case Studies. Sustainability 2020, 12, 6068. [Google Scholar] [CrossRef]
- Ni, Z.; Liu, Y.; Karlsson, M.; Gong, S. Enabling Preventive Conservation of Historic Buildings Through Cloud-Based Digital Twins: A Case Study in the City Theatre, Norrköping. IEEE Access 2022, 10, 90924–90939. [Google Scholar] [CrossRef]
- Liu, J.; Foreman, G.; Sattineni, A.; Li, B. Integrating Stakeholders’ Priorities into Level of Development Supplemental Guidelines for HBIM Implementation. Buildings 2023, 13, 530. [Google Scholar] [CrossRef]
- Martinelli, L.; Calcerano, F.; Gigliarelli, E. Methodology for an HBIM workflow focused on the representation of construction systems of built heritage. J. Cult. Herit. 2022, 55, 277–289. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L. Artificial Intelligence for Remote Sensing Data Analysis: A review of challenges and opportunities. IEEE Geosci. Remote Sens. Mag. 2022, 10, 270–294. [Google Scholar] [CrossRef]
- Liu, J.; Azhar, S.; Willkens, D.; Li, B. Static Terrestrial Laser Scanning (TLS) for Heritage Building Information Modeling (HBIM): A Systematic Review. Virtual Worlds 2023, 2, 90–114. [Google Scholar] [CrossRef]
- Cotella, V.A. From 3D point clouds to HBIM: Application of Artificial Intelligence in Cultural Heritage. Autom. Constr. 2023, 152, 104936. [Google Scholar] [CrossRef]
- Döllner, J. Geospatial Artificial Intelligence: Potentials of Machine Learning for 3D Point Clouds and Geospatial Digital Twins. PFG—J. Photogramm. Remote Sens. Geoinf. Sci. 2020, 88, 15–24. [Google Scholar] [CrossRef]
- Pierdicca, R.; Paolanti, M. GeoAI: A review of artificial intelligence approaches for the interpretation of complex geomatics data. Geosci. Instrum. Methods Data Syst. 2022, 11, 195–218. [Google Scholar] [CrossRef]
- Moyano, J.; Carreño, E.; Nieto-Julián, J.E.; Gil-Arizón, I.; Bruno, S. Systematic approach to generate Historical Building Information Modelling (HBIM) in architectural restoration project. Autom. Constr. 2022, 143, 104551. [Google Scholar] [CrossRef]
- Qiuchen Lu, V.; Parlikad, A.K.; Woodall, P.; Ranasinghe, G.D.; Heaton, J. Developing a Dynamic Digital Twin at a Building Level: Using Cambridge Campus as Case Study. In International Conference on Smart Infrastructure and Construction 2019 (ICSIC); Cambridge Centre for Smart Infrastructure & Construction; ICE Publishing: Leeds, UK, 2019; pp. 67–75. ISBN 978-0-7277-6466-9. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, D.; Yow, C.H.; Huang, L.; Wu, X.; Huang, X.; Guo, J.; Zhou, S.; Cai, Y. Metaverse for Cultural Heritages. Electronics 2022, 11, 3730. [Google Scholar] [CrossRef]
- Baghalzadeh Shishehgarkhaneh, M.; Keivani, A.; Moehler, R.C.; Jelodari, N.; Roshdi Laleh, S. Internet of Things (IoT), Building Information Modeling (BIM), and Digital Twin (DT) in Construction Industry: A Review, Bibliometric, and Network Analysis. Buildings 2022, 12, 1503. [Google Scholar] [CrossRef]
- Senior, C.; Salaj, A.T.; Vukmirovic, M.; Jowkar, M.; Kristl, Ž. The Spirit of Time—The Art of Self-Renovation to Improve Indoor Environment in Cultural Heritage Buildings. Energies 2021, 14, 4056. [Google Scholar] [CrossRef]
- Croce, V.; Caroti, G.; De Luca, L.; Jacquot, K.; Piemonte, A.; Véron, P. From the Semantic Point Cloud to Heritage-Building Information Modeling: A Semiautomatic Approach Exploiting Machine Learning. Remote Sens. 2021, 13, 461. [Google Scholar] [CrossRef]
- Jouan, P.; Hallot, P. Digital twin: A hbim-based methodology to support preventive conservation of historic assets through heritage significance awareness. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2-W15, 609–615. [Google Scholar]
- El Barhoumi, N.; Hajji, R. Hbim and extended reality for cultural mediation of historical heritage: A review. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2024, XLVIII-4-W9-2024, 125–132. [Google Scholar]
- Zhao, J.; Feng, H.; Chen, Q.; Garcia de Soto, B. Developing a conceptual framework for the application of digital twin technologies to revamp building operation and maintenance processes. J. Build. Eng. 2022, 49, 104028. [Google Scholar] [CrossRef]
- Calcerano, F.; Thravalou, S.; Martinelli, L.; Alexandrou, K.; Artopoulos, G.; Gigliarelli, E. Energy and environmental improvement of built heritage: HBIM simulation-based approach applied to nine Mediterranean case-studies. Build. Res. Inf. 2024, 52, 225–247. [Google Scholar] [CrossRef]
- Tejedor, B.; Lucchi, E.; Bienvenido-Huertas, D.; Nardi, I. Non-destructive techniques (NDT) for the diagnosis of heritage buildings: Traditional procedures and futures perspectives. Energy Build. 2022, 263, 112029. [Google Scholar] [CrossRef]
- Sun, H.; Liu, Z. Research on Intelligent Dispatching System Management Platform for Construction Projects Based on Digital Twin and BIM Technology. Adv. Civ. Eng. 2022, 2022, e8273451. [Google Scholar] [CrossRef]
- Honghong, S.; Gang, Y.; Haijiang, L.; Tian, Z.; Annan, J. Digital twin enhanced BIM to shape full life cycle digital transformation for bridge engineering. Autom. Constr. 2023, 147, 104736. [Google Scholar] [CrossRef]
- Cui, W.; Chen, Y.; Xu, B. Application research of intelligent system based on BIM and sensors monitoring technology in construction management. Phys. Chem. Earth Parts ABC 2024, 134, 103546. [Google Scholar] [CrossRef]
- Foster, G. Circular economy strategies for adaptive reuse of cultural heritage buildings to reduce environmental impacts. Resour. Conserv. Recycl. 2020, 152, 104507. [Google Scholar] [CrossRef]
- Buda, A.; de Place Hansen, E.J.; Rieser, A.; Giancola, E.; Pracchi, V.N.; Mauri, S.; Marincioni, V.; Gori, V.; Fouseki, K.; Polo López, C.S.; et al. Conservation-Compatible Retrofit Solutions in Historic Buildings: An Integrated Approach. Sustainability 2021, 13, 2927. [Google Scholar] [CrossRef]
- Kameni Nematchoua, M.; Orosa, J.A. Low Carbon Emissions and Energy Consumption: A Targeted Approach Based on the Life Cycle Assessment of a District. Waste 2023, 1, 588–611. [Google Scholar] [CrossRef]
- Nour El-Din, M.; Pereira, P.F.; Poças Martins, J.; Ramos, N.M.M. Digital Twins for Construction Assets Using BIM Standard Specifications. Buildings 2022, 12, 2155. [Google Scholar] [CrossRef]
- Lerario, A. The IoT as a Key in the Sensitive Balance between Development Needs and Sustainable Conservation of Cultural Resources in Italian Heritage Cities. Sustainability 2020, 12, 6952. [Google Scholar] [CrossRef]
- Marra, A.; Trizio, I.; Fabbrocino, G. Digital Tools for the Knowledge and Safeguard of Historical Heritage. In Civil Structural Health Monitoring; Rainieri, C., Fabbrocino, G., Caterino, N., Ceroni, F., Notarangelo, M.A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 645–662. [Google Scholar]
- Vuoto, A.; Funari, M.F.; Lourenço, P.B. On the Use of the Digital Twin Concept for the Structural Integrity Protection of Architectural Heritage. Infrastructures 2023, 8, 86. [Google Scholar] [CrossRef]
- Shan, M.; Chen, Y.-F.; Zhai, Z.; Du, J. Investigating the critical issues in the conservation of heritage building: The case of China. J. Build. Eng. 2022, 51, 104319. [Google Scholar] [CrossRef]
- Xiao, W.; Mills, J.; Guidi, G.; Rodríguez-Gonzálvez, P.; Gonizzi Barsanti, S.; González-Aguilera, D. Geoinformatics for the conservation and promotion of cultural heritage in support of the UN Sustainable Development Goals. ISPRS J. Photogramm. Remote Sens. 2018, 142, 389–406. [Google Scholar] [CrossRef]
- Mannino, A.; Dejaco, M.C.; Re Cecconi, F. Building Information Modelling and Internet of Things Integration for Facility Management—Literature Review and Future Needs. Appl. Sci. 2021, 11, 3062. [Google Scholar] [CrossRef]
- Argasiński, K.; Kuroczyński, P. Preservation through digitization—Standardization in documentation of build cultural heritage using capturing reality techniques and heritage/historic BIM methodology. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-M-2–2023, 87–94. [Google Scholar]
- Stojanovic, L.; Usländer, T.; Volz, F.; Weißenbacher, C.; Müller, J.; Jacoby, M.; Bischoff, T. Methodology and Tools for Digital Twin Management—The FA3ST Approach. IoT 2021, 2, 717–740. [Google Scholar] [CrossRef]
- Jiang, W.; Strufe, M.; Schotten, H.D. Intelligent network management for 5G systems: The SELFNET approach. In Proceedings of the 2017 European Conference on Networks and Communications (EuCNC), Oulu, Finland, 12–15 June 2017; pp. 1–5. Available online: https://ieeexplore.ieee.org/abstract/document/7980672 (accessed on 30 March 2024).
- Osadcha, I.; Jurelionis, A.; Fokaides, P. Geometric parameter updating in digital twin of built assets: A systematic literature review. J. Build. Eng. 2023, 73, 106704. [Google Scholar] [CrossRef]
- Petti, L.; Trillo, C.; Makore, B.N. Cultural Heritage and Sustainable Development Targets: A Possible Harmonisation? Insights from the European Perspective. Sustainability 2020, 12, 926. [Google Scholar] [CrossRef]
- Masciotta, M.G.; Morais, M.J.; Ramos, L.F.; Oliveira, D.V.; Sánchez-Aparicio, L.J.; González-Aguilera, D. A Digital-based Integrated Methodology for the Preventive Conservation of Cultural Heritage: The Experience of HeritageCare Project. Int. J. Archit. Herit. 2021, 15, 844–863. [Google Scholar] [CrossRef]
- Elnaggar, A.; Said, M.; Kraševec, I.; Said, A.; Grau-Bove, J.; Moubarak, H. Risk analysis for preventive conservation of heritage collections in Mediterranean museums: Case study of the museum of fine arts in Alexandria (Egypt). Herit. Sci. 2024, 12, 59. [Google Scholar] [CrossRef]
- Wei, Z.; Nie, J.; Zhang, W. Intelligent lighting design of cloud computing platform based on digital twin historic landscape blocks—Take Yu Garden commercial street in Shanghai as an example. Concurr. Comput. Pract. Exp. 2024, 36, e7975. [Google Scholar] [CrossRef]
- Hou, H.; Lai, J.H.K.; Wu, H.; Wang, T. Digital twin application in heritage facilities management: Systematic literature review and future development directions. Eng. Constr. Archit. Manag. 2024, 31, 3193–3221. [Google Scholar] [CrossRef]
- Cinquepalmi, F.; Cumo, F. Using Digital Twin Models (DTM) for managing, protecting and restoring historical buildings. Conserv. Sci. Cult. Herit. 2022, 22, 425–445. [Google Scholar]
- Lerario, A.; Varasano, A. An IoT Smart Infrastructure for S. Domenico Church in Matera’s “Sassi’’: A Multiscale Perspective to Built Heritage Conservation. Sustainability 2020, 12, 6553. [Google Scholar] [CrossRef]
- Altohami, A.B.A.; Haron, N.A.; Ales@Alias, A.H.; Law, T.H. Investigating Approaches of Integrating BIM, IoT, and Facility Management for Renovating Existing Buildings: A Review. Sustainability 2021, 13, 3930. [Google Scholar] [CrossRef]
- Rossi, M.; Bournas, D. Structural Health Monitoring and Management of Cultural Heritage Structures: A State-of-the-Art Review. Appl. Sci. 2023, 13, 6450. [Google Scholar] [CrossRef]
- La Russa, F.M.; Santagati, C. Historical sentient—Building information model: A digital twin for the management of museum collections in historical architectures. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLIII-B4-2020, 755–762. [Google Scholar]
- Ahmed, U.; Carpitella, S.; Certa, A. An integrated methodological approach for optimising complex systems subjected to predictive maintenance. Reliab. Eng. Syst. Saf. 2021, 216, 108022. [Google Scholar] [CrossRef]
- Torres-González, M.; Prieto, A.J.; Alejandre, F.J.; Blasco-López, F.J. Digital management focused on the preventive maintenance of World Heritage Sites. Autom. Constr. 2021, 129, 103813. [Google Scholar] [CrossRef]
- Bhujel, A.; Basak, J.K.; Khan, F.; Arulmozhi, E.; Jaihuni, M.; Sihalath, T.; Lee, D.; Park, J.; Kim, H.T. Sensor Systems for Greenhouse Microclimate Monitoring and Control: A Review. J. Biosyst. Eng. 2020, 45, 341–361. [Google Scholar] [CrossRef]
- Angjeliu, G.; Coronelli, D.; Cardani, G. Development of the simulation model for Digital Twin applications in historical masonry buildings: The integration between numerical and experimental reality. Comput. Struct. 2020, 238, 106282. [Google Scholar] [CrossRef]
- Karuppiah, K.; Sankaranarayanan, B.; Ali, S.M. On sustainable predictive maintenance: Exploration of key barriers using an integrated approach. Sustain. Prod. Consum. 2021, 27, 1537–1553. [Google Scholar] [CrossRef]
- Sayed, A.N.; Himeur, Y.; Bensaali, F. Deep and transfer learning for building occupancy detection: A review and comparative analysis. Eng. Appl. Artif. Intell. 2022, 115, 105254. [Google Scholar] [CrossRef]
- Jiménez Rios, A.; Plevris, V.; Nogal, M. Bridge management through digital twin-based anomaly detection systems: A systematic review. Front. Built Environ. 2023, 9, 1176621. [Google Scholar] [CrossRef]
- Shabani, A.; Skamantzari, M.; Tapinaki, S.; Georgopoulos, A.; Plevris, V.; Kioumarsi, M. 3D simulation models for developing digital twins of heritage structures: Challenges and strategies. Procedia Struct. Integr. 2022, 37, 314–320. [Google Scholar] [CrossRef]
- Shabani, A.; Hosamo, H.; Plevris, V.; Kioumarsi, M. A Preliminary Structural Survey of Heritage Timber Log Houses in Tønsberg, Norway; International Centre for Numerical Methods in Engineering: Barcelona, Spain, 2021; pp. 873–884. Available online: https://oda.oslomet.no/oda-xmlui/handle/11250/3024439 (accessed on 26 March 2024)ISBN 978-84-12-32220-0.
- Mecocci, A.; Abrardo, A. Monitoring Architectural Heritage by Wireless Sensors Networks: San Gimignano—A Case Study. Sensors 2014, 14, 770–778. [Google Scholar] [CrossRef]
- Barsocchi, P.; Bartoli, G.; Betti, M.; Girardi, M.; Mammolito, S.; Pellegrini, D.; Zini, G. Wireless Sensor Networks for Continuous Structural Health Monitoring of Historic Masonry Towers. Int. J. Archit. Herit. 2021, 15, 22–44. [Google Scholar] [CrossRef]
- Raffler, S.; Bichlmair, S.; Kilian, R. Mounting of sensors on surfaces in historic buildings. Energy Build. 2015, 95, 92–97. [Google Scholar] [CrossRef]
- Papitsi, C.; Ganetsos, T.; Katsantoni, M.; Drosos, C.; Symeonaki, E. Microclimate Monitoring Using Wireless Sensors for the Conservation of Cultural Heritage: The Case of the Holy Cross Hermitage in Olympus Area, Greece. Environ. Sci. Proc. 2023, 26, 62. [Google Scholar] [CrossRef]
- Adamopoulos, E.; Rinaudo, F. Close-Range Sensing and Data Fusion for Built Heritage Inspection and Monitoring—A Review. Remote Sens. 2021, 13, 3936. [Google Scholar] [CrossRef]
- Gopinath, V.K.; Ramadoss, R. Review on structural health monitoring for restoration of heritage buildings. Mater. Today Proc. 2020, 43, 1534–1538. [Google Scholar] [CrossRef]
- Proietti, N.; Capitani, D.; Tullio, V. Applications of Nuclear Magnetic Resonance Sensors to Cultural Heritage. Sensors 2014, 14, 6977–6997. [Google Scholar] [CrossRef]
- Kaur, N.; Tiwari, P.S.; Pande, H.; Agrawal, S. Utilizing Advance Texture Features for Rapid Damage Detection of Built Heritage Using High-Resolution Space Borne Data: A Case Study of UNESCO Heritage Site at Bagan, Myanmar. J. Indian Soc. Remote Sens. 2020, 48, 1627–1638. [Google Scholar] [CrossRef]
- de Rubeis, T.; Nardi, I.; Muttillo, M.; Paoletti, D. The restoration of severely damaged churches—Implications and opportunities on cultural heritage conservation, thermal comfort and energy efficiency. J. Cult. Herit. 2020, 43, 186–203. [Google Scholar] [CrossRef]
- Bansal, S.; Kumar, D. IoT Ecosystem: A Survey on Devices, Gateways, Operating Systems, Middleware and Communication. Int. J. Wirel. Inf. Netw. 2020, 27, 340–364. [Google Scholar] [CrossRef]
- Mazunga, F.; Nechibvute, A. Ultra-low power techniques in energy harvesting wireless sensor networks: Recent advances and issues. Sci. Afr. 2021, 11, e00720. [Google Scholar] [CrossRef]
- Mishra, P.; Singh, G. Energy Management Systems in Sustainable Smart Cities Based on the Internet of Energy: A Technical Review. Energies 2023, 16, 6903. [Google Scholar] [CrossRef]
- Dhabliya, D.; Soundararajan, R.; Selvarasu, P.; Balasubramaniam, M.S.; Rajawat, A.S.; Goyal, S.B.; Raboaca, M.S.; Mihaltan, T.C.; Verma, C.; Suciu, G. Energy-Efficient Network Protocols and Resilient Data Transmission Schemes for Wireless Sensor Networks—An Experimental Survey. Energies 2022, 15, 8883. [Google Scholar] [CrossRef]
- Gu, F.; Niu, J.; Jiang, L.; Liu, X.; Atiquzzaman, M. Survey of the low power wide area network technologies. J. Netw. Comput. Appl. 2020, 149, 102459. [Google Scholar] [CrossRef]
- Mitro, N.; Krommyda, M.; Amditis, A. Smart Tags: IoT Sensors for Monitoring the Micro-Climate of Cultural Heritage Monuments. Appl. Sci. 2022, 12, 2315. [Google Scholar] [CrossRef]
- Hamdan, S.; Ayyash, M.; Almajali, S. Edge-Computing Architectures for Internet of Things Applications: A Survey. Sensors 2020, 20, 6441. [Google Scholar] [CrossRef]
- Wang, Q.; Tan, L.T.; Hu, R.Q.; Qian, Y. Hierarchical Energy-Efficient Mobile-Edge Computing in IoT Networks. IEEE Internet Things J. 2020, 7, 11626–11639. [Google Scholar] [CrossRef]
- Design and Performance Evaluation of an Ultralow-Power Smart IoT Device With Embedded TinyML for Asset Activity Monitoring. IEEE Journals & Magazine|IEEE Xplore. Available online: https://ieeexplore.ieee.org/abstract/document/9758676 (accessed on 1 April 2024).
- Metallidou, C.K.; Psannis, K.E.; Egyptiadou, E.A. Energy Efficiency in Smart Buildings: IoT Approaches. IEEE Access 2020, 8, 63679–63699. [Google Scholar] [CrossRef]
- van Leeuwen, G.; AlSkaif, T.; Gibescu, M.; van Sark, W. An integrated blockchain-based energy management platform with bilateral trading for microgrid communities. Appl. Energy 2020, 263, 114613. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, Y.; Guerrero, J.M.; Vasquez, J.C. A comprehensive overview of framework for developing sustainable energy internet: From things-based energy network to services-based management system. Renew. Sustain. Energy Rev. 2021, 150, 111409. [Google Scholar] [CrossRef]
- Al-Obaidi, K.M.; Hossain, M.; Alduais, N.A.M.; Al-Duais, H.S.; Omrany, H.; Ghaffarianhoseini, A. A Review of Using IoT for Energy Efficient Buildings and Cities: A Built Environment Perspective. Energies 2022, 15, 5991. [Google Scholar] [CrossRef]
- Mishra, M. Machine learning techniques for structural health monitoring of heritage buildings: A state-of-the-art review and case studies. J. Cult. Herit. 2021, 47, 227–245. [Google Scholar] [CrossRef]
- Halder, S.; Afsari, K. Robots in Inspection and Monitoring of Buildings and Infrastructure: A Systematic Review. Appl. Sci. 2023, 13, 2304. [Google Scholar] [CrossRef]
- Mishra, P.; Biancolillo, A.; Roger, J.M.; Marini, F.; Rutledge, D.N. New data preprocessing trends based on ensemble of multiple preprocessing techniques. TrAC Trends Anal. Chem. 2020, 132, 116045. [Google Scholar] [CrossRef]
- Benhaddi, M.; Ouarzazi, J. Multivariate Time Series Forecasting with Dilated Residual Convolutional Neural Networks for Urban Air Quality Prediction. Arab. J. Sci. Eng. 2021, 46, 3423–3442. [Google Scholar] [CrossRef]
- Saha, A.; Pal, S.C.; Santosh, M.; Janizadeh, S.; Chowdhuri, I.; Norouzi, A.; Roy, P.; Chakrabortty, R. Modelling multi-hazard threats to cultural heritage sites and environmental sustainability: The present and future scenarios. J. Clean. Prod. 2021, 320, 128713. [Google Scholar] [CrossRef]
- Karadag, I. Machine learning for conservation of architectural heritage. Open House Int. 2022, 48, 23–37. [Google Scholar] [CrossRef]
- Lei, X.; Sun, L.; Xia, Y. Lost data reconstruction for structural health monitoring using deep convolutional generative adversarial networks. Struct. Health Monit. 2021, 20, 2069–2087. [Google Scholar] [CrossRef]
- Li, H.; Nie, D. Research on Rural Settlement Landscape Visualization and Participatory Planning Based on Virtual Reality and Augmented Reality Technology. Int. J. Intell. Syst. Appl. Eng. 2024, 12, 295–310. [Google Scholar]
- Lv, J.; Zhu, J.; Yang, G. Which GAN? A comparative study of generative adversarial network-based fast MRI reconstruction. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2021, 379, 20200203. [Google Scholar] [CrossRef] [PubMed]
- Özerol, G.; Arslan Selçuk, S. Machine learning in the discipline of architecture: A review on the research trends between 2014 and 2020. Int. J. Archit. Comput. 2023, 21, 23–41. [Google Scholar] [CrossRef]
- Malik, U.; Tissen, L.N.M.; Vermeeren, A.P.O.S. 3D Reproductions of Cultural Heritage Artifacts: Evaluation of Significance and Experience. Stud. Digit. Herit. 2021, 5, 1–29. [Google Scholar] [CrossRef]
- Spennemann, D.H.R. Will Artificial Intelligence Affect How Cultural Heritage Will Be Managed in the Future? Responses Generated by Four genAI Models. Heritage 2024, 7, 1453–1471. [Google Scholar] [CrossRef]
- Mehta, S.; Kukreja, V.; Gupta, A.M. Exploring the Efficacy of CNN and SVM Models for Automated Damage Severity Classification in Heritage Buildings. In Proceedings of the 2023 Second International Conference on Augmented Intelligence and Sustainable Systems (ICAISS), Trichy, India, 23–25 August 2023; pp. 252–257. [Google Scholar]
- Bassier, M.; Vergauwen, M.; Genechten, B.V. Automated Classification of Heritage Buildings for As-Built Bim Using Machine Learning Techniques. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 4, 25–30. [Google Scholar] [CrossRef]
- Bahrami, M.; Albadvi, A. Deep Learning for Identifying Iran’s Cultural Heritage Buildings in Need of Conservation Using Image Classification and Grad-CAM. ACM J. Comput. Cult. Herit. 2024, 17, 16. [Google Scholar] [CrossRef]
- Rihal, S.; Assal, H. Machine learning for the documentation, prediction, and augmentation of heritage structure data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-M-2–2023, 1301–1307. [Google Scholar]
- Liu, Z.; Wu, D.; Wei, H.; Cao, G. Machine Learning for Building Energy and Indoor Environment: A Perspective. arXiv 2017, arXiv:1801.00779. [Google Scholar]
- D’Orazio, M.; Bernardini, G.; Giuseppe, E.D. Improving Cultural Heritage conservation: LSTM neural networks to effectively processing end-user’s maintenance requests. Vitr.—Int. J. Archit. Technol. Sustain. 2023, 8, 18–29. [Google Scholar]
- Mulero-Palencia, S.; Álvarez-Díaz, S.; Andrés-Chicote, M. Machine Learning for the Improvement of Deep Renovation Building Projects Using As-Built BIM Models. Sustainability 2021, 13, 6576. [Google Scholar] [CrossRef]
- Fiorucci, M.; Khoroshiltseva, M.; Pontil, M.; Traviglia, A.; Del Bue, A.; James, S. Machine Learning for Cultural Heritage: A Survey. Pattern Recognit. Lett. 2020, 133, 102–108. [Google Scholar] [CrossRef]
- Abd ElWahab, H.A.; Bakr, A.F.; Raslan, R.A. Towards a parametric plug-in for conservation of built heritage. Alex. Eng. J. 2019, 58, 325–331. [Google Scholar] [CrossRef]
- Siebert, J.; Joeckel, L.; Heidrich, J.; Trendowicz, A.; Nakamichi, K.; Ohashi, K.; Namba, I.; Yamamoto, R.; Aoyama, M. Construction of a quality model for machine learning systems. Softw. Qual. J. 2022, 30, 307–335. [Google Scholar] [CrossRef]
- Nowrozy, R.; Ahmed, K.; Wang, H.; Mcintosh, T. Towards a Universal Privacy Model for Electronic Health Record Systems: An Ontology and Machine Learning Approach. Informatics 2023, 10, 60. [Google Scholar] [CrossRef]
- Shehata, A.O.; Megahed, N.A.; Shahda, M.M.; Hassan, A.M. (3Ts) Green conservation framework: A hierarchical-based sustainability approach. Build. Environ. 2022, 224, 109523. [Google Scholar] [CrossRef]
- Grilli, E.; Remondino, F. Machine Learning Generalisation across Different 3D Architectural Heritage. ISPRS Int. J. Geo-Inf. 2020, 9, 379. [Google Scholar] [CrossRef]
- Siegesmund, S.; Sousa, L.; López-Doncel, R. Editorial to the topical collection “Building stones and geomaterials through history and environments: From quarry to heritage. Insights on the conditioning factors—The Rolf Snethlage-Volume”. Environ. Earth Sci. 2023, 82, 415. [Google Scholar] [CrossRef]
- Kulkarni, R.; Di Minin, E. Automated retrieval of information on threatened species from online sources using machine learning. Methods Ecol. Evol. 2021, 12, 1226–1239. [Google Scholar] [CrossRef]
- Alqahtani, H.; Kumar, G. Machine learning for enhancing transportation security: A comprehensive analysis of electric and flying vehicle systems. Eng. Appl. Artif. Intell. 2024, 129, 107667. [Google Scholar] [CrossRef]
- Ataeva, O.M.; Serebryakov, V.A.; Tuchkova, N.P. Ontological Approach: Knowledge Representation and Knowledge Extraction. Lobachevskii J. Math. 2020, 41, 1938–1948. [Google Scholar] [CrossRef]
- Liu, X.; Lu, D.; Zhang, A.; Liu, Q.; Jiang, G. Data-Driven Machine Learning in Environmental Pollution: Gains and Problems. Environ. Sci. Technol. 2022, 56, 2124–2133. [Google Scholar] [CrossRef] [PubMed]
- Hajirasouli, A.; Banihashemi, S.; Kumarasuriyar, A.; Talebi, S.; Tabadkani, A. Virtual reality-based digitisation for endangered heritage sites: Theoretical framework and application. J. Cult. Herit. 2021, 49, 140–151. [Google Scholar] [CrossRef]
- Moraitou, E.; Christodoulou, Y.; Caridakis, G. Semantic models and services for conservation and restoration of cultural heritage: A comprehensive survey. Semant. Web 2023, 14, 261–291. [Google Scholar] [CrossRef]
- Cursi, S.; Simeone, D.; Toldo, I. A Semantic Web Approach for Built Heritage Representation. In Computer-Aided Architectural Design Futures. The Next City—New Technologies and the Future of the Built Environment; Celani, G., Sperling, D.M., Franco, J.M.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 383–401. [Google Scholar]
- Remondino, F.; Rizzi, A. Reality-based 3D documentation of natural and cultural heritage sites—Techniques, problems, and examples. Appl. Geomat. 2010, 2, 85–100. [Google Scholar] [CrossRef]
- Néroulidis, A.; Pouyet, T.; Tournon, S.; Rousset, M.; Callieri, M.; Manuel, A.; Abergel, V.; Malavergne, O.; Cao, I.; Roussel, R.; et al. A digital platform for the centralization and long-term preservation of multidisciplinary scientific data belonging to the Notre Dame de Paris scientific action. J. Cult. Herit. 2024, 65, 210–220. [Google Scholar] [CrossRef]
- Haydar, M.; Roussel, D.; Maïdi, M.; Otmane, S.; Mallem, M. Virtual and augmented reality for cultural computing and heritage: A case study of virtual exploration of underwater archaeological sites (preprint). Virtual Real. 2011, 15, 311–327. [Google Scholar] [CrossRef]
- Challenor, J.; Ma, M. A Review of Augmented Reality Applications for History Education and Heritage Visualisation. Multimodal Technol. Interact. 2019, 3, 39. [Google Scholar] [CrossRef]
- Walcutt, N.L.; Knörlein, B.; Sgouros, T.; Cetinić, I.; Omand, M.M. Virtual Reality and Oceanography: Overview, Applications, and Perspective. Front. Mar. Sci. 2019, 6, 644. [Google Scholar] [CrossRef]
- Paulauskas, L.; Paulauskas, A.; Blažauskas, T.; Damaševičius, R.; Maskeliūnas, R. Reconstruction of Industrial and Historical Heritage for Cultural Enrichment Using Virtual and Augmented Reality. Technologies 2023, 11, 36. [Google Scholar] [CrossRef]
- Li, X.; Yi, W.; Chi, H.-L.; Wang, X.; Chan, A.P.C. A critical review of virtual and augmented reality (VR/AR) applications in construction safety. Autom. Constr. 2018, 86, 150–162. [Google Scholar] [CrossRef]
- Bozzelli, G.; Raia, A.; Ricciardi, S.; De Nino, M.; Barile, N.; Perrella, M.; Tramontano, M.; Pagano, A.; Palombini, A. An integrated VR/AR framework for user-centric interactive experience of cultural heritage: The ArkaeVision project. Digit. Appl. Archaeol. Cult. Herit. 2019, 15, e00124. [Google Scholar] [CrossRef]
- Real-Time Depth Video-Based Rendering for 6-DoF HMD Navigation and Light Field Displays. IEEE Journals & Magazine|IEEE Xplore. Available online: https://ieeexplore.ieee.org/abstract/document/9590541 (accessed on 2 April 2024).
- Pierdicca, R.; Frontoni, E.; Zingaretti, P.; Malinverni, E.S.; Galli, A.; Marcheggiani, E.; Costa, C.S. Cyberarchaeology: Improved Way Findings for Archaeological Parks Through Mobile Augmented Reality. In Augmented Reality, Virtual Reality, and Computer Graphics; De Paolis, L.T., Mongelli, A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 172–185. [Google Scholar]
- Bruno, F.; Ricca, M.; Lagudi, A.; Kalamara, P.; Manglis, A.; Fourkiotou, A.; Papadopoulou, D.; Veneti, A. Digital Technologies for the Sustainable Development of the Accessible Underwater Cultural Heritage Sites. J. Mar. Sci. Eng. 2020, 8, 955. [Google Scholar] [CrossRef]
- Vlachos, A.; Krinidis, S.; Papadimitriou, K.; Manglis, A.; Fourkiotou, A.; Tzovaras, D. iBLUECULTURE: A novel system of real-time underwater image transmission in a virtual reality environment, as a new managerial approach for underwater cultural heritage. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-1-W2-2023, 269–274. [Google Scholar]
- Khan, M.A.; Israr, S.; S Almogren, A.; Din, I.U.; Almogren, A.; Rodrigues, J.J.P.C. Using augmented reality and deep learning to enhance Taxila Museum experience. J. Real-Time Image Process. 2021, 18, 321–332. [Google Scholar] [CrossRef]
- Kamel, N.A.; Elshiwy, R. Virtual Reality and Virtual Diving Technologies: Innovative Tools to Promote Maritime and Underwater Cultural Heritage in the Red Sea, Egypt. J. Tour. Hotel. Herit. 2022, 5, 18–46. [Google Scholar] [CrossRef]
- Syed, T.A.; Siddiqui, M.S.; Abdullah, H.B.; Jan, S.; Namoun, A.; Alzahrani, A.; Nadeem, A.; Alkhodre, A.B. In-Depth Review of Augmented Reality: Tracking Technologies, Development Tools, AR Displays, Collaborative AR, and Security Concerns. Sensors 2023, 23, 146. [Google Scholar] [CrossRef]
- Davila Delgado, J.M.; Oyedele, L.; Demian, P.; Beach, T. A research agenda for augmented and virtual reality in architecture, engineering and construction. Adv. Eng. Inform. 2020, 45, 101122. [Google Scholar] [CrossRef]
- Coburn, J.Q.; Freeman, I.; Salmon, J.L. A Review of the Capabilities of Current Low-Cost Virtual Reality Technology and Its Potential to Enhance the Design Process. J. Comput. Inf. Sci. Eng. 2017, 17, 031013. [Google Scholar] [CrossRef]
- Valentini, F.; Calcaterra, A.; Antonaroli, S.; Talamo, M. Smart Portable Devices Suitable for Cultural Heritage: A Review. Sensors 2018, 18, 2434. [Google Scholar] [CrossRef]
- Hazarika, A.; Rahmati, M. Towards an Evolved Immersive Experience: Exploring 5G- and Beyond-Enabled Ultra-Low-Latency Communications for Augmented and Virtual Reality. Sensors 2023, 23, 3682. [Google Scholar] [CrossRef] [PubMed]
- Chu, R.C.; Simons, R.E.; Ellsworth, M.J.; Schmidt, R.R.; Cozzolino, V. Review of cooling technologies for computer products. IEEE Trans. Device Mater. Reliab. 2004, 4, 568–585. [Google Scholar] [CrossRef]
- Keyser, M.; Pesaran, A.; Li, Q.; Santhanagopalan, S.; Smith, K.; Wood, E.; Ahmed, S.; Bloom, I.; Dufek, E.; Shirk, M.; et al. Enabling fast charging—Battery thermal considerations. J. Power Sources 2017, 367, 228–236. [Google Scholar] [CrossRef]
- Liu, L.; Guo, X.; Liu, W.; Lee, C. Recent Progress in the Energy Harvesting Technology—From Self-Powered Sensors to Self-Sustained IoT, and New Applications. Nanomaterials 2021, 11, 2975. [Google Scholar] [CrossRef] [PubMed]
- Konstantoudakis, K.; Christaki, K.; Tsiakmakis, D.; Sainidis, D.; Albanis, G.; Dimou, A.; Daras, P. Drone Control in AR: An Intuitive System for Single-Handed Gesture Control, Drone Tracking, and Contextualized Camera Feed Visualization in Augmented Reality. Drones 2022, 6, 43. [Google Scholar] [CrossRef]
- Fang, K.; Wang, J. Interactive Design With Gesture and Voice Recognition in Virtual Teaching Environments. IEEE Access 2024, 12, 4213–4224. [Google Scholar] [CrossRef]
- Moyano, J.; Pili, A.; Nieto-Julián, J.E.; Della Torre, S.; Bruno, S. Semantic interoperability for cultural heritage conservation: Workflow from ontologies to a tool for managing and sharing data. J. Build. Eng. 2023, 80, 107965. [Google Scholar] [CrossRef]
- Mangina, E. 3D Learning Objects for Augmented/Virtual Reality Educational Ecosystems. In Proceedings of the 2017 23rd International Conference on Virtual System & Multimedia (VSMM), Dublin, Ireland, 31 October–4 November 2017; pp. 1–6. Available online: https://ieeexplore.ieee.org/abstract/document/8346266 (accessed on 3 April 2024).
- Casini, M. Extended Reality for Smart Building Operation and Maintenance: A Review. Energies 2022, 15, 3785. [Google Scholar] [CrossRef]
- Perles, A.; Pérez-Marín, E.; Mercado, R.; Quilis, J.D.S.; Blanquer, I.; Zarzo, M.; García-Diego, F. An energy-efficient internet of things (IoT) architecture for preventive conservation of cultural heritage. Future Gener. Comput. Syst. 2018, 81, 566–581. [Google Scholar] [CrossRef]
- Skublewska-Paszkowska, M.; Milosz, M.; Powroznik, P.; Lukasik, E. 3D technologies for intangible cultural heritage preservation—Literature review for selected databases. Herit. Sci. 2022, 10, 3. [Google Scholar] [CrossRef]
- Cozzani, G.; Pozzi, F.; Dagnino, F.M.; Katos, A.V.; Katsouli, E.F. Innovative technologies for intangible cultural heritage education and preservation: The case of i-Treasures. Pers. Ubiquitous Comput. 2017, 21, 253–265. [Google Scholar] [CrossRef]
- Güleç, Ö.; Nagakura, T.; Vlavianos, N. Augmented Reality (AR) of Historic Environments: Representation of Parion Theater, Biga, Turkey. 2016. Available online: https://openaccess.altinbas.edu.tr/xmlui/handle/20.500.12939/1207 (accessed on 3 April 2024).
- Matviienko, A.; Günther, S.; Ritzenhofen, S.; Mühlhäuser, M. AR Sightseeing: Comparing Information Placements at Outdoor Historical Heritage Sites using Augmented Reality. Proc. ACM Hum.-Comput. Interact. 2022, 6, 194:1–194:17. [Google Scholar] [CrossRef]
- Jamei, E.; Mortimer, M.; Seyedmahmoudian, M.; Horan, B.; Stojcevski, A. Investigating the Role of Virtual Reality in Planning for Sustainable Smart Cities. Sustainability 2017, 9, 2006. [Google Scholar] [CrossRef]
- Rua, H.; Alvito, P. Living the past: 3D models, virtual reality and game engines as tools for supporting archaeology and the reconstruction of cultural heritage—The case-study of the Roman villa of Casal de Freiria. J. Archaeol. Sci. 2011, 38, 3296–3308. [Google Scholar] [CrossRef]
- King, L.; Stark, J.F.; Cooke, P. Experiencing the Digital World: The Cultural Value of Digital Engagement with Heritage. Herit. Soc. 2016, 9, 76–101. [Google Scholar] [CrossRef]
- Pietroni, E.; Adami, A. Interacting with Virtual Reconstructions in Museums: The Etruscanning Project. J. Comput. Cult. Herit. 2014, 7, 9:1–9:29. [Google Scholar] [CrossRef]
- Lor, P.J.; Britz, J.j. An ethical perspective on political-economic issues in the long-term preservation of digital heritage. J. Am. Soc. Inf. Sci. Technol. 2012, 63, 2153–2164. [Google Scholar] [CrossRef]
- Santana Quintero, M.; Awad, R.; Barazzetti, L. Harnessing digital workflows for the understanding, promotion and participation in the conservation of heritage sites by meeting both ethical and technical challenges. Built Herit. 2020, 4, 6. [Google Scholar] [CrossRef]
- Slade, S.; Prinsloo, P. Learning Analytics: Ethical Issues and Dilemmas. Am. Behav. Sci. 2013, 57, 1510–1529. [Google Scholar] [CrossRef]
- Remondino, F. Advanced 3D Recording Techniques for the Digital Documentation and Conservation of Heritage Sites and Objects. Chang. Time 2011, 1, 198–214. [Google Scholar] [CrossRef]
- Manžuch, Z. Ethical Issues In Digitization Of Cultural Heritage. J. Contemp. Arch. Stud. 2017, 4, 4. [Google Scholar]
- Economou, M. Heritage in the Digital Age. In A Companion to Heritage Studies; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 215–228. ISBN 978-1-118-48663-4. [Google Scholar] [CrossRef]
- Lenzerini, F. Intangible Cultural Heritage: The Living Culture of Peoples. Eur. J. Int. Law 2011, 22, 101–120. [Google Scholar] [CrossRef]
- Singh, R.; Clifford, T. Ethics in NDE 4.0: Perspectives and Possibilities. In Handbook of Nondestructive Evaluation 4.0; Meyendorf, N., Ida, N., Singh, R., Vrana, J., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–28. ISBN 978-3-030-48200-8. [Google Scholar] [CrossRef]
- Legault, G.-A.; Gagnon, H.; Parent, M.; Bellemare, C.A.; Béland, J.-P.; Kocsis-Bédard, S.; Bernier, L.; Dagenais, P.; Daniel, C.-É.; Patenaude, J. Integration of ethical considerations into HTA reports: An analysis of integration levels using a systematic review. Int. J. Technol. Assess. Health Care 2021, 37, e61. [Google Scholar] [CrossRef]
- d’Aquin, M.; Troullinou, P.; O’Connor, N.E.; Cullen, A.; Faller, G.; Holden, L. Towards an “Ethics by Design” Methodology for AI Research Projects. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, New Orleans, LA, USA, 2–3 February 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 54–59. [Google Scholar] [CrossRef]
- McKinney, J.A.; Emerson, T.L.; Neubert, M.J. The Effects of Ethical Codes on Ethical Perceptions of Actions Toward Stakeholders. J. Bus. Ethics 2010, 97, 505–516. [Google Scholar] [CrossRef]
- Felzmann, H.; Fosch-Villaronga, E.; Lutz, C.; Tamò-Larrieux, A. Towards Transparency by Design for Artificial Intelligence. Sci. Eng. Ethics 2020, 26, 3333–3361. [Google Scholar] [CrossRef]
- Cheng, L.; Lau, L.K.P.; Pang, W.Y.J. Augmented Reality Book Design for Teaching and Learning Architectural Heritage: Educational Heritage in Hong Kong Central and Western District. J. Comput. Cult. Herit. 2024, 11, 7. [Google Scholar] [CrossRef]
- Reed, D. Stakeholder Management Theory: A Critical Theory Perspective. Bus. Ethics Q. 1999, 9, 453–483. [Google Scholar] [CrossRef]
- Cappa, F.; Rosso, F.; Capaldo, A. Visitor-Sensing: Involving the Crowd in Cultural Heritage Organizations. Sustainability 2020, 12, 1445. [Google Scholar] [CrossRef]
- Yau, Y. Multi-criteria decision making for urban built heritage conservation: Application of the analytic hierarchy process. J. Build. Apprais. 2009, 4, 191–205. [Google Scholar] [CrossRef]
- Mazzetto, S. Multidisciplinary collaboration: An integrated and practical approach to the teaching of project management. Int. J. Contin. Eng. Educ. Life Long Learn. 2020, 30, 52–67. [Google Scholar] [CrossRef]
- van Baalen, S.; Carusi, A. Implicit trust in clinical decision-making by multidisciplinary teams. Synthese 2019, 196, 4469–4492. [Google Scholar] [CrossRef]
- Henig, M.I.; Buchanan, J.T. Solving MCDM problems: Process concepts. J. Multi-Criteria Decis. Anal. 1996, 5, 3–21. [Google Scholar] [CrossRef]
- Lucchi, E. Multidisciplinary risk-based analysis for supporting the decision making process on conservation, energy efficiency, and human comfort in museum buildings. J. Cult. Herit. 2016, 22, 1079–1089. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, L.; Huang, J.; Law, A. Research frameworks, methodologies, and assessment methods concerning the adaptive reuse of architectural heritage: A review. Built Herit. 2021, 5, 6. [Google Scholar] [CrossRef]
- Yung, E.H.K.; Lai, L.W.C.; Yu, P.L.H. Public decision making for heritage conservation: A Hong Kong empirical study. Habitat Int. 2016, 53, 312–319. [Google Scholar] [CrossRef]
- Tan, T.; Mills, G.; Papadonikolaki, E.; Liu, Z. Combining multi-criteria decision making (MCDM) methods with building information modelling (BIM): A review. Autom. Constr. 2021, 121, 103451. [Google Scholar] [CrossRef]
- Gomes, M.G.; Tomé, A. A digital and non-destructive integrated methodology for heritage modelling and deterioration mapping. The case study of the Moorish Castle in Sintra. Dev. Built Environ. 2023, 14, 100145. [Google Scholar] [CrossRef]
- Abu Dabous, S.; Feroz, S. Condition monitoring of bridges with non-contact testing technologies. Autom. Constr. 2020, 116, 103224. [Google Scholar] [CrossRef]
- Plakhtiev, A.M.; Baratov, R.J.; Gaziev, G.A.; Doniyorov, O.C.; Norkholboyev, D.S. Estimation of the error of a magnetic modulation non-contact wide-range device for non-destructive control of high amperage currents. IOP Conf. Ser. Earth Environ. Sci. 2020, 614, 012028. [Google Scholar] [CrossRef]
- Moropoulou, A.; Labropoulos, K.C.; Delegou, E.T.; Karoglou, M.; Bakolas, A. Non-destructive techniques as a tool for the protection of built cultural heritage. Constr. Build. Mater. 2013, 48, 1222–1239. [Google Scholar] [CrossRef]
- Gagliardi, V.; Tosti, F.; Bianchini Ciampoli, L.; Battagliere, M.L.; D’Amato, L.; Alani, A.M.; Benedetto, A. Satellite Remote Sensing and Non-Destructive Testing Methods for Transport Infrastructure Monitoring: Advances, Challenges and Perspectives. Remote Sens. 2023, 15, 418. [Google Scholar] [CrossRef]
- Moscatelli, M. Preserving Tradition through Evolution: Critical Review of 3D Printing for Saudi Arabia’s Cultural Identity. Buildings 2024, 14, 697. [Google Scholar] [CrossRef]
- Moussa, R.A. A Responsive Approach for Designing Shared Urban Spaces in Tourist Villages. Sustainability 2023, 15, 7549. [Google Scholar] [CrossRef]
- Dwidar, S.; Sirror, H.; Derbali, A.; Abdelgawad, D.; Abdelsattar, A. Importance if internal courtyards in designing historical and contemporary Masjid. J. Islam. Archit. 2022, 7, 356–363. [Google Scholar] [CrossRef]
- Azouqah, H.; Alomar, N.; Kaadan, L.; Sonbul, M.; Abdulaziz, H.; Labib, W. Sustainable Local Materials: A Study of Adobe Bricks in Saudi Arabia. Mater. Sci. Forum 2021, 1047, 163–173. [Google Scholar] [CrossRef]
- Mazzetto, S. Sustainable Heritage Preservation to Improve the Tourism Offer in Saudi Arabia. Urban Plan. 2022, 7, 1–13. [Google Scholar] [CrossRef]
- Mazzetto, S. Heritage preservation to enhance tourism offers. In Proceedings of International Structural Engineering and Construction; Vimonsatit, S., Singh, A., Yazdani, S., Eds.; ISEC Press: Fargo, ND, USA, 2022; Volume 9, Available online: https://www.isec-society.org/ISEC_PRESS/ASEA_SEC_06/xml/AAE-08.xml (accessed on 20 April 2023).
- Filippi, L.D.; Mazzetto, S. Comparing AlUla and The Red Sea Saudi Arabia’s Giga Projects on Tourism towards a Sustainable Change in Destination Development. Sustainability 2024, 16, 2117. [Google Scholar] [CrossRef]
- Mazzetto, S. Heritage Restoration as a Tool to Promote Architectural Identity in the Gulf Regions. Preserv. Digit. Technol. Cult. 2018, 47, 3–11. [Google Scholar] [CrossRef]
- Mazzetto, S. Heritage conservation and reuses to promote sustainable growth. Mater. Today Proc. 2023, 85, 100–103. [Google Scholar] [CrossRef]
- Mazzetto, S.; Vanini, F. Urban Heritage in Saudi Arabia: Comparison and Assessment of Sustainable Reuses. Sustainability 2023, 15, 9819. [Google Scholar] [CrossRef]
- Al-Muqdadi, F. Assessing the Potentials of Heritage Building Information Modelling (Hbim) in Damaged Heritage Reconstruction. In Proceedings of the 36th Annual ARCOM Conference, Leeds, UK, 7–8 September 2020; pp. 7–8. [Google Scholar]
- Pirchio, D.; Walsh, K.Q.; Kerr, E.; Giongo, I.; Giaretton, M.; Weldon, B.D.; Ciocci, L.; Sorrentino, L. Integrated framework to structurally model unreinforced masonry Italian medieval churches from photogrammetry to finite element model analysis through heritage building information modeling. Eng. Struct. 2021, 241, 112439. [Google Scholar] [CrossRef]
Criteria Category | Specific Criteria | Inclusion Parameters | Exclusion Parameters |
---|---|---|---|
Study Design | - Empirical research - Conceptual analysis - Methodological approach | - Use of DT, laser scanning, machine learning, IoT, and BIM in analysis or synthesis—DT as a central theme | - Studies where DT is peripheral - Literature reviews without original analysis |
Subject Focus | - DT applications - DT, laser scanning, machine learning, IoT, and BIM in heritage conservation - DT for structural analysis | - Studies focusing on DT for management or conservation of heritage assets - DT in assessing structural integrity | - Studies with vague or indirect relation to DT - DT applied to non-heritage contexts |
Asset Type | - Heritage buildings - Archeological sites - Cultural landscapes - Artifacts within historical context | - Studies centered on DT, laser scanning, machine learning, IoT, and BIM management of the above assets - Analysis on DT’s role in conservation | - Studies on new constructions - DT applied to non-cultural or non-historical sites |
Temporal Scope | - Longitudinal studies - Cross-sectional studies within the date range | - Studies covering DT evolution within the timeline - Snapshots of DT applications at specific time points | - Studies outside the set temporal range - Future predictions without historical data |
Methodological Rigor | - Use of validated instruments - Clear analytical frameworks - Replicable study designs | - Studies with robust methodology - Clear definition and application of DT | - Studies with methodological flaws - Inadequate definition of DT usage |
Geographic Relevance | - Studies in areas with known heritage sites - DT applied in diverse cultural settings | - DT, laser scanning, machine learning, IoT, and BIM studies reflect the geographical diversity of heritage sites - Case studies from regions with high heritage significance | - Studies with no clear geographical linkage to heritage sites - DT studies in areas without significant heritage presence |
Expert Profile | Role in Conservation | Technologies Used | Number of Experts |
---|---|---|---|
Architects and Architectural Historians | Restoration, preservation, and documentation of heritage buildings | BIM and Laser Scanning | 8 |
Civil and Structural Engineers | Assessing the physical condition of heritage structures | Machine Learning and Laser Scanning | 5 |
Conservation Specialists | Conservation and restoration of heritage sites | DTs | 6 |
Project Managers | Overseeing conservation projects | Various Technological Tools | 4 |
Total Invited | Responses Received | Completion Rate |
---|---|---|
150 | 23 | 15.3% |
Research Gap | Description | References |
---|---|---|
Information Standardization | The lack of standardized information protocols for integrating laser scanning data with DTs. | [34,35] |
Detailed Finite Element Modeling | The need for detailed finite element models that accurately represent the structural aspects of heritage buildings from laser scanning data. | [25] |
Integration with 360° Photography | Challenges in enriching DTs with 360° photography to capture the essence and details of heritage buildings. | [12] |
Automation in HBIM Processes | The necessity for automated processes in Heritage Building Information Modeling (HBIM) to streamline data conversion and management. | [18] |
Hybrid Processing of Laser Scanning Data | The development of unified technologies for processing combined laser scanning and photography data for historical buildings. | [36] |
Research Gap | Description | References |
---|---|---|
Scan-to-BIM-to-DT Process | The challenge of managing high levels of detail through the design, construction, and management phases, with a need for a process that allows users to interact with DT for improved building comfort and efficiency. | [27] |
DT-HBIM for Preventive Conservation | Proposing a methodology to integrate cultural significance into HBIM models to support preventive conservation using DT principles. | [76] |
Heritage Site | Location | Conservation Date and Institutions | Methodologies and Interventions | Use |
---|---|---|---|---|
Ushaiger Village | Najd region, near Shaqra. History of 1500 years as a pilgrim rest spot. | Rehabilitated in 2017 by the Saudi Commission for Tourism and National Heritage. Received the Prince Sultan bin Salman Award. | One hundred houses restored with modern amenities. Strategy to preserve traditional atmosphere. | Evolved to a tourist attraction with a restaurant, market, and private museums. |
At-Turaif District | The first capital of the Al Saud dynasty, northwest of Riyadh. UNESCO World Heritage site. | Conservation was segmented into periods before 2010, 2010–2017, and after 2017. Managed by Diriyah Gate Development Authority. | Focus on non-intrusiveness, reversibility, and original materials. Some anastylosis. | Open-air museum with buildings open to the public, showcasing the area’s history. |
Rawdat Sudair | In Sudair region, Najd province. Historically significant for agriculture. | Restored between 2005 and 2015 by the Saudi Commission for Tourism and Antiquities. | Conservation aimed at reusing Al-Dakhlah Mosque. Used local materials, minimal anastylosis. | Commercial activities, like a museum, promote tourism with a focus on traditional values. |
Rughabah Village | Northwest of Riyadh in Najd, urban development from 1669. | Tower restored in 1974, 1996, and 2018 by various patrons and the Saudi Commission for Tourism and National Heritage. | Traditional materials and techniques for restoration. Minimal legibility and reversibility. | Abandoned village known for the restored tower and nearby castle remains functions as an open-air museum. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazzetto, S. Integrating Emerging Technologies with Digital Twins for Heritage Building Conservation: An Interdisciplinary Approach with Expert Insights and Bibliometric Analysis. Heritage 2024, 7, 6432-6479. https://doi.org/10.3390/heritage7110300
Mazzetto S. Integrating Emerging Technologies with Digital Twins for Heritage Building Conservation: An Interdisciplinary Approach with Expert Insights and Bibliometric Analysis. Heritage. 2024; 7(11):6432-6479. https://doi.org/10.3390/heritage7110300
Chicago/Turabian StyleMazzetto, Silvia. 2024. "Integrating Emerging Technologies with Digital Twins for Heritage Building Conservation: An Interdisciplinary Approach with Expert Insights and Bibliometric Analysis" Heritage 7, no. 11: 6432-6479. https://doi.org/10.3390/heritage7110300
APA StyleMazzetto, S. (2024). Integrating Emerging Technologies with Digital Twins for Heritage Building Conservation: An Interdisciplinary Approach with Expert Insights and Bibliometric Analysis. Heritage, 7(11), 6432-6479. https://doi.org/10.3390/heritage7110300