New Insights into the Materials and Painting Techniques of Ancient Wall Paintings from the Roman Province of Dacia: A Minimally Invasive Multi-Method Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wall Painting Samples
2.2. X-ray Fluorescence (XRF)
2.3. Laser-Induced Breakdown Spectroscopy (LIBS)
2.4. Fourier Transform Infrared Spectroscopy (FTIR)
2.5. Hyperspectral Imaging (HSI)
3. Results
3.1. XRF Analysis
3.2. LIBS Analysis
3.3. FTIR Analysis
3.4. HSI Analysis
4. Discussion and Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Salvadori, M.; Sbrolli, C. Wall paintings through the ages: The roman period—Republic and early Empire. Archaeol. Anthr. Sci. 2021, 13, 187. [Google Scholar] [CrossRef]
- Pappalardo, U. The Splendor of Roman Wall Painting; J. Paul Getty Museum: Los Angeles, CA, USA, 2009. [Google Scholar]
- Ling, R. Roman Painting; Cambridge University Press: New York, NY, USA, 1991. [Google Scholar]
- Davy, H. LXIII. Some Experiments and Observations on the Colours Used in Painting by the Ancients. Philos. Mag. 1815, 45, 349–359. [Google Scholar] [CrossRef]
- Chaptal, J.A. Sur Quelques Couleurs Trouvées à Pompeïa. Ann. Chim. 1809, 70, 22–31. [Google Scholar]
- Cuní, J. What Do We Know of Roman Wall Painting Technique? Potential Confounding Factors in Ancient Paint Media Analysis. Herit. Sci. 2016, 4, 44. [Google Scholar] [CrossRef]
- Zhu, Z.; Yao, X.; Qin, Y.; Lu, Z.; Ma, Q.; Zhao, X.; Liu, L. Visualization and Mapping of Literature on the Scientific Analysis of Wall Paintings: A Bibliometric Analysis from 2011 to 2021. Herit. Sci. 2022, 10, 105. [Google Scholar] [CrossRef]
- Mazzocchin, G.A.; Rudello, D.; Murgia, E. Analysis of Roman Wall Paintings Found in Verona. Ann. Chim. 2007, 97, 807–822. [Google Scholar] [CrossRef]
- Garofano, I.; Perez-Rodriguez, J.L.; Robador, M.D.; Duran, A. An Innovative Combination of Non-Invasive UV–Visible-FORS, XRD and XRF Techniques to Study Roman Wall Paintings from Seville, Spain. J. Cult. Herit. 2016, 22, 1028–1039. [Google Scholar] [CrossRef]
- Dooryhée, E.; Anne, M.; Bardiès, I.; Hodeau, J.-L.; Martinetto, P.; Rondot, S.; Salomon, J.; Vaughan, G.B.M.; Walter, P. Non-Destructive Synchrotron X-Ray Diffraction Mapping of a Roman Painting. Appl. Phys. A Mater. Sci. Process. 2005, 81, 663–667. [Google Scholar] [CrossRef]
- Béarat, H. Chemical and Mineralogical Analyses of Gallo-Roman Wall Painting from Dietikon, Switzerland. Archaeometry 1996, 38, 81–95. [Google Scholar] [CrossRef]
- Edwards, H.G.M.; Middleton, P.S.; Hargreaves, M.D. Romano-British Wall Paintings: Raman Spectroscopic Analysis of Fragments from Two Urban Sites of Early Military Colonisation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2009, 73, 553–560. [Google Scholar] [CrossRef]
- Apostolaki, C.; Perdikatsis, V.; Repuskou, E.; Brecoulaki, H.; Lepinski, S. Analysis of Roman Wall Paintings from Ancient Corinth/Greece. In Proceedings of the 2nd International Conference on: Advances in Mineral Resources, Hania, Greece, 25–27 September 2006; pp. 729–734. [Google Scholar]
- Radpour, R.; Fischer, C.; Kakoulli, I. New Insight into Hellenistic and Roman Cypriot Wall Paintings: An Exploration of Artists’ Materials, Production Technology, and Technical Style. Arts 2019, 8, 74. [Google Scholar] [CrossRef]
- Smith, D.C.; Barbet, A. A Preliminary Raman Microscopic Exploration of Pigments in Wall Paintings in the Roman Tomb Discovered at Kertch, Ukraine, in 1891. J. Raman Spectrosc. 1999, 30, 319–324. [Google Scholar] [CrossRef]
- Gutman, M.; Zanier, K.; Lux, J.; Kramar, S. Pigment Analysis of Roman Wall Paintings from Two Villae Rusticae in Slovenia. Mediterr. Archaeol. Archaeom. 2016, 16, 193. [Google Scholar] [CrossRef]
- Babeș-Bolyai, U.; Olteanu, B.-C. Stadiul cercetărilor pluridisciplinare asupra fragmentelor de tencuială pictată din Dacia. Cercet. Arheol. 2022, 29, 149–154. [Google Scholar] [CrossRef]
- Mora, P.; Mora, L.; Philippot, P. Conservation of Wall Paintings; Butterworths: London, UK, 1984. [Google Scholar]
- Ciobanu, R. Pictura Murală Romană (La Peinture Murale Romaine); Editura Grinta: Alba Iulia, Romania, 2011. [Google Scholar]
- Ciobanu, R. Le décor monumental en Dacie romaine. Ph.D. Thesis, Université Paris 1 Panthéon-Sorbonne, Paris, France, 1995. [Google Scholar]
- Rusu-Bolindeţ, V.; Ilea, C.; Volkers, T. Alba Iulia, jud. Alba [Apulum]. In Cronica Cercetărilor Arheologice din România. Campania 2000; Angelescu, M.V., Borș, C., Oberlander Târnoveanu, I., Eds.; CiMEC: București, Romania, 2001; pp. 25–26. [Google Scholar]
- Ciobanu, R. The Paintings Hall with Hypocausts from Apulum II. Apulum 2005, 42, 123–136. [Google Scholar]
- Țentea, O.; Olteanu, B. Fresca unei locuințe din Secolul II p.Chr. de la Sarmizegetusa. Cercet. Arheol. 2018, 25, 91–104. [Google Scholar] [CrossRef]
- Barbu, M.G.; Bărbat, A.I.; Băeștean, G.; Bălos, G.; Gonciar, A.; Brown, A. Raport preliminar privind cercetările arheologice de la Rapoltu Mare-La Vie, Campaniile 2013–2015. Banatica 2016, 26, 273–321. [Google Scholar]
- Boroș, D.; Duca, V. Tencuiala pictată din amfiteatrul de la Porolissum (Considerații Tehnice). Acta Musei Porolissensis 2008, 30, 113–121. [Google Scholar]
- Țentea, O. Bath and Bathing at Alburnus Maior; Mega Publishing House: Cluj-Napoca, Romania, 2015; ISBN 978-606-543-429-5. [Google Scholar]
- Boroș, D. Studiul tehnic al unor fragmente arheologice de tencuială pictată. Acta Musei Porolissensis 2003, 25, 719–723. [Google Scholar]
- Cortea, I.M.; Ghervase, L.; Țentea, O.; Pârău, A.C.; Radvan, R. First Analytical Study on Second-Century Wall Paintings from Ulpia Traiana Sarmizegetusa: Insights on the Materials and Painting Technique. Int. J. Arch. Herit. 2020, 14, 751–761. [Google Scholar] [CrossRef]
- Cortea, I.M.; Ratoiu, L.; Ghervase, L.; Țentea, O.; Dinu, M. Investigation of Ancient Wall Painting Fragments Discovered in the Roman Baths from Alburnus Maior by Complementary Non-Destructive Techniques. Appl. Sci. 2021, 11, 10049. [Google Scholar] [CrossRef]
- Ion, R.-M.; Barbu, M.G.; Gonciar, A.; Vasilievici, G.; Gheboianu, A.I.; Slamnoiu-Teodorescu, S.; David, M.E.; Iancu, L.; Grigorescu, R.M. A Multi-Analytical Investigation of Roman Frescoes from Rapoltu Mare (Romania). Coatings 2022, 12, 530. [Google Scholar] [CrossRef]
- Alicu, D. 80 de Ani de Cercetări Arheologice La Ulpia Traiana Sarmizegetusa. Sargetia 2003, 31, 253–258. [Google Scholar]
- Piso, I. Colonia Ulpia Traiana Augusta Dacica Sarmizegetusa. Bréve Présentation et État de Recherché. Transylv. Rev. 2001, 10, 16–37. [Google Scholar]
- Piso, I. An der Nordgrenze des Römischen Reiches. Ausgewählte Studien (1972–2003); Franz Steiner Verlag: Stuttgart, Germany, 2005; ISBN 978-3-515-08729-2. [Google Scholar]
- Țentea, O.; Olteanu, B.C. Decorating Overlapping Buildings: A Domus and Palmyrene Temple at Colonia Dacica Sarmizegetusa. Theor. Rom. Archaeol. J. 2020, 3, 6. [Google Scholar] [CrossRef]
- Piso, I.; Țentea, O. Un Nouveau Temple Palmyrénien à Sarmizegetusa. Dacia—Rev. d’ArchéOlogie d’Hist. Ancienne 2011, 55, 111–122. [Google Scholar]
- Caneve, L.; Diamanti, A.; Grimaldi, F.; Palleschi, G.; Spizzichino, V.; Valentini, F. Analysis of Fresco by Laser Induced Breakdown Spectroscopy. Spectrochim. Acta—Part B At. Spectrosc. 2010, 65, 702–706. [Google Scholar] [CrossRef]
- Dinu, M.; Cortea, I.M.; Ghervase, L.; Stancu, M.C.; Mohanu, I.; Cristea, N. Optoelectronic Investigation of the Mural Paintings from Drăguțești Wooden Church, Argeș County, Romania. J. Optoelectron. Adv. Mater. 2020, 2020, 303–309. [Google Scholar]
- Paladini, A.; Toschi, F.; Colosi, F.; Rubino, G.; Santoro, P. Stratigraphic Investigation of Wall Painting Fragments from Roman Villas of the Sabina Area. Appl. Phys. A Mater. Sci. Process. 2015, 118, 131–138. [Google Scholar] [CrossRef]
- Lazic, V.; Fantoni, R.; Falzone, S.; Gioia, C.; Loreti, E.M. Stratigraphic Characterization of Ancient Roman Frescos by Laser Induced Breakdown Spectroscopy and Importance of a Proper Choice of the Normalizing Lines. Spectrochim. Acta—Part B At. Spectrosc. 2020, 168, 105853. [Google Scholar] [CrossRef]
- Fermo, P.; Piazzalunga, A.; Vos, M.; Andreoli, M. A Multi-Analytical Approach for the Study of the Pigments Used in the Wall Paintings from a Building Complex on the Caelian Hill (Rome). Appl. Phys. A 2013, 113, 1109–1119. [Google Scholar] [CrossRef]
- Piqué, F.; Verri, G. (Eds.) Organic Materials in Wall Paintings (Project Report); The Getty Conservation Institute: Los Angeles, CA, USA, 2015; ISBN 978-1-937433. [Google Scholar]
- Cloutis, E.; MacKay, A.; Norman, L.; Goltz, D. Identification of Historic Artists’ Pigments Using Spectral Reflectance and X-Ray Diffraction Properties I. Iron Oxide and Oxy-Hydroxide-Rich Pigments. J. Near Infrared Spectrosc. 2016, 24, 27–45. [Google Scholar] [CrossRef]
- Cucci, C.; Picollo, M.; Chiarantini, L.; Uda, G.; Fiori, L.; De Nigris, B.; Osanna, M. Remote-Sensing Hyperspectral Imaging for Applications in Archaeological Areas: Non-Invasive Investigations on Wall Paintings and on Mural Inscriptions in the Pompeii Site. Microchem. J. 2020, 158, 105082. [Google Scholar] [CrossRef]
- Horn, K.R. Time Takes Its Toll: Detection of Organic Binder Media in Ochre Paints with Visible Near-Infrared and Short-Wave Infrared Reflectance Spectroscopy. J. Archaeol. Sci. Rep. 2018, 21, 10–20. [Google Scholar] [CrossRef]
- Daicoviciu, H.; Alicu, D. Colonia Ulpia Traiana Augusta Dacica Sarmizegetusa; Sport-Turism: București, Romania, 1984. [Google Scholar]
- Piso, I. Fasti provinciae Daciae. I, Die Senatorischen Amtsträger; R. Habelt: Bonn, Germany, 1993. [Google Scholar]
- Piso, I. Inschriften von Prokuratoren aus Sarmizegetusa (II). Z. Papyrol. Epigr. 1998, 120, 253–271. [Google Scholar]
- Maguregui, M.; Castro, K.; Morillas, H.; Trebolazabala, J.; Knuutinen, U.; Wiesinger, R.; Schreiner, M.; Madariaga, J.M. MultiAnalytical Approach to Explain the Darkening Process of Hematite Pigment in Paintings from Ancient Pompeii after Accelerated Weathering Experiments. Anal. Methods 2014, 6, 372–378. [Google Scholar] [CrossRef]
- Finch, A.A.; Allison, N. Coordination of Sr and Mg in Calcite and Aragonite. Miner. Mag. 2007, 71, 539–552. [Google Scholar] [CrossRef]
- Secco, M.; Rainer, L.; Graves, K.; Heginbotham, A.; Artioli, G.; Piqué, F.; Angelini, I. Ochre-Based Pigments in the Tablinum of the House of the Bicentenary (Herculaneum, Italy) between Decorative Technology and Natural Disasters. Minerals 2021, 11, 67. [Google Scholar] [CrossRef]
- Siddall, R. Mineral Pigments in Archaeology: Their Analysis and the Range of Available Materials. Minerals 2018, 8, 201. [Google Scholar] [CrossRef]
- Siddall, R. Not a Day without a Line Drawn: Pigments and Painting Techniques of Roman Artists. Infocus Mag. 2006, 2, 18–31. [Google Scholar] [CrossRef]
- Cortea, I.M.; Ghervase, L.; Rădvan, R.; Serițan, G. Assessment of Easily Accessible Spectroscopic Techniques Coupled with Multivariate Analysis for the Qualitative Characterization and Differentiation of Earth Pigments of Various Provenance. Minerals 2022, 12, 755. [Google Scholar] [CrossRef]
- Westlake, P.; Siozos, P.; Philippidis, A.; Apostolaki, C.; Derham, B.; Terlixi, A.; Perdikatsis, V.; Jones, R.; Anglos, D. Studying Pigments on Painted Plaster in Minoan, Roman and Early Byzantine Crete. A Multi-Analytical Technique Approach. Anal. Bioanal. Chem. 2012, 402, 1413–1432. [Google Scholar] [CrossRef] [PubMed]
- Gil, M.; Carvalho, M.; Seruya, A.; Candeias, A.; Mirão, J.; Queralt, I. Yellow and Red Ochre Pigments from Southern Portugal: Elemental Composition and Characterization by WDXRF and XRD. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2007, 580, 728–731. [Google Scholar] [CrossRef]
- Marcaida, I.; Maguregui, M.; Morillas, H.; Prieto-Taboada, N.; de Vallejuelo, S.F.-O.; Veneranda, M.; Madariaga, J.M.; Martellone, A.; De Nigris, B.; Osanna, M. In Situ Non-Invasive Characterization of the Composition of Pompeian Pigments Preserved in their Original Bowls. Microchem. J. 2018, 139, 458–466. [Google Scholar] [CrossRef]
- Popelka-Filcoff, R.S.; Robertson, J.D.; Glascock, M.D.; Descantes, C. Trace Element Characterization of Ochre from Geological Sources. J. Radioanal. Nucl. Chem. 2007, 272, 17–27. [Google Scholar] [CrossRef]
- Dai, M.; Zhou, Y.; Xiao, Q.; Lv, J.; Huang, L.; Xie, X.; Hu, Y.; Tong, X.; Chun, T. Arsenic Removal and Iron Recovery from Arsenic-Bearing Iron Ores by Calcification-Magnetic Roasting and Magnetic Separation Process. Materials 2023, 16, 6884. [Google Scholar] [CrossRef]
- Hizal, J.; Apak, R. Modeling of Copper(II) and Lead(II) Adsorption on Kaolinite-Based Clay Minerals Individually and in the Presence of Humic Acid. J. Colloid Interface Sci. 2006, 295, 1–13. [Google Scholar] [CrossRef]
- Dong, D.-M.; Zhao, X.-M.; Hua, X.-Y.; Zhang, J.-J.; Wu, S.-M. Lead and Cadmium Adsorption onto Iron Oxides and Manganese Oxides in the Natural Surface Coatings Collected on Natural Substances in the Songhua River of China. Chem. Res. Chin. Univ. 2007, 23, 659–664. [Google Scholar] [CrossRef]
- Béarat, H. Quelle Est La Gamme Exacte Des Pigments Romains? Confrontation Des Resultats d’analyse et Des Textes de Vitruve et de Pline. In Roman Wall Painting: Materials, Techniques, Analysis and Conservation. Proceedings of the International Workshop, Fribourg, Switzerland, 7–9 March 1996; Institute of Mineralogy and Petrography: Fribourg, Switzerland, 1997; pp. 11–34. [Google Scholar]
- Eastaugh, N.; Walsh, V.; Chaplin, T.; Siddall, R. (Eds.) Pigment Compendium: A Dictionary and Optical Microscopy of Historical Pigments, 1st ed.; Routledge: London, UK, 2008. [Google Scholar]
- de Oliveira, L.F.; Edwards, H.G.M.; Frost, R.L.; Kloprogge, J.T.; Middleton, P.S. Caput Mortuum: Spectroscopic and Structural Studies of an Ancient Pigment. Analyst 2002, 127, 536–541. [Google Scholar] [CrossRef]
- Fuchs, M.; Bearat, H. Analyses Physico-Chimiques et Peintures Murales Romaines à Avenches, Bösingen, Dietikon et Vallon. In Roman Wall Painting: Materials, Techniques, Analyses and Conservation. Proceedings of the International Workshop, Fribourg, Switzerland, 7–9 March 1996; Institute of Mineralogy and Petrography: Fribourg, Switzerland, 1997; pp. 181–191. [Google Scholar]
- Jorge-Villar, S.E.; Edwards, H.G.M. Green and Blue Pigments in Roman Wall Paintings: A Challenge for Raman Spectroscopy. J. Raman Spectrosc. 2021, 52, 2190–2203. [Google Scholar] [CrossRef]
- Clarke, M.; Fredrickx, P.; Colombini, M.P.; Andreotti, A.; Wouters, J.; Van Bommel, M.; Eastaugh, N.; Walsh, V.; Chaplin, T.; Siddall, R. Pompei purpurissum pigment problems. In Proceedings of the Art’05—8th International Conference on Non-Destructive Investigation, Microanalysis and Diagnostics for the Conservation and Environmental Monitoring of Cultural and Environmental Heritage, Lecce, Italy, 15–19 May 2005. [Google Scholar]
- Aceto, M. Pigments—The Palette of Organic Colourants in Wall Paintings. Archaeol. Anthr. Sci. 2021, 13, 159. [Google Scholar] [CrossRef]
- Mazzocchin, G.; Agnoli, F.; Colpo, I. Analysis of pigments from Roman wall paintings found in Vicenza. Talanta 2003, 61, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Diez, S.; Caruso, F.; Nardini, E.F.; Stollenwerk, M.; Maguregui, M. Secco Painting Technique Revealed in Non-Restored Pompeian Murals by Analytical and Imaging Techniques. Microchem. J. 2023, 194, 109365. [Google Scholar] [CrossRef]
- Linn, R. Layered Pigments and Painting Technology of the Roman Wall Paintings of Caesarea Maritima. J. Archaeol. Sci. Rep. 2017, 11, 774–781. [Google Scholar] [CrossRef]
- Fort, R.; Varas-Muriel, M.; Zoghlami, K.; Ergenç, D.; Zaddem, A. Analytical Characterisation of 1st- and 2nd-Century Roman Mortars at the Utica Archaeological Site (Tunisia): Construction Phases and Provenance of the Raw Materials. J. Archaeol. Sci. Rep. 2024, 54, 104404. [Google Scholar] [CrossRef]
- Namowicz, C.; Trentelman, K.; McGlinchey, C. XRF of Cultural Heritage Materials: Round-Robin IV—Paint on canvas. Powder Diffr. 2009, 24, 124–129. [Google Scholar] [CrossRef]
- Pye, E. Wall Painting in the Roman Empire: Colour, Design and Technology. Archaeol. Int. 2000, 4, 24–27. [Google Scholar] [CrossRef]
- Helwig, K. The characterisation of iron earth pigments using infrared spectroscopy. In Proceedings of the Second Infrared and Raman User’s Group (IRUG 2) Conference, London, UK, 12–13 September 1995; pp. 83–92. [Google Scholar]
- Serna, C.J.; Rendon, J.L.; Iglesias, J.E. Infrared Surface Modes in Corundum-Type Microcrystalline Oxides. Spectrochim. Acta Part A Mol. Spectrosc. 1982, 38, 797–802. [Google Scholar] [CrossRef]
- Mañosa, J.; la Rosa, J.C.-D.; Silvello, A.; Maldonado-Alameda, A.; Chimenos, J.M. Kaolinite Structural Modifications Induced by Mechanical Activation. Appl. Clay Sci. 2023, 238, 106918. [Google Scholar] [CrossRef]
- Shahverdi-Shahraki, K.; Ghosh, T.; Mahajan, K.; Ajji, A.; Carreau, P.J. Effect of Dry Grinding on Chemically Modified Kaolin. Appl. Clay Sci. 2015, 105–106, 100–106. [Google Scholar] [CrossRef]
- Nuevo, M.; Sandford, S.A.; Flynn, G.J.; Wirick, S. Mid-Infrared Study of Stones from the Sutter’S Mill Meteorite. Meteorit. Planet. Sci. 2014, 49, 2017–2026. [Google Scholar] [CrossRef]
- Salama, W.; El Aref, M.; Gaupp, R. Spectroscopic Characterization of Iron Ores Formed in Different Geological Environments Using FTIR, XPS, Mössbauer Spectroscopy and Thermoanalyses. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 136, 1816–1826. [Google Scholar] [CrossRef] [PubMed]
- Buckley, H.A.; Bevan, J.C.; Brown, K.M.; Johnson, L.R.; Farmer, V.C. Glauconite and Celadonite: Two Separate Mineral Species. Miner. Mag. 1978, 42, 373–382. [Google Scholar] [CrossRef]
- Garofano, I.; Duran, A.; Perez-Rodriguez, J.L.; Robador, M.D. Natural Earth Pigments From Roman and Arabic Wall Paintings Revealed by Spectroscopic Techniques. Spectrosc. Lett. 2011, 44, 560–565. [Google Scholar] [CrossRef]
- Bikiaris, D.; Daniilia, S.; Sotiropoulou, S.; Katsimbiri, O.; Pavlidou, E.; Moutsatsou, A.; Chryssoulakis, Y. Ochre-Differentiation through Micro-Raman and Micro-FTIR Spectroscopies: Application on Wall Paintings at Meteora and Mount Athos, Greece. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2000, 56, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Roy, A. (Ed.) Artists’ Pigments. In A Handbook of Their History and Characteristics; National Gallery of Art: Washington, DC, USA, 1993; Volume 2. [Google Scholar]
- Cortea, I.M.; Chiroşca, A.; Angheluţă, L.M.; Seriţan, G. INFRA-ART: An Open Access Spectral Library of Art-related Materials as a Digital Support Tool for Cultural Heritage Science. J. Comput. Cult. Herit. 2023, 16, 1–11. [Google Scholar] [CrossRef]
- Jorge-Villar, S.E.; Rodríguez Temiño, I.; Edwards, H.G.M.; Jiménez Hernández, A.; Ruiz Cecilia, J.I.; Miralles, I. The Servilia Tomb: An Architecturally and Pictorially Important Roman Building. Archaeol. Anthr. Sci. 2018, 10, 1207–1223. [Google Scholar] [CrossRef]
- Lluveras-Tenorio, A.; Spepi, A.; Pieraccioni, M.; Legnaioli, S.; Lorenzetti, G.; Palleschi, V.; Vendrell, M.; Colombini, M.P.; Tinè, M.R.; Duce, C.; et al. A Multi-Analytical Characterization of Artists’ Carbon-Based Black Pigments. J. Therm. Anal. Calorim. 2019, 138, 3287–3299. [Google Scholar] [CrossRef]
- Vila, A.; Ferrer, N.; García, J.F. Chemical Composition of Contemporary Black Printing Inks Based on Infrared Spectroscopy: Basic Information for the Characterization and Discrimination of Artistic Prints. Anal. Chim. Acta 2007, 591, 97–105. [Google Scholar] [CrossRef]
- Casoli, A. Research on the Organic Binders in Archaeological Wall Paintings. Appl. Sci. 2021, 11, 9179. [Google Scholar] [CrossRef]
- Dariz, P.; Schmid, T. Trace Compounds in Early Medieval Egyptian Blue Carry Information on Provenance, Manufacture, Application, and Ageing. Sci. Rep. 2021, 11, 11296. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Taboada, N.; Fdez-Ortiz de Vallejuelo, S.; Santos, A.; Veneranda, M.; Castro, K.; Maguregui, M.; Morillas, H.; Arana, G.; Martellone, A.; de Nigris, B.; et al. Understanding the Degradation of the Blue Colour in the Wall Paintings of Ariadne’s House (Pompeii, Italy) by Non-Destructive Techniques. J. Raman Spectrosc. 2021, 52, 85–94. [Google Scholar] [CrossRef]
- Herens, E. Study of Antique and Modern Paintings by Hyperspectral Imaging. PhD Thesis, Université de Liège, Liège, Belgium, 2022. [Google Scholar]
- Bioucas-Dias, J.M.; Plaza, A.; Dobigeon, N.; Parente, M.; Du, Q.; Gader, P.; Chanussot, J. Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 354–379. [Google Scholar] [CrossRef]
- Alayet, F.; Mezned, N.; Sebai, A.; Abdeljaouad, S. Continuum Removed Band Depth Analysis for Carbonate Mining Waste Quantification Using X-Ray Diffraction and Hyperspectral Spectroscopy in the North of Tunisia. J. Appl. Remote Sens. 2017, 11, 16021. [Google Scholar] [CrossRef]
- Popelka-Filcoff, R.S.; Mauger, A.; Lenehan, C.E.; Walshe, K.; Pring, A. HyLogger™ Near-Infrared Spectral Analysis: A Non-Destructive Mineral Analysis of Aboriginal Australian Objects. Anal. Methods 2014, 6, 1309–1316. [Google Scholar] [CrossRef]
- Clark, R.N. Spectroscopy of Rocks and Minerals and Principles of Spectroscopy. In Manual of Remote Sensing; Wiley: Hoboken, NJ, USA, 1999; ISBN 0471294055. [Google Scholar]
- Dooley, K.A.; Lomax, S.; Zeibel, J.G.; Miliani, C.; Ricciardi, P.; Hoenigswald, A.; Loew, M.; Delaney, J.K. Mapping of Egg Yolk and Animal Skin Glue Paint Binders in Early Renaissance Paintings Using near Infrared Reflectance Imaging Spectroscopy. Analyst 2013, 138, 4838–4848. [Google Scholar] [CrossRef]
- Ghervase, L.; Cortea, I.M. Lighting Up the Heritage Sciences: The Past and Future of Laser-Induced Fluorescence Spectroscopy in the Field of Cultural Goods. Chemosensors 2023, 11, 100. [Google Scholar] [CrossRef]
- Papliaka, Z.E.; Vaccari, L.; Zanini, F.; Sotiropoulou, S. Improving FTIR Imaging Speciation of Organic Compound Residues or Their Degradation Products in Wall Painting Samples, by Introducing a New Thin Section Preparation Strategy Based on Cyclododecane Pre-Treatment. Anal. Bioanal. Chem. 2015, 407, 5393–5403. [Google Scholar] [CrossRef]
- Gelzo, M.; Corso, G.; Pecce, R.; Arcari, O.; Piccioli, C.; Dello Russo, A.; Arcari, P. An Enhanced Procedure for the Analysis of Organic Binders in Pompeian’s Wall Paintings from Insula Occidentalis. Herit. Sci. 2019, 7, 12. [Google Scholar] [CrossRef]
- Rackham, H. Pliny Natural History; Harvard University Press: Cambridge, MA, USA, 1938. [Google Scholar]
- Macdonald, B.L.; Hancock, R.G.V.; Cannon, A.; McNeill, F.; Reimer, R.; Pidruczny, A. Elemental Analysis of Ochre Outcrops in Southern British Columbia, Canada. Archaeometry 2013, 55, 1020–1033. [Google Scholar] [CrossRef]
- Marcaida, I.; Maguregui, M.; Fdez-Ortiz de Vallejuelo, S.; Morillas, H.; Prieto-Taboada, N.; Veneranda, M.; Castro, K.; Madariaga, J.M. In Situ X-Ray Fluorescence-Based Method to Differentiate among Red Ochre Pigments and Yellow Ochre Pigments Thermally Transformed to Red Pigments of Wall Paintings from Pompeii. Anal. Bioanal. Chem. 2017, 409, 3853–3860. [Google Scholar] [CrossRef] [PubMed]
- Rakhimol, V.; Maheswari, P.U. Restoration of Ancient Temple Murals using cGAN and PConv Networks. Comput. Graph. 2022, 109, 100–110. [Google Scholar] [CrossRef]
- Corso, G.; Gelzo, M.; Sanges, C.; Chambery, A.; Di Maro, A.; Severino, V.; Dello Russo, A.; Piccioli, C.; Arcari, P. Polar and Non-Polar Organic Binder Characterization in Pompeian Wall Paintings: Comparison to a Simulated Painting Mimicking an “a Secco” Technique. Anal. Bioanal. Chem. 2012, 402, 3011–3016. [Google Scholar] [CrossRef] [PubMed]
- Amadori, M.L.; Barcelli, S.; Poldi, G.; Ferrucci, F.; Andreotti, A.; Baraldi, P.; Colombini, M.P. Invasive and Non-Invasive Analyses for Knowledge and Conservation of Roman Wall Paintings of the Villa of the Papyri in Herculaneum. Microchem. J. 2015, 118, 183–192. [Google Scholar] [CrossRef]
Notation | Photograph | Fragment Description | Painting Materials Identified (Combined Methodology) |
---|---|---|---|
S1 | Paint layer’s hue: green, dark brown Superimposed layers: yes Intonaco layer: - Sinopia: yes, reddish-brown Dimensions (cm): 4.7 × 3.9 × 1.2 | Green earth (celadonite), ochre pigment, protein binder, dark–blue undercoat based on calcite admixed with carbon black (soot/charcoal), red ochre (sinopia) | |
S2 | Paint layer’s hue: light red Superimposed layers: no Intonaco layer: yes Sinopia: - Dimensions (cm): 2.8 × 2.5 × 0.9 | Red ochre (hematite) | |
S3 | Paint layer’s hue: yellow, purple-gray Superimposed layers: yes Intonaco layer: yes Sinopia: - Dimensions (cm): 3.7 × 2.4 × 1.9 | Yellow ochre (goethite), lead-based pigment mixed with indigo (?), protein binder | |
S4 | Paint layer’s hue: green, black, light-blue Superimposed layers: yes Intonaco layer: - Sinopia: yes, dark red Dimensions (cm): 3.7 × 3.1 × 1.4 | Green earth (celadonite), amorphous carbon black (soot/charcoal) admixed with ochre, lazurite mixed with indigo (?) and calcite, protein binder, red ochre (sinopia) | |
S5 | Paint layer’s hue: deep red Superimposed layers: yes Intonaco layer: yes Sinopia: - Dimensions (cm): 3.4 × 2.3 × 1.1 | Red ochre (hematite) | |
S6 | Paint layer’s hue: bluish-green, light-blue Superimposed layers: yes Intonaco layer: - Sinopia: yes, dark red Dimensions (cm): 2.3 × 1.6 × 0.8 | Green earth (celadonite) admixed with Egyptian blue and yellow ochre (goethite), protein binder, dark–blue undercoat based on calcite admixed with carbon black, red ochre (sinopia) | |
S7 | Paint layer’s hue: light-green Superimposed layers: yes Intonaco layer: yes Sinopia: - Dimensions (cm): 3.2 × 2.8 × 0.7 | Green earth (celadonite) | |
S8 | Paint layer’s hue: red Superimposed layers: yes Intonaco layer: - Sinopia: yes, reddish-brown Dimensions (cm): 5.1 × 1.8 × 1.9 | Red ochre (hematite), bone black | |
S9 | Paint layer’s hue: pink Superimposed layers: no Intonaco layer: yes Sinopia: - Dimensions (cm): 1.2 × 2.6 × 1.2 | Red ochre (hematite) admixed with lime white | |
S10 | Paint layer’s hue: greyish-green, orange Superimposed layers: yes (?) Intonaco layer: yes Sinopia: - Dimensions (cm): 4.2 × 2.2 × 1.1 | Ochre admixed with carbon black (soot/charcoal), yellow ochre (goethite) inclusions |
Sample Area | Description | XRF-Detected Elements | ||
---|---|---|---|---|
Major | Minor | Trace | ||
S1-1 | Brown paint layer | Ca, Fe | Sr | K, Zr, Mn, Ti, Si, Rb, Pb, Cu, P, Zn, S |
S1-2 | Green paint layer | Ca, Fe | K, Sr | Zr, Ti, Mn, Si, Pb, Cu, P, Zn, Cr, S |
S1-3 | Lacuna (sinopia) | Ca, Fe | Sr, K | Ti, Mn, Si, Zr, Rb, Pb, Cu, P, S, Zn, Al |
S1-4 | Substrate/mortar | Ca, Fe | K | Sr, Ti, Si, Mn, Rb, Zr, Pb, Cu, Zn, S, P, Cr |
S2-1 | Red paint layer (with depositions) | Ca, Fe | As | K, Sr, Si, Ti, Pb, Mn, Cu, S, Al, Zn |
S2-2 | Red paint layer | Ca, Fe | As | K, Sr, Si, Ti, Pb, Mn, S, Cu, P |
S2-3 | Substrate/mortar | Ca, Fe | K | Si, Sr, Ti, Zr, Mn, Rb, Cu, Pb, Ba, S, Al, P |
S3-1 | Yellow paint layer | Ca, Fe | - | K, Ti, Si, Sr, Mn, Pb, Zr, Rb, Cu, S, Zn |
S3-2 | Purple-gray paint layer | Ca, Fe | Pb | K, Ti, Sr, Si, Mn, Zr, Cu, Rb, Zn, Al |
S3-3 | Substrate/mortar | Ca, Fe | K | Sr, Ti, Si, Mn, Zr, Rb, Pb, Cu, Ba, Cr, S |
S4-1 | Black paint layer | Ca, Fe | - | As, Sr, Si, K, Mn, Ti, Pb, Cu, S, Ba, Zn |
S4-2 | Green paint layer | Ca, Fe | K | Si, Sr, As, Ti, Mn, Pb, Cu, Zn, S, P |
S4-3 | Lacuna (sinopia) | Ca, Fe | - | K, Si, Sr, As, Ti, Mn, Pb, Cu, S, P |
S4-4 | Substrate/mortar | Ca, Fe | - | K, Si, Ti, Sr, Mn, Zr, Rb, Cu, Pb, S, P, Al |
S4-5 | Light-blue paint layer | Ca, Fe | - | K, Sr, Pb, Si, Mn, Ti |
S5-1 | Red paint layer | Ca, Fe | As | Sr, Si, K, Ti, Mn, Pb, S, Cu, Rb, P, Al |
S5-2 | Substrate/mortar | Ca, Fe | K | Sr, Ti, Si, Rb, Zr, Mn, Cu, Pb, Cr, P, S |
S6-1 | Light-green paint layer | Ca, Fe | K | As, Sr, Si, Ti, Pb, Mn, Cu, S, Zn, Al |
S6-2 | Substrate/mortar | Ca, Fe | K | Sr, Ti, Si, Mn, Zn, Cu, Al, Pb, Cr, P, S |
S7-1 | Green paint layer (with lacunas) | Ca | - | K, Sr, Ti, Si, Zr, Mn, Rb, Cu, Pb, S, Zn, P, Cr |
S7-2 | Green paint layer (with depositions) | Ca, Fe | K | Sr, Ti, Si, Mn, Zr, Rb, Cu, S, P, Pb, Al, Zn, Cr |
S7-3 | Green paint layer | Ca, Fe | K | Sr, Ti, Si, Zr, Mn, Rb, Cu, Pb, Zn, S, Al |
S7-4 | Substrate/mortar | Ca | Fe | K, Sr, Ti, Si, Zr, Mn, Rb, Pb, Cu, Zn, S, Al |
S8-1 | Red paint layer | Fe, Ca | Sr, As | Pb, K, Ti, Si, Zr, Mn, Rb, Zn, Cu, S, Cr, Al |
S8-2 | Substrate/mortar | Ca | Fe | K, Sr, Ti, Si, Mn, Rb, Pb, Zr, Cu, S |
S9-1 | Pink paint layer | Ca | Fe | Sr, K, Ti, Si, Rb, Zr, Mn, Pb, Cu, Zn, S |
S9-2 | Substrate/mortar | Ca | Fe | K, Sr, Ti, Si, Mn, Zr, Cu, Rb, Pb, S, Zn, Ba, Cr |
S10-1 | grayish-green paint layer | Ca, Fe | Si | K, Ti, Sr, Mn, Pb, Cu, Zr, S, Cr, Rb, Zn, Al, P |
S10-2 | Yellowish orange paint layer | Ca, Fe | - | K, Ti, Mn, Sr, Cu, Pb, Zr, Al, S, Rb, P, Zn |
S10-3 | Substrate/mortar | Ca | Fe | K, Si, Sr, Zr, Ti, Mn, Rb, Ba, Cu, Pb, Zn, S, Al, P |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cortea, I.M.; Ghervase, L.; Ratoiu, L.; Țentea, O.; Dinu, M. New Insights into the Materials and Painting Techniques of Ancient Wall Paintings from the Roman Province of Dacia: A Minimally Invasive Multi-Method Approach. Heritage 2024, 7, 5268-5294. https://doi.org/10.3390/heritage7090248
Cortea IM, Ghervase L, Ratoiu L, Țentea O, Dinu M. New Insights into the Materials and Painting Techniques of Ancient Wall Paintings from the Roman Province of Dacia: A Minimally Invasive Multi-Method Approach. Heritage. 2024; 7(9):5268-5294. https://doi.org/10.3390/heritage7090248
Chicago/Turabian StyleCortea, Ioana Maria, Luminița Ghervase, Lucian Ratoiu, Ovidiu Țentea, and Monica Dinu. 2024. "New Insights into the Materials and Painting Techniques of Ancient Wall Paintings from the Roman Province of Dacia: A Minimally Invasive Multi-Method Approach" Heritage 7, no. 9: 5268-5294. https://doi.org/10.3390/heritage7090248
APA StyleCortea, I. M., Ghervase, L., Ratoiu, L., Țentea, O., & Dinu, M. (2024). New Insights into the Materials and Painting Techniques of Ancient Wall Paintings from the Roman Province of Dacia: A Minimally Invasive Multi-Method Approach. Heritage, 7(9), 5268-5294. https://doi.org/10.3390/heritage7090248