Towards FAIR Data Management in Heritage Science Research: Updates and Progress on the INFRA-ART Spectral Library
Abstract
:1. Introduction
2. The INFRA-ART Spectral Library
2.1. Types of Materials Covered by the Database
2.2. Spectral Data and Experimental Design
2.3. Metadata
2.4. FAIR Data Management
3. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Burgelman, J.C.; Pascu, C.; Szkuta, K.; Von Schomberg, R.; Karalopoulos, A.; Repanas, K.; Schouppe, M. Open Science, Open Data, and Open Scholarship: European Policies to Make Science Fit for the Twenty-First Century. Front. Big Data 2019, 2, 43. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 160018. [Google Scholar] [CrossRef] [PubMed]
- European Commission, Commission Recommendation (EU). 2018/790 of 25 April 2018 on Access to and Preservation of Scientific Information. Off. J. Eur. Union 2018, 61, 12–18. Available online: http://data.europa.eu/eli/reco/2018/790/oj (accessed on 22 March 2024).
- Directorate-General for Research and Innovation. Open Innovation, Open Science, Open to the World—A Vision For Europe; European Commission: Brussels, Belgium, 2016. [Google Scholar] [CrossRef]
- Directorate-General for Research and Innovation. Turning FAIR into Reality. Final Report and Action Plan from the European Commission Expert Group on FAIR Data; European Commission: Brussels, Belgium, 2018. [Google Scholar] [CrossRef]
- Budroni, P.; Claude-Burgelman, J.; Schouppe, M. Architectures of Knowledge: The European Open Science Cloud. ABI Tech. 2019, 39, 130–141. [Google Scholar] [CrossRef]
- Spichtinger, D.; Siren, J. The Development of Research Data Management Policies in Horizon 2020. In Research Data Management—A European Perspective; Kruse, F., Thestrup, J.B., Eds.; De Gruyter Saur: Berlin, Germany, 2018; pp. 11–24. [Google Scholar] [CrossRef]
- Hermon, S. Building DIGILAB—Towards a Data-Driven Research in Cultural Heritage. In Virtual Archaeology: Revealing the Past, Enriching the Present and Shaping the Future, Proceedings of the Forth International Scientific Conference, Krasnoyarsk, Russia, 20–22 September 2021; Siberian Federal University: Krasnoyarsk, Russian, 2021; pp. 93–106. [Google Scholar] [CrossRef]
- Striova, J.; Pezzati, L. The European Research Infrastructure for Heritage Science (E-RIHS). Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2017, XLII-2/W5, 661–664. [Google Scholar] [CrossRef]
- Tedersoo, L.; Küngas, R.; Oras, E.; Köster, K.; Eenmaa, H.; Leijen, Ä.; Pedaste, M.; Raju, M.; Astapova, A.; Lukner, H.; et al. Data sharing practices and data availability upon request differ across scientific disciplines. Sci. Data 2021, 8, 192. [Google Scholar] [CrossRef] [PubMed]
- Redkina, N.S. Current Trends in Research Data Management. Sci. Tech. Inf. Process. 2019, 46, 53–58. [Google Scholar] [CrossRef]
- Poblet, M.; Aryani, A.; Manghi, P.; Unsworth, K.; Wang, J.; Hausstein, B.; Dallmeier-Tiessen, S.; Klas, C.P.; Casanovas, P.; Rodriguez-Doncel, V. Assigning Creative Commons Licenses to Research Metadata: Issues and Cases. In AI Approaches to the Complexity of Legal Systems; Pagallo, U., Palmirani, M., Casanovas, P., Sartor, G., Villata, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 245–256. [Google Scholar] [CrossRef]
- Mons, B. Data Stewardship for Open Science Implementing FAIR Principles, 1st ed.; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Staunton, C.; Barragán, C.A.; Canali, S.; Ho, C.; Leonelli, S.; Mayernik, M.; Prainsack, B.; Wonkham, A. Open science, data sharing and solidarity: Who benefits? Hist. Philos. Life Sci. 2021, 43, 115. [Google Scholar] [CrossRef]
- Artioli, G. Scientific Methods and Cultural Heritage: An Introduction to the Application of Materials Science to Archaeometry and Conservation Science; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Craddock, P. Scientific Investigation of Copies, Fakes and Forgeries, 1st ed.; Routledge: London, UK, 2009. [Google Scholar]
- Mazzeo, R. Analytical Chemistry for Cultural Heritage; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Madariaga, J.M. Analytical chemistry in the field of cultural heritage. Anal. Methods. 2015, 7, 484–487. [Google Scholar] [CrossRef]
- Bitossi, G.; Giorgi, R.; Mauro, M.; Salvadori, B.; Dei, L. Spectroscopic Techniques in Cultural Heritage Conservation: A Survey. Appl. Spectrosc. Rev. 2005, 40, 187–228. [Google Scholar] [CrossRef]
- Miliani, C.; Rosi, F.; Brunetti, B.G.; Sgamellotti, A. In Situ Noninvasive Study of Artworks: The MOLAB Multitechnique Approach. Accounts Chem. Res. 2010, 43, 728–738. [Google Scholar] [CrossRef] [PubMed]
- Pozzi, F.; Rizzo, A.; Basso, E.; Angelin, E.M.; Sá, S.F.; Cucci, C.; Picollo, M. Portable Spectroscopy for Cultural Heritage. In Portable Spectroscopy and Spectrometry II—Applications, 1st ed.; Crocombe, R.A., Leary, P.E., Kammrath, B.W., Eds.; Wiley: Hoboken, NJ, USA, 2021; pp. 499–522. [Google Scholar] [CrossRef]
- Drake, B.L.; MacDonald, B.L. Advances in Portable X-ray Fluorescence Spectrometer: Instrumentation, Application, and Interpretation, 1st ed.; Royal Society of Chemistry: Cambridge, UK, 2022. [Google Scholar]
- Vandenabeele, P.; Edwards, H.G.M.; Jehlička, J. The role of mobile instrumentation in novel applications of Raman spectroscopy: Archaeometry, geosciences, and forensics. Chem. Soc. Rev. 2014, 43, 2628–2649. [Google Scholar] [CrossRef] [PubMed]
- Crocombe, R.A. Handheld spectrometers: The state of the art. Next-Gener. Spectrosc. Technol. VI 2013, 8726, 174–187. [Google Scholar] [CrossRef]
- Crocombe, R.A. Miniature optical spectrometers: There’s plenty of room at the bottom part I, background and mid-infrared spectrometers. Spectroscopy 2008, 23, 38–56. [Google Scholar]
- Sauer, T. Engineering Portable Instruments. In Portable Spectroscopy and Spectrometry I—Technologies and Instrumentation, 1st ed.; Crocombe, R.A., Leary, P.E., Kammrath, B.W., Eds.; Wiley: Hoboken, NJ, USA, 2021; pp. 15–39. [Google Scholar] [CrossRef]
- Leary, P.E.; Crocombe, R.A.; Kammrath, B.W. Introduction to Portable Spectroscopy. In Portable Spectroscopy and Spectrometry I—Technologies and Instrumentation, 1st ed.; Crocombe, R.A., Leary, P.E., Kammrath, B.W., Eds.; Wiley: Hoboken, NJ, USA, 2021; pp. 1–13. [Google Scholar] [CrossRef]
- Smith, B.C. Fundamentals of Fourier Transform Infrared Spectroscopy, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Schreyer, S.K. Library and Method Development for Portable Instrumentation. In Portable Spectroscopy and Spectrometry I—Technologies and Instrumentation, 1st ed.; Crocombe, R.A., Leary, P.E., Kammrath, B.W., Eds.; Wiley: Hoboken, NJ, USA, 2021; pp. 36–43. [Google Scholar] [CrossRef]
- Borland, L.; Brickhouse, M.; Thomas, T.; Fountain, A.W. Review of chemical signature databases. Anal. Bioanal. Chem. 2010, 397, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Cortea, I.M.; Chiroşca, A.; Angheluţă, L.M.; Seriţan, G. INFRA-ART: An Open Access Spectral Library of Art-related Materials as a Digital Support Tool for Cultural Heritage Science. ACM J. Comput. Cult. Herit. 2023, 16, 40. [Google Scholar] [CrossRef]
- Cortea, I.M.; Angheluță, L.M.; Chiroșca, A.; Serițan, G. INFRA-ART spectral library: A new open access infrastructure for heritage science. In Lasers in the Conservation of Artworks XIII, Proceedings of the International Conference on Lasers in the Conservation of Artworks XIII (LACONA XIII), Florence, Italy, 12–16 September 2022; Siano, S., Ciofini, D., Eds.; CRC Press: Boca Raton, FL, USA, 2023; pp. 37–47. [Google Scholar] [CrossRef]
- Learner, T. Analysis of Modern Paints; Getty Conservation Institute: Los Angeles, CA, USA, 2004. [Google Scholar]
- Cortea, I.M.; Ratoiu, L.; Rădvan, R. Characterization of spray paints used in street art graffiti by a non-destructive multi-analytical approach. Color Res. Appl. 2021, 46, 183–194. [Google Scholar] [CrossRef]
- Gabel, P.; Pfaff, G. Characterisation of pearlescent pigments and special effect pigments. In Colour Technology of Coatings; Kettler, W., Binder, M., Franz, W., Gabel, P., Gauss, S., Hempelmann, U., Henning, R., Kremitzl, H.-J., Weixel, S., Wilker, G., Eds.; Vincentz Network: Hannover, Germany, 2016; pp. 202–223. [Google Scholar] [CrossRef]
- Maile, F.J.; Pfaff, G.; Reynders, P. Effect pigments—Past, present and future. Prog. Org. Coat. 2005, 54, 150–163. [Google Scholar] [CrossRef]
- Álvarez-Martín, A.; De Winter, S.; Nuyts, G.; Hermans, J.; Janssens, K.; Van der Snickt, G. Multi-modal approach for the characterization of resin carriers in Daylight Fluorescent Pigments. Microchem. J. 2020, 159, 105340. [Google Scholar] [CrossRef]
- Gelūnas, A. Making Art in the Japanese Way: Nihonga as a Process and Symbolic Action. Acta Orient. Vilnensia 2004, 5, 208–219. [Google Scholar] [CrossRef]
- Siddall, R. Mineral Pigments in Archaeology: Their Analysis and the Range of Available Materials. Minerals 2018, 8, 201. [Google Scholar] [CrossRef]
- Popelka-Filcoff, R.S.; Robertson, J.D.; Glascock, M.D.; Descantes, C. Trace element characterization of ochre from geological sources. J. Radioanal. Nucl. Chem. 2007, 272, 17–27. [Google Scholar] [CrossRef]
- Cortea, I.M.; Ghervase, L.; Rǎdvan, R.; Serițan, G. Assessment of Easily Accessible Spectroscopic Techniques Coupled with Multivariate Analysis for the Qualitative Characterization and Differentiation of Earth Pigments of Various Provenance. Minerals 2022, 12, 755. [Google Scholar] [CrossRef]
- MacDonald, B.L.; Hancock, R.G.V.; Cannon, A.; Pidruczny, A. Geochemical characterization of ochre from central coastal British Columbia, Canada. J. Archaeol. Sci. 2011, 38, 3620–3630. [Google Scholar] [CrossRef]
- Eastaugh, N.; Walsh, V.; Chaplin, T.; Siddall, R. Pigment Compendium: A Dictionary and Optical Microscopy of Historical Pigments, 1st ed.; Routledge: London, UK, 2008. [Google Scholar]
- Casadio, F.; Toniolo, L. The analysis of polychrome works of art: 40 years of infrared spectroscopic investigations. J. Cult. Herit. 2001, 2, 71–78. [Google Scholar] [CrossRef]
- Rousaki, A.; Vandenabeele, P. Raman and infrared spectroscopy in conservation and restoration. In Spectroscopy, Diffraction and Tomography in Art and Heritage Science; Adrianes, M., Dowsett, M., Eds.; Elsevier: Amsterdam, the Netherlands, 2021; pp. 45–69. [Google Scholar] [CrossRef]
- Prati, S.; Joseph, E.; Sciutto, G.; Mazzeo, R. New advances in the application of FTIR microscopy and spectroscopy for the characterization of artistic materials. Accounts Chem. Res. 2010, 43, 792–801. [Google Scholar] [CrossRef] [PubMed]
- Rosi, F.; Cartechini, L.; Sali, D.; Miliani, C. Recent trends in the application of Fourier Transform Infrared (FT-IR) spectroscopy in Heritage Science: From micro- to non-invasive FT-IR. Phys. Sci. Rev. 2019, 4, 20180006. [Google Scholar] [CrossRef]
- Liu, G.L.; Kazarian, S.G. Recent advances and applications to cultural heritage using ATR-FTIR spectroscopy and ATR-FTIR spectroscopic imaging. Analyst 2022, 147, 1777–1797. [Google Scholar] [CrossRef] [PubMed]
- Casadio, F.; Daher, C.; Bellot-Gurlet, L. Raman Spectroscopy of Cultural Heritage Materials: Overview of Applications and New Frontiers in Instrumentation, Sampling Modalities, and Data Processing. Top. Curr. Chem. 2016, 374, 62. [Google Scholar] [CrossRef] [PubMed]
- Liritzis, I.; Zacharias, N. Portable XRF of archaeological artifacts: Current research, potentials and limitations. In X-ray Fluorescence Spectrometry (XRF) in Geoarchaeology; Shackley, M.S., Ed.; Springer: New York, NY, USA, 2012; pp. 109–142. [Google Scholar] [CrossRef]
- Rosi, F.; Miliani, C.; Braun, R.; Harig, R.; Sali, D.; Brunetti, B.G.; Sgamellotti, A. Noninvasive Analysis of Paintings by Mid-infrared Hyperspectral Imaging. Angew. Chem.-Int. Edit. 2013, 52, 5258–5261. [Google Scholar] [CrossRef]
- Grabowski, B.; Masarczyk, W.; Głomb, P.; Mendys, A. Automatic pigment identification from hyperspectral data. J. Cult. Herit. 2018, 31, 1–12. [Google Scholar] [CrossRef]
- Kleynhans, T.; Messinger, D.W.; Delaney, J.K. Towards automatic classification of diffuse reflectance image cubes from paintings collected with hyperspectral cameras. Microchem. J. 2020, 157, 104934. [Google Scholar] [CrossRef]
- Balas, C.; Epitropou, G.; Tsapras, A.; Hadjinicolaou, N. Hyperspectral imaging and spectral classification for pigment identification and mapping in paintings by El Greco and his workshop. Multimed. Tools Appl. 2018, 77, 9737–9751. [Google Scholar] [CrossRef]
- Liu, Y.; Lyu, S.; Hou, M.; Gao, Z.; Wang, W.; Zhou, X. A novel spectral matching approach for pigment: Spectral subsection identification considering ion absorption characteristics. Remote Sens. 2020, 12, 3415. [Google Scholar] [CrossRef]
- Ricciardi, P.; Delaney, J.K.; Facini, M.; Zeibel, J.G.; Picollo, M.; Lomax, S.; Loew, M. Near Infrared Reflectance Imaging Spectroscopy to Map Paint Binders In Situ on Illuminated Manuscripts. Angew. Chem.-Int. Edit. 2012, 51, 5607–5610. [Google Scholar] [CrossRef]
- Delaney, J.K.; Thoury, M.; Zeibel, J.G.; Ricciardi, P.; Morales, K.M.; Dooley, K.A. Visible and infrared imaging spectroscopy of paintings and improved reflectography. Herit. Sci. 2016, 4, 6. [Google Scholar] [CrossRef]
- Ricciardi, P. UV-visible-near IR reflectance spectrophotometry in a museum environment. In Spectroscopy, Diffraction and Tomography in Art and Heritage Science; Adrianes, M., Dowsett, M., Eds.; Elsevier: Amsterdam, the Netherlands, 2021; pp. 103–131. [Google Scholar] [CrossRef]
- Aceto, M.; Calà, E.; Gulino, F.; Gullo, F.; Labate, M.; Agostino, A.; Picollo, M. The Use of UV-Visible Diffuse Reflectance Spectrophotometry for a Fast, Preliminary Authentication of Gemstones. Molecules 2022, 27, 4716. [Google Scholar] [CrossRef]
- Picollo, M.; Aceto, M.; Vitorino, T. UV-Vis spectroscopy. Phys. Sci. Rev. 2019, 4, 20180008. [Google Scholar] [CrossRef]
- Liu, W.; Li, M.; Wu, N.; Liu, S.; Chen, J. A new application of Fiber optics reflection spectroscopy (FORS): Identification of ‘bronze disease’ induced corrosion products on ancient bronzes. J. Cult. Herit. 2021, 49, 19–27. [Google Scholar] [CrossRef]
- Ghervase, L.; Cortea, I.M. Lighting Up the Heritage Sciences: The Past and Future of Laser-Induced Fluorescence Spectroscopy in the Field of Cultural Goods. Chemosensors 2023, 11, 100. [Google Scholar] [CrossRef]
- Anglos, D.; Solomidou, M.; Zergioti, I.; Zafiropulos, V.; Papazoglou, T.G.; Fotakis, C. Laser-Induced Fluorescence in Artwork Diagnostics: An Application in Pigment Analysis. Appl. Spectrosc. 1996, 50, 1331–1334. [Google Scholar] [CrossRef]
- Gómez-Morón, A.; Ortiz, R.; Colao, F.; Fantoni, R.; Becerra, J.; Ortiz, P. Laser-Induced Fluorescence mapping of pigments in a secco painted murals. Ge-Conserv 2020, 17, 233–250. [Google Scholar] [CrossRef]
- Marinelli, M.; Pasqualucci, A.; Romani, M.; Verona-Rinati, G. Time resolved laser induced fluorescence for characterization of binders in contemporary artworks. J. Cult. Herit. 2017, 23, 98–105. [Google Scholar] [CrossRef]
- Nevin, A. Fluorescence for the Analysis of Paintings. In Analytical Chemistry for the Study of Paintings and the Detection of Forgeries; Colombini, M.P., Degano, I., Nevin, A., Eds.; Springer: Cham, Switzerland, 2022; pp. 221–245. [Google Scholar] [CrossRef]
- Ortiz, R.; Ortiz, P.; Colao, F.; Fantoni, R.; Gómez-Morón, M.A.; Vázquez, M.A. Laser spectroscopy and imaging applications for the study of cultural heritage murals. Constr. Build. Mater. 2015, 98, 35–43. [Google Scholar] [CrossRef]
- Greenberg, J. Big Metadata, Smart Metadata, and Metadata Capital: Toward Greater Synergy between Data Science and Metadata. J. Data Info. Sci. 2017, 2, 19–36. [Google Scholar] [CrossRef]
- Gibson, J. Sharing, curation and metadata as essential components of the data management plan. Inf. Serv. Use 2023, 43, 397–401. [Google Scholar] [CrossRef]
- Jacobsen, A.; Azevedo, R.d.M.; Juty, N.; Batista, D.; Coles, S.; Cornet, R.; Courtot, M.; Crosas, M.; Dumontier, M.; Evelo, C.T.; et al. FAIR Principles: Interpretations and Implementation Considerations. Data Intell. 2020, 2, 10–29. [Google Scholar] [CrossRef]
- Mons, B.; Neylon, C.; Velterop, J.; Dumontier, M.; da Silva Santos, L.O.B.; Wilkinson, M.D. Cloudy, increasingly FAIR; Revisiting the FAIR Data guiding principles for the European Open Science Cloud. Inf. Serv. Use 2017, 37, 49–56. [Google Scholar] [CrossRef]
Technique | Equipment and Main Characteristics | Experimental Conditions |
---|---|---|
FTIR | Perkin Elmer SpectrumTwo FTIR spectrometer equipped with a GladiATR Single Reflection ATR accessory (monolithic diamond crystal, 3.0 mm diameter, 45° angle of incidence) from Pike Technologies. | Acquisition mode: ATR (attenuated total reflectance) Resolution: 4 cm−1 Scans: 128 Spectral range: 4000–380 cm−1 |
XRF | TRACER III-SD portable energy-dispersive instrument from Bruker, equipped with a Rh anode X-ray tube and a 10 mm2 X-Flash SDD, with a typical resolution of approx. 145 eV for the Mn Kα line at 100,000 cps. | Current intensity: 10.60 μA Tube voltage: 40 kV Analysis time: 300 s Atmosphere: air Filters: - |
Raman | WP 785 ER Raman spectroscopy system from Wasatch Photonics equipped with a f/1.3 Raman spectrometer, a 785 nm integrated laser with power up to 450 mW, and a standard fiber-optic probe (collection area of 1 mm diameter at an 11 mm working distance). | Laser spot size: 170 µm Laser power: between 1 and 11 mW Acquisition time: between 2 and 10 s Resolution: 7 cm−1 Raman range: 3600–100 cm−1 |
SWIR | HySpex SWIR-384 hyperspectral camera from NEO equipped with a state-of-the-art mercury cadmium telluride (MCT) detector and a 30 cm working distance close-up lens. | Spectral range: 954–2514 nm Spatial pixels: 384 Spectral channels: 288 Spectral sampling: 5.45 nm Integration time: 7 ms |
Metadata Descriptor | Type of Descriptor | Related Information |
---|---|---|
Sample ID | Dataset descriptor | Unique alphanumeric code established according to internal criteria. |
Sample type | Dataset descriptor | Distinct (predefined) category that refers to the type of the investigated material (e.g., reference material, mock-up painting sample, historical sample). |
Sample source | Dataset descriptor | Information related to the source from which the sample comes; in most cases, this is the name of the professional art material manufacturer/supplier. |
Material class | Dataset descriptor | Distinct (predefined) category that refers to a grouping of materials based on shared characteristics, properties, or composition. |
Description | Data structural descriptor | Physical description of the investigated sample (e.g., powder, flakes, grains, bulk sample, dry paint layer, etc.). |
Chemical information | Data structural descriptor | The chemical information and/or chemical formula of the investigated sample. |
Origin | Supplementary descriptor | The nature of the investigated sample (e.g., mineral, vegetal, synthetic/artificially produced). For naturally occurring materials, the provenance was also specified whenever this information was available. |
Alternative names | Supplementary descriptor | A list of alternative names (including historical non-English names or nomenclature variations) for each specific material, where documented. For pigments and dyes, the Color Index code is also specified. |
History of use | Supplementary descriptor | Time when the material was used and/or introduced into artistic practice. |
Acquisition conditions | Research origin descriptor | Information on experimental parameters employed for the data acquisition. |
Type of equipment | Research origin descriptor | Information on the equipment used for the data acquisition model and the manufacturer. |
FAIR Principles * | Compliance | |
---|---|---|
Findability F1. (Meta)data are assigned a globally unique and persistent identifier. F2. Data are described with rich metadata. F3. Metadata clearly and explicitly include the identifier of the data that they describe. F4. (Meta)data are registered or indexed in a searchable resource. | F1. Datasets are uploaded to a public open access institutional repository (URL link: https://infraart.inoe.ro/, accessed on 6 April 2024). F2. Data are assigned a rich set of metadata (dataset descriptors, data structural descriptors, research origin descriptors, etc.). F3. The metadata and the datasets that they describe are separate files. Each dataset record has a unique URL link. F4. Meta(data) are keyword-searchable. | |
Accessibility A1. (Meta)data are retrievable by their identifier using a standardized protocol. A1.1 The protocol is open, free, and universal. A1.2 The protocol allows for authentication and authorization, as needed. A2. Metadata are accessible, even when the data are no longer available. | A1.1. All dataset records are freely accessible to view and explore via an interactive spectra-viewer. The spectra can be downloaded as image files (and raw data files = upcoming update). A1.2. The database is accessible to anyone with a computer and an internet connection; no user account is required. A2. Comprehensive data indexes are updated periodically, and backup files are stored on external hard disks. | |
Interoperability I1. (Meta)data use a formal, accessible, shared, and broadly applicable language. I2. (Meta)data use vocabularies that follow FAIR principles. I3. (Meta)data include qualified references to other (meta)data. | I1. The spectral data files are uploaded within the database using common, universal formats (.ASC, .CSV), making the data interoperable with various spectrum-processing software. I2. The vocabulary used to describe the datasets is clear and easy to understand. I3. Each database record’s dataset descriptors are linked with the research origin descriptors associated with each type of spectral data. | |
Reusability R1. Meta(data) are richly described with a plurality of accurate and relevant attributes. R1.1. (Meta)data are released with a clear and accessible data usage license. R1.2. (Meta)data are associated with detailed provenance. R1.3. (Meta)data meet domain-relevant community standards. | R1.1. Data are released under a CC BY-NC 4.0 international license. R1.2. Metadata concerning data and dataset records are richly described with a plurality of accurate and relevant attributes. R1.3. Data are organized in a standardized way, and the datasets follow well-established and sustainable file formats. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cortea, I.M. Towards FAIR Data Management in Heritage Science Research: Updates and Progress on the INFRA-ART Spectral Library. Heritage 2024, 7, 2569-2585. https://doi.org/10.3390/heritage7050123
Cortea IM. Towards FAIR Data Management in Heritage Science Research: Updates and Progress on the INFRA-ART Spectral Library. Heritage. 2024; 7(5):2569-2585. https://doi.org/10.3390/heritage7050123
Chicago/Turabian StyleCortea, Ioana Maria. 2024. "Towards FAIR Data Management in Heritage Science Research: Updates and Progress on the INFRA-ART Spectral Library" Heritage 7, no. 5: 2569-2585. https://doi.org/10.3390/heritage7050123
APA StyleCortea, I. M. (2024). Towards FAIR Data Management in Heritage Science Research: Updates and Progress on the INFRA-ART Spectral Library. Heritage, 7(5), 2569-2585. https://doi.org/10.3390/heritage7050123