Potential Role of DEC1 in Cervical Cancer Cells Involving Overexpression and Apoptosis
Abstract
:1. Introduction
2. Results
2.1. DEC1 and DEC2 Expressions in Cervical Cancer Tissues
2.2. DEC1 Expression Decreased in Apoptosis-Induced HeLa Cells
2.3. DEC1 Overexpression Antagonizes Cisplatin-Induced Apoptosis
3. Discussion
4. Materials and Methods
4.1. Tissue Preparation
4.2. Ethics Approval and Consent to Participate
4.3. Immunohistochemistry
4.4. Cell Culture and Treatment
4.5. Western Blot
4.6. Antibodies
4.7. Real-Time (Quantitative) PCR (qPCR)
4.8. Cell Viability Assay
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DEC1 | Differentiated embryonic chondrocyte gene 1 |
DEC2 | Differentiated embryonic chondrocyte gene 2 |
SOX2 | SRY-box2 |
References
- Sato, F.; Bhawal, U.K.; Yoshimura, T.; Muragaki, Y. DEC1 and DEC2 Crosstalk Between Circadian Rhythm and Tumor Progression. J. Cancer 2016, 7, 153–159. [Google Scholar] [CrossRef] [Green Version]
- You, J.; Lin, L.; Liu, Q.; Zhu, T.; Xia, K.; Su, T. The correlation between theexpression of differentiated embryo-chondrocyte expressed gene l and oral squamous cell carcinoma. Eur. J. Med. Res. 2014, 19, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhawal, U.K.; Sato, F.; Arakawa, Y.; Fujimoto, K.; Kawamoto, T.; Tanimoto, K.; Ito, Y.; Sasahira, T.; Sakurai, T.; Kobayashi, M.; et al. Basic helix-loop-helix transcription factor DEC1 negatively regulates cyclin D1. J. Pathol. 2011, 224, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Gallo, C.; Fragliasso, V.; Donati, B.; Torricelli, F.; Tameni, A.; Piana, S.; Ciarrocchi, A. The bHLH transcription factor DEC1 promotes thyroid cancer aggressiveness by the interplay with NOTCH1. Cell Death Dis. 2018, 9, 871. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Miao, Y.; Wang, J.; Lin, X.; Wang, L.; Xu, H.T.; Wang, E.H. DEC1 is positively associated with the malignant phenotype of invasive breast cancers and negatively correlated with the expression of claudin-1. Int. J. Mol. Med. 2013, 31, 855–860. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.F.; Xiao, D.J.; Ma, X.L.; Song, Y.Y.; Hu, R.; Kong, Y.; Zheng, Y.; Han, S.Y.; Hong, R.L.; Wang, Y.S. Differentiated embryonic chondrocyte-expressed gene 1 is associated with hypoxia-inducible factor 1α and Ki67 in human gastric cancer. Diagn. Pathol. 2013, 8, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Sato, F.; Yamada, T.; Bhawal, U.K.; Kawamoto, T.; Fujimoto, K.; Noshiro, M.; Seino, H.; Morohashi, S.; Hakamada, K.; et al. The BHLH transcription factor DEC1 plays an important role in the epithelial-mesenchymal transition of pancreatic cancer. Int. J. Oncol. 2012, 41, 1337–1346. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.H.; Zheng, Y.; Sun, Q.; Cui, J.; Liu, Q.H.; Qü, F.; Wang, Y.S. DEC1 nuclear expression: A marker of differentiation grade in hepatocellular carcinoma. World J. Gastroenterol. 2011, 17, 2037–2043. [Google Scholar] [CrossRef]
- Hu, T.; He, N.; Yang, Y.; Yin, C.; Sang, N.; Yang, Q. DEC2 expression is positively correlated with HIF-1 activation and the invasiveness of human osteosarcomas. J. Exp. Clin. Cancer Res. 2015, 34, 22. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Jia, Y.F.; Ma, X.L.; Zheng, Y.; Kong, Y.; Zhang, Y.; Zong, S.; Chen, Z.T.; Wang, Y.S. DEC2 suppresses tumor proliferation and metastasis by regulating ERK/NF-κB pathway in gastric cancer. Am. J. Cancer Res. 2016, 6, 1741–1757. [Google Scholar]
- Sato, F.; Kawamura, H.; Wu, Y.; Sato, H.; Jin, D.; Bhawal, U.K.; Kawamoto, T.; Fujimoto, K.; Noshiro, M.; Seino, H.; et al. The basic helix-loop-helix transcription factor DEC2 inhibits TGF-β-induced tumor progression in human pancreatic cancer BxPC-3 cells. Int. J. Mol. Med. 2012, 30, 495–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, F.; Bhawal, U.K.; Kawamoto, T.; Fujimoto, K.; Imaizumi, T.; Imanaka, T.; Kondo, J.; Koyanagi, S.; Noshiro, M.; Yoshida, H.; et al. Basic-helix-loop-helix (bHLH) transcription factor DEC2 negatively regulates vascular endothelial growth factor expression. Genes Cells 2008, 13, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, N.; Inoue, M.; Kusunose, N.; Kakimoto, K.; Hamamura, K.; Hanada, Y.; Toi, A.; Yoshiyama, Y.; Sato, F.; Fujimoto, K.; et al. Time-dependent interaction between differentiated embryo chondrocyte-2 and CCAAT/enhancer-binding protein α underlies the circadian expression of CYP2D6 in serum-shocked HepG2 cells. Mol. Pharmacol. 2012, 81, 739–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, F.; Muragaki, Y.; Kawamoto, T.; Fujimoto, K.; Kato, Y.; Zhang, Y. Rhythmic expression of DEC2 protein in vitro and in vivo. Biomed. Rep. 2016, 4, 704–710. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Sato, F.; Kawamoto, T.; Fujimoto, K.; Morohashi, S.; Akasaka, H.; Kondo, J.; Wu, Y.; Noshiro, M.; Kato, Y.; et al. Anti-apoptotic effect of the basic helix-loop-helix (bHLH) transcription factor DEC2 in human breast cancer cells. Genes Cells 2010, 15, 315–325. [Google Scholar] [CrossRef]
- Wu, Y.; Sato, F.; Bhawal, U.K.; Kawamoto, T.; Fujimoto, K.; Noshiro, M.; Seino, H.; Morohashi, S.; Kato, Y.; Kijima, H. BHLH transcription factor DEC2 regulates pro-apoptotic factor Bim in human oral cancer HSC-3 cells. Biomed. Res. 2012, 33, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Sato, F.; Bhawal, U.K.; Kawamoto, T.; Fujimoto, K.; Noshiro, M.; Morohashi, S.; Kato, Y.; Kijima, H. Basic helix-loop-helix transcription factors DEC1 and DEC2 regulate the paclitaxel-induced apoptotic pathway of MCF-7 human breast cancer cells. Int. J. Mol. Med. 2011, 27, 491–495. [Google Scholar]
- Jia, Y.; Hu, R.; Li, P.; Zheng, Y.; Wang, Y.; Ma, X. DEC1 is required for anti-apoptotic activity of gastric cancer cells under hypoxia by promoting Survivin expression. Gastric Cancer 2018, 21, 632–642. [Google Scholar] [CrossRef] [Green Version]
- Li, X.M.; Lin, W.; Wang, J.; Zhang, W.; Yin, A.A.; Huang, Y.; Zhang, J.; Yao, L.; Bian, H.; Zhang, J.; et al. Dec1 expression predicts prognosis and the response to temozolomide chemotherapy in patients with glioma. Mol. Med. Rep. 2016, 14, 5626–5636. [Google Scholar] [CrossRef]
- Peng, Y.; Liu, W.; Xiong, J.; Gui, H.Y.; Feng, X.M.; Chen, R.N.; Hu, G.; Yang, J. Down regulation of differentiated embryonic chondrocytes 1 (DEC1) is involved in 8-methoxypsoralen-induced apoptosis in HepG2 cells. Toxicology 2012, 301, 58–65. [Google Scholar] [CrossRef]
- Li, H.; Ma, X.; Xiao, D.; Jia, Y.; Wang, Y. Expression of DEC2 enhances chemosensitivity by inhibiting STAT5A in gastric cancer. J. Cell Biochem. 2018. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Mu, W.; Wang, J.; Lu, J.; Jiang, S.; Li, L.; Xu, H.; Tian, H. MicroRNA-138 functions as a tumor suppressor in osteosarcoma by targeting differentiated embryonic chondrocyte gene 2. J. Exp. Clin. Cancer Res. 2016, 35, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Zhang, H.; Xie, M.; Hu, M.; Ge, S.; Yang, D.; Wan, Y.; Yan, B. Abundant expression of Dec1/stra13/sharp2 in colon carcinoma: Its antagonizing role in serum deprivation-induced apoptosis and selective inhibition of procaspase activation. Biochem. J. 2002, 367, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Luo, H.; Zhang, W.; Shen, Z.; Hu, X.; Zhu, X. Molecular mechanisms of cisplatin resistance in cervical cancer. Drug Des. Devel Ther. 2016, 10, 1885–1895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pectasides, D.; Kamposioras, K.; Papaxoinis, G.; Pectasides, E. Chemotherapy for recurrent cervical cancer. Cancer Treat. Rev. 2008, 34, 603–613. [Google Scholar] [CrossRef]
- Zhen, H.Y.; He, Q.H.; Zhen, Y.Z.; Wang, S.L.; Liu, Y.N.; Wu, W.H.; Zhang, X.Y.; Lu, A.L.; Shen, L. Inhibition of mouse embryonic carcinoma cell growth by lidamycin through down-regulation of embryonic stem cell-like genes Oct4, Sox2 and Myc. Investig. New Drugs 2011, 29, 1188–1197. [Google Scholar] [CrossRef]
- Cheng, C.C.; Shi, L.H.; Wang, X.J.; Wang, S.X.; Wan, X.Q.; Liu, S.R.; Wang, Y.F.; Lu, Z.; Wang, L.H.; Ding, Y. Stat3/Oct-4/c-Myc signal circuit for regulating stemness-mediated doxorubicin resistance of triple-negative breast cancer cells and inhibitory effects of WP1066. Int. J. Oncol. 2018, 53, 339–348. [Google Scholar] [CrossRef]
- Huang, C.; Lu, H.; Li, J.; Xie, X.; Fan, L.; Wang, D.; Tan, W.; Wang, Y.; Lin, Z.; Yao, T. SOX2 regulates radioresistance in cervical cancer via the hedgehog signaling pathway. Gynecol. Oncol. 2018, 151, 533–541. [Google Scholar] [CrossRef]
- Lin, J.; Lu, J.; Wang, C.; Xue, X. The prognostic values of the expression of Vimentin, TP53, and Podoplanin in patients with cervical cancer. Cancer Cell Int. 2017, 17, 80. [Google Scholar] [CrossRef]
- Luo, J.; Yan, R.; He, X.; He, J. SOX2 inhibits cell proliferation and metastasis, promotes apoptotic by downregulating CCND1 and PARP in gastric cancer. Am. J. Transl. Res. 2018, 10, 639–647. [Google Scholar]
- Li, Y.; Chen, K.; Li, L.; Li, R.; Zhang, J.; Ren, W. Overexpression of SOX2 is involved in paclitaxel resistance of ovarian cancer via the PI3K/Akt pathway. Tumour Biol. 2015, 36, 9823–9828. [Google Scholar] [CrossRef] [PubMed]
- Schröck, A.; Bode, M.; Göke, F.J.; Bareiss, P.M.; Schairer, R.; Wang, H.; Weichert, W.; Franzen, A.; Kirsten, R.; van Bremen, T.; et al. Expression and role of the embryonic protein SOX2 in head and neck squamous cell carcinoma. Carcinogenesis 2014, 35, 1636–1642. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Kang, J.G.; Kim, C.S.; Ihm, S.H.; Choi, M.G.; Yoo, H.J.; Lee, S.J. Apigenin induces c-Myc-mediated apoptosis in FRO anaplastic thyroid carcinoma cells. Mol. Cell Endocrinol. 2013, 369, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.; Niu, X.; Huang, Y.; Wang, X. β-Catenin is important for cancer stem cellgeneration and tumorigenic activity in nasopharyngeal carcinoma. Biochim. Biophys. Sin. (Shanghai) 2016, 48, 229–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thévenod, F.; Chakrabortym, P.K. The role of Wnt/beta-catenin signaling in renal carcinogenesis: Lessons from cadmium toxicity studies. Curr. Mol. Med. 2010, 10, 387–404. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Xu, Y.; Chen, Y.; Li, X.; Mou, W.; Wang, L.; Liu, Y.; Reisfeld, R.A.; Xiang, R.; Lv, D.; et al. SOX2 gene regulates the transcriptional network of oncogenes and affects tumorigenesis of human lung cancer cells. PLoS ONE 2012, 7, e36326. [Google Scholar] [CrossRef] [Green Version]
- Sato, F.; Otsuka, T.; Kohsaka, A.; Le, H.T.; Bhawal, U.K.; Muragaki, Y. Smad3 Suppresses Epithelial Cell Migration and Proliferation via the Clock Gene Dec1, Which Negatively Regulates the Expression of Clock Genes Dec2 and Per1. Am. J. Pathol. 2019, 189, 773–783. [Google Scholar] [CrossRef]
- Sato, F.; Bhawal, U.K.; Tojyo, I.; Fujita, S.; Murata, S.I.; Muragaki, Y. Differential expression of claudin-4, occludin, SOX2 and proliferating cell nuclear antigen between basaloid squamous cell carcinoma and squamous cell carcinoma. Mol. Med. Rep. 2019, 20, 1977–1985. [Google Scholar] [CrossRef]
- Sato, F.; Wu, Y.; Bhawal, U.K.; Liu, Y.; Imaizumi, T.; Morohashi, S.; Kato, Y.; Kijima, H. PERIOD1 (PER1) has anti-apoptotic effects, and PER3 has pro-apoptotic effects during cisplatin (CDDP) treatment in human gingival cancer CA9-22 cells. Eur. J. Cancer 2011, 47, 1747–1758. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
DEC1 | |||||
---|---|---|---|---|---|
C | M | A | PD | T | N |
1 | Biopsy | 73 | SCC | Strong | NI |
2 | Biopsy | 57 | SCC | Strong | NI |
3 | Biopsy | 50 | SCC | Strong | NI |
4 | Biopsy | 52 | AC | Strong | NI |
5 | Biopsy | 44 | AC | Strong | Weak |
6 | Biopsy | 54 | SCC | Strong | Weak |
7 | Biopsy | 72 | SCC | Strong | NI |
8 | Biopsy | 78 | SCC | Strong | NI |
9 | Biopsy | 45 | SCC | Strong | Weak |
10 | Biopsy | 57 | SCC | Strong | NI |
11 | Biopsy | 41 | SCC | Strong | NI |
12 | Biopsy | 27 | SCC | Strong | NI |
13 | Resection | 46 | SCC | Strong | Weak |
14 | Resection | 38 | SCC | Strong | Weak |
15 | Resection | 35 | SCC | Strong | Weak |
16 | Resection | 44 | SCC | Strong | Weak |
17 | Resection | 37 | SCC | Weak | Moderate |
18 | Resection | 38 | SCC | Moderate | Weak |
19 | Resection | 82 | SCC | Strong | Weak |
20 | Resection | 48 | SCC | Moderate | Weak |
DEC2 | SOX2 | c-MYC | ||||
---|---|---|---|---|---|---|
C | T | N | T | N | T | N |
1 | Strong | NI | Strong | NI | Moderate | NI |
2 | Strong | NI | Strong | NI | Moderate | NI |
3 | Moderate | NI | Strong | NI | Weak | NI |
4 | Strong | NI | Strong | NI | Weak | NI |
5 | Strong | Strong | Weak | Weak | Weak | Weak |
6 | Strong | Weak | Strong | Weak | Weak | Weak |
7 | Strong | NI | Strong | NI | Strong | NI |
8 | Strong | NI | Strong | NI | Moderate | NI |
9 | Moderate | Moderate | Strong | Weak | Strong | Weak |
10 | Strong | NI | Strong | NI | Strong | NI |
11 | Strong | NI | Strong | NI | Strong | NI |
12 | Strong | NI | Strong | NI | Moderate | NI |
13 | Strong | Weak | Strong | Weak | Moderate | NI |
14 | Moderate | Weak | Strong | Weak | Weak | Weak |
15 | Strong | Weak | Strong | Weak | Moderate | Weak |
16 | Weak | Weak | Strong | Weak | Weak | Weak |
17 | Moderate | Weak | Weak | Strong | Strong | Weak |
18 | Weak | Weak | Moderate | Moderate | Weak | Weak |
19 | Moderate | Weak | Weak | Weak | Strong | Weak |
20 | Weak | Weak | Strong | Weak | Strong | Weak |
Vimentin | ||
---|---|---|
C | T | N |
1 | Strong | NI |
2 | Strong | NI |
3 | Strong | NI |
4 | Strong | NI |
5 | Strong | Weak |
6 | Strong | Weak |
7 | Strong | NI |
8 | Strong | NI |
9 | Strong | Moderate |
10 | Strong | NI |
11 | Strong | NI |
12 | Strong | NI |
13 | Strong | Weak |
14 | Strong | Weak |
15 | Strong | Weak |
16 | Moderate | Weak |
17 | Strong | Weak |
18 | Strong | Moderate |
19 | Strong | Weak |
20 | Moderate | Weak |
DEC1 | DEC2 | SOX2 | c-MYC | Vimentin | |
---|---|---|---|---|---|
Strong | 85% | 60% | 80% | 35% | 90% |
Moderate | 10% | 25% | 5% | 30% | 10% |
Weak | 5% | 15% | 15% | 35% | 0% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, F.; Bhawal, U.K.; Sugiyama, N.; Osaki, S.; Oikawa, K.; Muragaki, Y. Potential Role of DEC1 in Cervical Cancer Cells Involving Overexpression and Apoptosis. Clocks & Sleep 2020, 2, 26-38. https://doi.org/10.3390/clockssleep2010004
Sato F, Bhawal UK, Sugiyama N, Osaki S, Oikawa K, Muragaki Y. Potential Role of DEC1 in Cervical Cancer Cells Involving Overexpression and Apoptosis. Clocks & Sleep. 2020; 2(1):26-38. https://doi.org/10.3390/clockssleep2010004
Chicago/Turabian StyleSato, Fuyuki, Ujjal K. Bhawal, Nao Sugiyama, Shoko Osaki, Kosuke Oikawa, and Yasuteru Muragaki. 2020. "Potential Role of DEC1 in Cervical Cancer Cells Involving Overexpression and Apoptosis" Clocks & Sleep 2, no. 1: 26-38. https://doi.org/10.3390/clockssleep2010004
APA StyleSato, F., Bhawal, U. K., Sugiyama, N., Osaki, S., Oikawa, K., & Muragaki, Y. (2020). Potential Role of DEC1 in Cervical Cancer Cells Involving Overexpression and Apoptosis. Clocks & Sleep, 2(1), 26-38. https://doi.org/10.3390/clockssleep2010004