Integrated Shallow Geophysical Surveys at Two Caddo Period Archaeological Sites within the Limits of a Water Reservoir in Northeastern Texas, USA
Abstract
:1. Introduction
2. Geological and Geomorphological Setting
3. The Caddo Nation
3.1. Timeline of the Caddo Nation
3.1.1. Pre-Columbian Times of the Caddo Nation
3.1.2. Colonial Times of the Caddo Nation
3.1.3. Historical Times of the Caddo Nation
3.1.4. Modern Times of the Caddo Nation
3.2. Architectural Spaces of the Caddo Nation
4. Archaeological Context of the Site
5. Geophysical Methods
5.1. 3D Electrical Resistivity Imaging (ERI)
5.1.1. 3D ERI Data Acquisition
5.1.2. 3D ERI Data Inversion
5.2. Magnetic Gradiometry
5.2.1. Basic Concepts
5.2.2. Justification of the Land Horizontal Magnetic Gradiometry (HMG) Method
- Estimates the location of abrupt lateral changes in magnetization or mass density (Kaya et al. [62]) because the measurements are taken across a ~1.0 m wide swath, defined by the alignment of two sensors at the same altitude, perpendicular to the survey direction (see insert in Figure 9B). Conversely, vertical magnetic gradient measurements do not offer this sampling feature because they do not sample across a swath perpendicular to the survey direction; instead, both sensors sample over the same coordinate along the same survey line at different altitudes, requiring closer in-line spacings.
- Provide additional information on gradients between survey lines, providing several advantages, including reducing the line dependency of anomalies, improving the resolution of features sub-parallel to the survey line direction, and reducing the aliasing involved when the survey line spacing to source depth rations is not optimum, which, in turn, allows for fine-tuning filter parameters, resulting in sharper, clearer images, especially for high-resolution texture filters (Marcotte et al. [78]; Cowan et al. [79]).
- Improves the leveling of total magnetic intensity data, and the need for tie-lines is optional (Cowan et al. [79]).
- Can be used to develop advanced map products, including (1) to derive a total field that is free of diurnal effects; (2) to derive the magnetic gradient tensor; (3) to estimate the depth of magnetic sources; (4) to derive the analytic signal amplitude, which emphasizes the source edges effects, reduces the interference effects of the anomalies, and yields an enhanced image of the anomaly boundaries (Bournas and Baker [81]); (5) to generate input for the automatic interpretation of horizontal magnetic gradient schemes; (6) to enhance the total field grids generated from profile data; (7) to ensure that isolated features are imaged and placed closer to their correct locations rather than close to the traverse lines; and (8) to indicate which side of the survey lines interline features will peak despite the fact that their location is not necessarily that accurate. Such advantages provide more interpretable products and attributes stemming from quantitative computations, which are possible only by measuring the horizontal magnetic gradient (O’Connell et al. [82]).
- Can be used to detect magnetic source boundaries in high resolution using the magnetic horizontal gradient operator, which emphasizes the source effects, reduces the interference effects of the anomalies, and yields an enhanced image of the source boundary locations; the locations are more precisely determined compared to those obtained with a vertical magnetic gradient (Skrame et al. [64]).
5.2.3. Land HMG Data Acquisition
5.2.4. Land HMG Data Processing
6. Results and Interpretation
6.1. 3D ERI Results and Interpretation
6.1.1. Zone 178-Area3
6.1.2. Zone 244-Area1
6.1.3. Zone 244-Area2
6.2. Land HMG Results and Interpretation
6.2.1. Zone 178-Area1
6.2.2. Zones 178-Area2 and 178-Area3
6.2.3. Zone 244-Area1
6.2.4. Zone 244-Area2
6.2.5. Zone 244-Area3
6.2.6. Zone 244-Area4
6.2.7. Zone 244-Area5
6.2.8. Zone 244-Area6
6.2.9. Zone 244-Area7
7. Preliminary Results from Archaeological Excavations
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schultz, T.C. Architectural Variability in the Caddo Area of Eastern Texas. Index of Texas Archaeology: Open Access Gray Literature from the Lone Star State, Article 11, pp. 456. 2010. Available online: https://scholarworks.sfasu.edu/ita/vol2010/iss1/11 (accessed on 7 February 2024).
- Story, D.A. Cultural History of the Native Americans. In The Archeology and Bioarcheology of the Gulf Coastal Plain; Story, D.A., Guy, J.A., Burnett, B.A., Freeman, M.D., Rose, J.C., Steele, D.G., Olive, B.W., Reinhard, K.J., Eds.; Research Series No. 38. 2 Vols; Arkansas Archeological Survey: Fayetteville, NC, USA, 1990; pp. 163–366. [Google Scholar]
- Perttula, T.K.; Walker, C.P.; Schultz, T.C. A revolution in Caddo archaeology: The remote sensing and archeological view from the Hill Farm site (41BW169) in Bowie County, Texas. Southeast. Archaeol. 2008, 27, 93–107. [Google Scholar]
- Walker, C.P.; McKinnon, D.P. Exploring Prehistoric Caddo Communities through Archaeogeophysics. In The Archaeology of the Caddo; Perttula, T.K., Walker, C.P., Eds.; University of Nebraska Press: Lincoln, OR, USA, 2012; pp. 177–208. [Google Scholar]
- Shelby, C.A.; Pieper, M.K.; Owen, D.E.; Freeman, T.J.; Wright, A.C.; Barnes, V.E. Geologic Atlas of Texas, Texarkana Sheet: The University of Texas at Austin, Bureau of Economic Geology, Geologic Atlas of Texas, Map Scale 1:250,000. 1979. Available online: https://store.beg.utexas.edu/geologic-atlas-of-texas/2109-ga0033.html (accessed on 6 February 2024).
- Skinner, S.A.; Davis, C.S.; Shelton, R. Research Design for the Proposed Lower Bois d’Arc Creek Reservoir Project, Fannin County, Texas; Cultural Resources Report 2010-28; AR Consultants, Inc.: Dallas, TX, USA, 2010. [Google Scholar]
- Perttula, T.K. The Caddo Nation”: Archaeological and Ethnohistoric Perspectives; University of Texas Press: Austin, TX, USA, 1992. [Google Scholar]
- Perttula, T.K. Caddo Landscapes in the East Texas Forest; Oxbow Books: Oxford, UK, 2017. [Google Scholar]
- Trubitt, M.B. Burning and Burying Buildings: Exploring Variation in Caddo Architecture in Southwest Arkansas. Southeast. Archaeol. 2009, 28, 233–247. [Google Scholar]
- Carter, C.E. Caddo Indians: Where We Come From; University of Oklahoma Press: Norman, OK, USA, 2001. [Google Scholar]
- Swanton, J.R. Source Material on the History and Ethnology of the Caddo Indians; University of Oklahoma Press: Norman, OK, USA, 1996. [Google Scholar]
- Perttula, T.K. Chapter 13: The Prehistoric and Caddoan Archeology of the Northeastern Texas Pineywoods. In Prehistory of Texas; Texas A&M University Press: College Station, TX, USA, 2004; pp. 370–407. [Google Scholar]
- Schambach, F.F. Spiroan Traders, the Sanders Site, and the Plains Interaction Sphere: A Reply to Bruseth, Wilson, and Perttula. Plains Anthropol. 2000, 45, 7–33. [Google Scholar] [CrossRef]
- Story, D.A. An Overview of the Archaeology of East Texas. Plains Anthropol. 1982, 26, 139–156. [Google Scholar] [CrossRef]
- Perttula, T.K. (Ed.) The Hurricane Hill Site (41HP106): The Archaeology of a Late Archaic/Early Ceramic and Early Middle Caddoan Settlement in Northeast Texas, Vol I. Special Publication No. 4; Friends of Northeast Texas Archaeology: Pittsburg, CA, USA, 1999. [Google Scholar]
- Perttula, T.K.; Rogers, R. The Evolution of a Caddo Community in Northeastern Texas: The Oak Hill Village Site (41RK214), Rusk County, Texas. Am. Antiq. 2007, 72, 71–94. [Google Scholar] [CrossRef]
- Newkumet, V.B.; Meredith, H.L. Hasinai: A Traditional History of the Caddo Confederacy; Texas A&M University Press: College Station, TX, USA, 2009. [Google Scholar]
- Perttula, T.K. Extended Entranceway Structures in the Caddo Archaeological Area. Southeast. Archaeol. 2009, 28, 27–42. [Google Scholar]
- Binford, L.R. Willow Smoke and Dogs’ Tails: Hunter-Gatherer Settlement Systems and Archaeological Site Formation. Am. Antiq. 1980, 45, 4–20. [Google Scholar] [CrossRef]
- Kelly, R.L. The Lifeways of Hunter-Gatherers: The Foraging Spectrum; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Vehik, R.; Bobalik, S.; Lintz, C. Phase II Archaeological Investigations at Clayton Lake, Southeast Oklahoma; University of Oklahoma: Norman, OK, USA, 1982. [Google Scholar]
- Parsons, E.C. Notes on the Caddo. Memoir 57; American Anthropological Association: Washington, DC, USA, 1941. [Google Scholar]
- Griffith, W.J. The Hasinai Indians of East Texas as Seen by Europeans, 1687–1772; Philological and Documentary Studies, Volume 2, No. 3; Middle American Research Institute, Tulane University: New Orleans, LA, USA, 1954. [Google Scholar]
- Gregory, H.F. The Southern Caddo: An Anthology; Garland Publishing: New York, NY, USA, 1986. [Google Scholar]
- Bolton, H.E. The Hasinais: Southern Caddoans as seen by the Earliest Europeans; University of Oklahoma Press: Norman, OK, USA, 1987. [Google Scholar]
- Sabo, G. Encounters and Images: European Contact and Caddo Indians. Hist. Reflect./Reflex. Hist. 1995, 21, 217242. [Google Scholar]
- Smith, F.T. The Caddo Indians: Tribes at the Convergence of Empires 1542–1854; Texas A&M University Press: College Station, TX, USA, 1995. [Google Scholar]
- Webb, C.H. House Types Among the Caddo Indians. Bull. Tex. Archeol. Paleontol. Soc. 1940, 12, 49–75. [Google Scholar]
- Jelks, E.B.; Tunnell, C.D. The Harroun Site: A Fulton Aspect Component of the Caddoan Area, Upshur County, Texas; Archaeology Series No. 2; Department of Anthropology, The University of Texas at Austin: Austin, TX, USA, 1959. [Google Scholar]
- Spock, C. An Analysis of the Architectural and Related Features at the George C. Davis Site. Master’s Thesis, Department of Anthropology, University of Texas, Austin, TX, USA, 1977. [Google Scholar]
- Rogers, J.D. Specialized Buildings in Northern Caddo Prehistory. In Southern Plains Archaeology; Vehik, S.C., Ed.; Papers in Anthropology 23(1); Department of Anthropology, University of Oklahoma: Norman, OK, USA, 1982; pp. 105–117. [Google Scholar]
- Sabo, G. The Structure of Caddo Leadership in the Colonial Era. In The Native History of the Caddo: Their Place in Southeastern Archeology and Ethnohistory; Perttula, T.K., Bruseth, J.E., Eds.; Studies in Archeology 30; Texas Archeological Research Laboratory, The University of Texas at Austin: Austin, TX, USA, 1998; pp. 159–174. [Google Scholar]
- Story, D.A. The George C. Davis Site: Glimpses into Early Caddoan Symbolism and Ideology. In The Native History of the Caddo: Their Place in Southeastern Archeology and Ethnohistory; Perttula, T.K., Bruseth, J.E., Eds.; Studies in Archeology 30; Texas Archeological Research Laboratory, The University of Texas at Austin: Austin, TX, USA, 1998; pp. 9–43. [Google Scholar]
- Taormina, K.A. An Architectural Analysis of Caddo Structures at the Ferguson Site (3HE63). Graduate Theses and Dissertations. 2015. Available online: https://scholarworks.uark.edu/etd/1228 (accessed on 7 February 2024).
- Walker, C.P. Landscape Archaeogeophysics: A Study of Magnetometer Surveys from Etowah (9BW1), the George C. Davis Site (41CE19), and the Hill Farm Site (41BW169). Ph.D. Dissertation, Department of Anthropology, The University of Texas at Austin, Austin, TX, USA, 2009. [Google Scholar]
- Perttula, T.K. Caddo Ceramics in East Texas. Bull. Tex. Archeol. Soc. 2013, 84, 181–212. [Google Scholar]
- Rutherford, A.M. A Report on Phase II Testing at 41FN244 in the Bois d’Arc Lake Reservoir, Fannin County, Texas. Caddo Archeol. J. 2023, 33, 161–166. [Google Scholar]
- Perttula, T.K.; Selden, R.Z.; Wilson, D. Corn is Life: Temporal Trends in the Use of Corn (Zea mays) by Caddo Peoples from Radiocarbon-dated Samples and Stable Isotope Analysis. Bull. Tex. Archaeol. Soc. 2014, 85, 159–181. [Google Scholar]
- Batayneh, A.T. Archaeogeophysics–archaeological prospection—A mini review. J. King Saud Univ. 2011, 23, 83–89. [Google Scholar] [CrossRef]
- Martorana, R.; Capizzi, P.; Pisciotta, A.; Scudero, S.; Bottari, C. An Overview of Geophysical Techniques and Their Potential Suitability for Archaeological Studies. Heritage 2023, 6, 2886–2927. [Google Scholar] [CrossRef]
- Batayneh, A.; Khataibeh, J.; Alrshdan, H.; Tobasi, U.; Al-Jahed, N. The use of microgravity, magnetometry and resistivity surveys for the characterization and preservation of an archaeological site of Umm er-Rasas, Jordan. Archaeol. Prospect. 2007, 14, 60–70. [Google Scholar] [CrossRef]
- Young, C.T.; Droege, D.R. Archaeological applications of resistivity and magnetic methods at Fort Wilkins State Park, Michigan. Geophysics 1986, 51, 568–575. [Google Scholar] [CrossRef]
- Drahor, M.G.; Kurtulmus, T.Ö.; Berge, M.A.; Hartman, M.; Speidel, M.A. Magnetic imaging and electrical resistivity tomography studies in a Roman military installation found in Satala archeological site, northeastern Anatolia, Turkey. J. Archaeol. Sci. 2008, 35, 259–271. [Google Scholar] [CrossRef]
- Al-Saadi, O.S.; Schmidt, V.; Becken, M.; Fritsch, T. Very-high-resolution electrical resistivity imaging of buried foundations of a Roman villa near Nonnweiler, Germany. Archaeol. Prospect. 2018, 25, 209–218. [Google Scholar] [CrossRef]
- Reynolds, J.M. An Introduction to Applied and Environmental Geophysics, 2nd ed.; John Wiley & Sons: Chichester, UK, 2011. [Google Scholar]
- Loke, M.H.; Chambers, J.E.; Rucker, D.F.; Wilkinson, P.B. Recent developments in the direct-current geoelectrical imaging method. J. Appl. Geophys. 2013, 95, 135–156. [Google Scholar] [CrossRef]
- Ortega, A.I.; Benito-Calvo, A.; Porres, J.; Pérez-González, A.; Martín Merino, M.A. Applying electrical resistivity tomography to the identification of endokarstic geometries in the Pleistocene sites of the Sierra de Atapuerca (Burgos, Spain). Archaeol. Prospect. 2010, 17, 233–245. [Google Scholar] [CrossRef]
- Teixidó, T.; Artigot, E.G.; Peña, J.A.; Molina, F.; Nájera, T.; Carrión, F. Geoarchaeological context of the Motilla de la Vega Site (Spain) based on electrical resistivity tomography. Archaeol. Prospect. 2013, 20, 11–22. [Google Scholar] [CrossRef]
- Papadopoulos, N.G.; Sarris, A.; Parkinson, W.A.; Gyucha, A.; Yerkes, R.W.; Duffy, P.R.; Tsourlos, P. Electrical resistivity tomography for the modelling of cultural deposits and geomophological landscapes at Neolithic sites: A case study from Southeastern Hungary. Archaeol. Prospect. 2014, 21, 169–183. [Google Scholar] [CrossRef]
- Griffiths, D.H.; Barker, R.D. Electrical Imaging in Archaeology. J. Archaeol. Sci. 1994, 21, 153–158. [Google Scholar] [CrossRef]
- Noel, M.; Xu, B. Archaeological investigation by electrical resistivity tomography: A preliminary study. Geophys. J. Int. 1991, 107, 95–102. [Google Scholar] [CrossRef]
- Papadopoulos, N.G.; Tsourlos, P.; Tsokas, G.N.; Sarris, A. Two-dimensional and three-dimensional resistivity imaging in archaeological site investigation. Archaeol. Prospect. 2006, 13, 163–181. [Google Scholar] [CrossRef]
- Tsokas, G.N.; Tsourlos, P.I.; Vargemezis, G.; Novack, M. Non-destructive Electrical Resistivity Tomography for Indoor Investigation: The Case of Kapnikarea Church in Athens. Archaeol. Prospect. 2008, 15, 47–61. [Google Scholar] [CrossRef]
- Leucci, G.; Greco, F.; De Giorgi, L.; Mauceri, R. Three-dimensional image of seismic refraction tomography and electrical resistivity tomography survey in the castle of Occhiola (Sicily, Italy). J. Archaeol. Sci. 2007, 34, 233–242. [Google Scholar] [CrossRef]
- Berge, M.A.; Drahor, M.G. Electrical resistivity tomography investigations of multilayered archaeological settlements: Part I–modelling. Archaeol. Prospect. 2011, 18, 159–171. [Google Scholar] [CrossRef]
- Berge, M.A.; Drahor, M.G. Electrical resistivity tomography investigations of multilayered archaeological settlements: Part II–A case from Old Smyrna Höyük, Turkey. Archaeol. Prospect. 2011, 18, 291–302. [Google Scholar] [CrossRef]
- Wake, T.A.; Mojica, A.O.; Davis, M.H.; Campbell, C.J.; Mendizabal, T. Electrical resistivity surveying and pseudo-three-dimensional tomographic imaging at Sitio Drago, Bocas del Toro, Panama. Archaeol. Prospect. 2012, 19, 49–58. [Google Scholar] [CrossRef]
- Getaneh, A.; Haile, T.; Sernicola, L. Three-dimensional modelling of a pre-Aksumite settlement at the archaeological site of Seglamen, Aksum, northern Ethiopia using integrated geophysical techniques. Archaeol. Prospect. 2018, 25, 231–241. [Google Scholar] [CrossRef]
- Moník, M.; Lenďáková, Z.; Ibáñez, J.J.; Muñiz, J.; Borell, F.; Iriarte, E.; Teira, L.; Kuda, F. Revealing early villages–Pseudo-3D ERT geophysical survey at the pre-pottery Neolithic site of Kharaysin, Jordan. Archaeol. Prospect. 2018, 25, 339–346. [Google Scholar] [CrossRef]
- Sharma, P.V. Environmental and Engineering Geophysics; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Schmidt, A. Archaeology, magnetic methods. In Encyclopedia of Geomagnetism and Paleomagnetism: 23–31; Gubbins, D., Herrero-Bervera, E., Eds.; Encyclopedia of Earth Sciences Series; Springer: Heidelberg, NY, USA, 2007. [Google Scholar]
- Kaya, M.A.; Ekinci, Y.L.; Yiğit, P.; Lightfoot, C.S. Magnetic investigation at the Amorium archeological site, Emirdağ, Afyon, Turkey. J. Balk. Geophys. Soc. 2007, 10, 1–7. [Google Scholar]
- Urban, T.M.; Vella, C.; Bocancea, E.; Tuttle, C.A.; Alcock, S.E. A geophysical investigation of a newly discovered Early Bronze Age site near Petra, Jordan. J. Archaeol. Sci. 2014, 42, 260–272. [Google Scholar] [CrossRef]
- Skrame, K.; Di Filippo, M.; Di Nezza, M. Contribution of the Magnetic Horizontal Gradient Operator (MHGO) for the Interpretation of the Magnetic Anomalies. In reNear Surface Geoscience 2016-22nd European Meeting of Environmental and Engineering Geophysics; European Association of Geoscientists & Engineers: Utrecht, The Netherlands, 2016; Volume 2016, p. cp-495. [Google Scholar]
- Cajigas, R. An integrated approach to surveying an Early Agricultural period landscape: Magnetic gradiometry and satellite imagery at La Playa, Sonora, Mexico. J. Archaeol. Sci. 2017, 15, 381–392. [Google Scholar] [CrossRef]
- Kvamme, K.J. Magnetometry: Nature’s gift to archaeology. In Remote Sensing in Archaeology: An Explicitly North American Perspective; Johnson, J.K., Ed.; The University of Alabama Press: Tuscaloosa, AL, USA, 2006; pp. 205–234. [Google Scholar]
- Rego, J.P.; Cegielski, W.H. Gradiometry survey and magnetic anomaly testing of Castros de Neixón, Galicia, Spain. J. Archeol. Sci. 2014, 46, 417–427. [Google Scholar] [CrossRef]
- Mussett, A.E.; Khan, M.A. Looking into the Earth: An Introduction to Geological Geophysics; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Sauck, W.A.; Smart, L.A.; Nassaney, M.S.; Porsani, J.L. Archaeological Geophysics in an Urban Environment; Peeling Back the Layers at Ft. Miami, Michigan. In Symposium on the Application of Geophysics to Engineering and Environmental Problems; Society of Exploration Geophysicists: Houston, TX, USA, 2006; pp. 499–507. [Google Scholar]
- Abdallatif, T.F.; Suh, M.; Oh, J.; Hyun, K.K. Impact of magnetic survey design on the imaging of small archeological objects: Practicability in gradiometer surveying. Lead. Edge 2007, 26, 571–577. [Google Scholar] [CrossRef]
- Drahor, M.G.; Berge, M.A.; Öztürk, C. Integrated geophysical surveys for the subsurface mapping of buried structures under and surrounding of the Agios Voukolos Church in Izmir, Turkey. J. Archaeol. Sci. 2011, 38, 2231–2242. [Google Scholar] [CrossRef]
- Rabbel, W.; Stuempel, H.; Woelz, S. Archeological prospecting with magnetic and shear-wave surveys at the ancient city of Miletos (western Turkey). Lead. Edge 2004, 23, 690–703. [Google Scholar] [CrossRef]
- Godio, A.; Piro, S. Integrated data processing for archeological magnetic surveys. Lead. Edge 2005, 24, 1138–1144. [Google Scholar] [CrossRef]
- Vafidis, A.; Economou, N.; Ganiatsos, Y.; Manakou, M.; Poulioudis, G.; Sourlas, G.; Vrontaki, E.; Sarris, A.; Guy, M.; Kalpaxis, T.H. Integrated geophysical studies at ancient Itanos (Greece). J. Archeol. Sci. 2005, 32, 1023–1036. [Google Scholar] [CrossRef]
- Seeliger, M.; Pint, A.; Frenzel, P.; Weisenseel, P.; Erkul, E.; Wilken, D.; Wunderlich, T.; Başaran, S.; Bücherl, H.; Herbrecht, M.; et al. Using a multi-proxy approach to detect and date a buried part of the Hellenistic City Wall of Ainos (NW Turkey). Geosciences 2018, 8, 357. [Google Scholar] [CrossRef]
- Milsom, J.; Eriksen, A. Field Geophysics, 4th ed.; John Wiley & Sons Ltd.: Chichester, UK, 2011. [Google Scholar]
- Geometrics. G-858GAP Gradiometer Mag Cesium Vapor Magnetometer Operation Manual, P/N 25273-OM Rev, B1 ed.; Geometrics: San Jose, CA, USA, 2010; p. 102. [Google Scholar]
- Marcotte, D.L.; Hardwick, C.D.; Nelson, J.B. Automated interpretation of horizontal magnetic gradient profile data. Geophysics 1992, 57, 288–295. [Google Scholar] [CrossRef]
- Cowan, D.R.; Baigent, M.; Cowan, S. Aeromagnetic gradiometers? A perspective. Explor. Geophys. 1995, 26, 241–246. [Google Scholar] [CrossRef]
- Mekkawi, M.; Arafa-Hamed, T.; Abdellatif, T. Detailed magnetic survey at Dahshour archeological sites Southwest Cairo, Egypt. NRIAG J. Astron. Geophys. 2013, 2, 75–183. [Google Scholar] [CrossRef]
- Bournas, N.; Baker, H.A. Interpretation of magnetic anomalies using the horizontal gradient analytic signal. Ann. Di Geofis. 2001, 44, 505–526. [Google Scholar] [CrossRef]
- O’Connell, M.D.; Smith, R.S.; Vallee, M.A. Gridding aeromagnetic data using longitudinal and transverse horizontal gradients with the minimum curvature operator. Lead. Edge 2005, 24, 142–145. [Google Scholar] [CrossRef]
- Lloyd, C.D.; Atkinson, P.M. Archaeology and geostatistics. J. Archaeol. Sci. 2004, 31, 151–165. [Google Scholar] [CrossRef]
- Reford, S. Gradient enhancement of the total magnetic field. Lead. Edge 2006, 25, 59–66. [Google Scholar] [CrossRef]
- Wang, W.Y.; Qiu, Z.Y. The research to a stable minimum curvature gridding method in potential data processing. Prog. Geophys. 2011, 26, 2003–2010. [Google Scholar]
- Smith WH, F.; Wessel, P. Gridding with continuous curvature splines in tension. Geophysics 1990, 55, 293–305. [Google Scholar] [CrossRef]
- Gunn, D.A.; Chambers, J.E.; Uhlemann, S.; Wilkinson, P.B.; Meldrum, P.I.; Dijkstra, T.A.; Haslam, E.; Kirkham, M.; Wragg, J.; Holyoake, S.; et al. Moisture monitoring in clay embankments using electrical resistivity tomography. Constr. Build. Mater. 2015, 92, 82–94. [Google Scholar] [CrossRef]
- Kibler, K. Geoarcheological Investigations at Sites 41FN176, 41FN177, 41FN178, and 41FN244, Bois d’Arc Lake Reservoir, Fannin County, Texas. Cross Timbers Geoarcheological Services, Tulsa, Oklahoma. 2019; Unpublished Geoarcheological Report. [Google Scholar]
- TBH (Texas Beyond History) (2019, July 3rd). Caddo Fundamentals. Available online: https://www.texasbeyondhistory.net/tejas/fundamentals/index.html (accessed on 11 May 2024).
- Shortle, W.C.; Smith, K.T. Electrical Properties and Rate of Decay in Spurce and Fir Wood. Phytopathology 1987, 77, 811–814. [Google Scholar] [CrossRef]
- Elliot, M.L.; Broschat, T.K.; Göcke, L. Preliminary Evaluation of Electrical Resistance Tomography for Imaging Palm Trunks. Arboric. Urban For. 2016, 42, 111–119. [Google Scholar] [CrossRef]
- Hagrey, A.L. Electrical Resistivity Imaging of Tree Trunks. Near Surf. Geophys. 2006, 4, 179–187. [Google Scholar] [CrossRef]
Period | Date(s) | |
---|---|---|
Pre-Columbian times | Late Archaic | 2000 B.C. to 200 B.C. |
Woodland (Early Ceramic) | 500 B.C. to A.D. 800 | |
Emerging Caddo | A.D. 800–1000 | |
Early Caddo | A.D. 1000–1200 | |
Middle Caddo | A.D. 1200–1400 | |
Late Caddo | A.D. 1400–1600 | |
Colonial times | European Invasion | 1542–1730 |
European Colonization | 1730–1800 | |
Historical times | Anglo-American Conflict | 1800–1859 |
Louisiana Treaty of Cession | 1835 | |
Brazos Reserve, Texas | 1855–1859 | |
Civil War | 1860–1867 | |
Resettled in Oklahoma | 1868 | |
Caddo Tribe | 1874 | |
Allotment | 1889–1901 | |
Tribal Charter | 1936 | |
Modern times | NAGPRA (Native Americans Grave Protection and Repatriation Act) Enacted | 1990 |
Criteria | Zone 178-Area3 | Zone 244-Area1 | Zone 244-Area2 |
---|---|---|---|
Electrode layout | True-3D | True-3D | Pseudo-3D |
Electrode array | Mixed dipole gradient | Mixed dipole gradient | Strong gradient with 75% transmitting electrode overlap |
Electrode capability | 56 | 56 | 56 |
Maximum number of electrodes | 84 | 196 | 336 |
Electrode spacing (m) | 3.5 | 1.5 | 0.75 |
In-line spacing (m) | 3.5 | 2.0 | 2.0 |
Number of electrodes along the x/y axis | 4/14 | 4/14 | 14/0 |
Number of roll-along or slide-along used | 1 slide-along | 5 roll-along | No |
Terrain correction | Yes | Not needed | Yes |
Horizontal (x/y) resolution (m) | 1.750/1.75 | 1.000/0.75 | 0.375/1.0 |
Vertical (z) resolution (m) | 1.75 | 1.25 | 1.068 |
Observations: | They were completed in two full work days due to long measurement times for the roll-along sections. | Roll-along failed because the instrument overheated, so slide-along was implemented. | Eleven parallel 2D resistivity profiles were merged into a 3D grid, all acquired with the same criteria. |
Zone | Topographic Correction | RMS % | L2-Norm | Iteration Number | Surveyed Depth (m) | |
---|---|---|---|---|---|---|
Yes/No | Value | |||||
178-area3 | Required | 3.62 | Yes | 0.2 | 1 | 12.4 |
244-area1 | Not required | 2.28 | No | 0.2 | 1 | 4.5 |
244-area2 | Required | 3.54 | Yes | 0.5 | 5 | 9.5 |
Anomaly Class | Amplitude | Size |
---|---|---|
1 | high amplitude (>10 nT/m) | large size (>1 m) |
2 | high amplitude (>10 nT/m) | small size (<1 m) |
3 | medium amplitude (5–10 nT/m) | large size (>1 m) |
4 | medium amplitude (5–10 nT/m) | small size (<1 m) |
5 | low amplitude (<5 nT/m) | large size (>1 m) |
6 | low amplitude (<5 nT/m) | small size (<1 m) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hinojosa-Prieto, H.R.; Rutherford, A.M.; Brown, J.D. Integrated Shallow Geophysical Surveys at Two Caddo Period Archaeological Sites within the Limits of a Water Reservoir in Northeastern Texas, USA. Heritage 2024, 7, 4045-4084. https://doi.org/10.3390/heritage7080191
Hinojosa-Prieto HR, Rutherford AM, Brown JD. Integrated Shallow Geophysical Surveys at Two Caddo Period Archaeological Sites within the Limits of a Water Reservoir in Northeastern Texas, USA. Heritage. 2024; 7(8):4045-4084. https://doi.org/10.3390/heritage7080191
Chicago/Turabian StyleHinojosa-Prieto, Hector R., Allen M. Rutherford, and Jesse D. Brown. 2024. "Integrated Shallow Geophysical Surveys at Two Caddo Period Archaeological Sites within the Limits of a Water Reservoir in Northeastern Texas, USA" Heritage 7, no. 8: 4045-4084. https://doi.org/10.3390/heritage7080191
APA StyleHinojosa-Prieto, H. R., Rutherford, A. M., & Brown, J. D. (2024). Integrated Shallow Geophysical Surveys at Two Caddo Period Archaeological Sites within the Limits of a Water Reservoir in Northeastern Texas, USA. Heritage, 7(8), 4045-4084. https://doi.org/10.3390/heritage7080191