Relationship between Circadian Phase Delay without Morning Light and Phase Advance by Bright Light Exposure the Following Morning
Abstract
:1. Introduction
2. Results
2.1. Amounts of DLMO Shifts
2.2. Natural DLMO Delay (PS1) and DLMO Advance by Morning Light (PS2)
2.3. DLMO Shifts and Chronotype-Related Indicators
2.4. Circadian Time of Light Exposure and DLMO Advance by Morning Light (PS2)
3. Discussion
4. Materials and Methods
4.1. Subjects
4.2. Experimental Conditions
4.3. Procedure
4.4. Sample Analysis
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stephan, F.K.; Zucker, I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc. Natl. Acad. Sci. USA 1972, 69, 1583–1586. [Google Scholar] [CrossRef]
- Duong, H.A.; Robles, M.S.; Knutti, D.; Weitz, C.J. A molecular mechanism for circadian clock negative feedback. Science 2011, 332, 1436–1439. [Google Scholar] [CrossRef]
- Foster, R.G.; Hughes, S.; Peirson, S.N. Circadian Photoentrainment in Mice and Humans. Biology 2020, 9, 180. [Google Scholar] [CrossRef]
- Gooley, J.J.; Lu, J.; Chou, T.C.; Scammell, T.E.; Saper, C.B. Melanopsin in cells of origin of the retinohypothalamic tract. Nat. Neurosci. 2001, 4, 1165. [Google Scholar] [CrossRef]
- Cajochen, C.; Jewett, M.E.; Dijk, D.J. Human circadian melatonin rhythm phase delay during a fixed sleep-wake schedule interspersed with nights of sleep deprivation. J. Pineal Res. 2003, 35, 149–157. [Google Scholar] [CrossRef]
- Gronfier, C.; Wright, K.P., Jr.; Kronauer, R.E.; Czeisler, C.A. Entrainment of the human circadian pacemaker to longer-than-24-h days. Proc. Natl. Acad. Sci. USA 2007, 104, 9081–9086. [Google Scholar] [CrossRef]
- Wright, K.P., Jr.; Gronfier, C.; Duffy, J.F.; Czeisler, C.A. Intrinsic period and light intensity determine the phase relationship between melatonin and sleep in humans. J. Biol. Rhythm. 2005, 20, 168–177. [Google Scholar] [CrossRef]
- Burgess, H.J.; Eastman, C.I. Human tau in an ultradian light-dark cycle. J. Biol. Rhythm. 2008, 23, 374–376. [Google Scholar] [CrossRef]
- Crowley, S.J.; Eastman, C.I. Free-running circadian period in adolescents and adults. J. Sleep. Res. 2018, 27, e12678. [Google Scholar] [CrossRef]
- Czeisler, C.A.; Duffy, J.F.; Shanahan, T.L.; Brown, E.N.; Mitchell, J.F.; Rimmer, D.W.; Ronda, J.M.; Silva, E.J.; Allan, J.S.; Emens, J.S.; et al. Stability, precision, and near-24-hour period of the human circadian pacemaker. Science 1999, 284, 2177–2181. [Google Scholar] [CrossRef]
- Duffy, J.F.; Wright, K.P., Jr. Entrainment of the human circadian system by light. J. Biol. Rhythm. 2005, 20, 326–338. [Google Scholar] [CrossRef]
- Zeitzer, J.M.; Dijk, D.J.; Kronauer, R.; Brown, E.; Czeisler, C. Sensitivity of the human circadian pacemaker to nocturnal light: Melatonin phase resetting and suppression. J. Physiol. 2000, 526 Pt 3, 695–702. [Google Scholar] [CrossRef]
- Rahman, S.A.; St Hilaire, M.A.; Chang, A.M.; Santhi, N.; Duffy, J.F.; Kronauer, R.E.; Czeisler, C.A.; Lockley, S.W.; Klerman, E.B. Circadian phase resetting by a single short-duration light exposure. JCI Insight 2017, 2, e89494. [Google Scholar] [CrossRef]
- St Hilaire, M.A.; Ámundadóttir, M.L.; Rahman, S.A.; Rajaratnam, S.M.W.; Rüger, M.; Brainard, G.C.; Czeisler, C.A.; Andersen, M.; Gooley, J.J.; Lockley, S.W. The spectral sensitivity of human circadian phase resetting and melatonin suppression to light changes dynamically with light duration. Proc. Natl. Acad. Sci. USA 2022, 119, e2205301119. [Google Scholar] [CrossRef]
- Wright, H.R.; Lack, L.C.; Kennaway, D.J. Differential effects of light wavelength in phase advancing the melatonin rhythm. J. Pineal Res. 2004, 36, 140–144. [Google Scholar] [CrossRef]
- Khalsa, S.B.S.; Jewett, M.E.; Cajochen, C.; Czeisler, C.A. A phase response curve to single bright light pulses in human subjects. J. Physiol. 2003, 549, 945–952. [Google Scholar] [CrossRef]
- Minors, D.S.; Waterhouse, J.M.; Wirz-Justice, A. A human phase-response curve to light. Neurosci. Lett. 1991, 133, 36–40. [Google Scholar] [CrossRef]
- Revell, V.L.; Molina, T.A.; Eastman, C.I. Human phase response curve to intermittent blue light using a commercially available device. J. Physiol. 2012, 590, 4859–4868. [Google Scholar] [CrossRef]
- St Hilaire, M.A.; Gooley, J.J.; Khalsa, S.B.S.; Kronauer, R.E.; Czeisler, C.A.; Lockley, S.W. Human phase response curve to a 1 h pulse of bright white light. J. Physiol. 2012, 590, 3035–3045. [Google Scholar] [CrossRef]
- Chellappa, S.L. Individual differences in light sensitivity affect sleep and circadian rhythms. Sleep 2021, 44, zsaa214. [Google Scholar] [CrossRef]
- Vidafar, P.; Spitschan, M. Light on Shedding: A Review of Sex and Menstrual Cycle Differences in the Physiological Effects of Light in Humans. J. Biol. Rhythm. 2023, 38, 15–33. [Google Scholar] [CrossRef]
- Eto, T.; Higuchi, S. Review on age-related differences in non-visual effects of light: Melatonin suppression, circadian phase shift and pupillary light reflex in children to older adults. J. Physiol. Anthropol. 2023, 42, 11. [Google Scholar] [CrossRef]
- Swope, C.B.; Rong, S.; Campanella, C.; Vaicekonyte, R.; Phillips, A.J.; Cain, S.W.; McGlashan, E.M. Factors associated with variability in the melatonin suppression response to light: A narrative review. Chronobiol. Int. 2023, 40, 542–556. [Google Scholar] [CrossRef] [PubMed]
- Spitschan, M.; Santhi, N. Individual differences and diversity in human physiological responses to light. EBioMedicine 2022, 75, 103640. [Google Scholar] [CrossRef] [PubMed]
- Duffy, J.F.; Czeisler, C.A. Age-related change in the relationship between circadian period, circadian phase, and diurnal preference in humans. Neurosci. Lett. 2002, 318, 117–120. [Google Scholar] [CrossRef]
- Lazar, A.S.; Santhi, N.; Hasan, S.; Lo, J.C.; Johnston, J.D.; Von Schantz, M.; Archer, S.N.; Dijk, D.J. Circadian period and the timing of melatonin onset in men and women: Predictors of sleep during the weekend and in the laboratory. J. Sleep. Res. 2013, 22, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Stone, J.E.; McGlashan, E.M.; Quin, N.; Skinner, K.; Stephenson, J.J.; Cain, S.W.; Phillips, A.J.K. The Role of Light Sensitivity and Intrinsic Circadian Period in Predicting Individual Circadian Timing. J. Biol. Rhythm. 2020, 35, 628–640. [Google Scholar] [CrossRef]
- Kronauer, R.E.; Czeisler, C.A.; Pilato, S.F.; Moore-Ede, M.C.; Weitzman, E.D. Mathematical model of the human circadian system with two interacting oscillators. Am. J. Physiol. 1982, 242, R3–R17. [Google Scholar] [CrossRef]
- Estevan, I.; Silva, A.; Vetter, C.; Tassino, B. Short Sleep Duration and Extremely Delayed Chronotypes in Uruguayan Youth: The Role of School Start Times and Social Constraints. J. Biol. Rhythm. 2020, 35, 391–404. [Google Scholar] [CrossRef]
- Watson, L.A.; Phillips, A.J.K.; Hosken, I.T.; McGlashan, E.M.; Anderson, C.; Lack, L.C.; Lockley, S.W.; Rajaratnam, S.M.W.; Cain, S.W. Increased sensitivity of the circadian system to light in delayed sleep-wake phase disorder. J. Physiol. 2018, 596, 6249–6261. [Google Scholar] [CrossRef]
- Burgess, H.J.; Molina, T.A. Home lighting before usual bedtime impacts circadian timing: A field study. Photochem. Photobiol. 2014, 90, 723–726. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, S.; Lee, S.I.; Kozaki, T.; Harada, T.; Tanaka, I. Late circadian phase in adults and children is correlated with use of high color temperature light at home at night. Chronobiol. Int. 2016, 33, 448–452. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, S.; Lin, Y.; Qiu, J.; Zhang, Y.; Ohashi, M.; Lee, S.I.; Kitamura, S.; Yasukouchi, A. Is the use of high correlated color temperature light at night related to delay of sleep timing in university students? A cross-country study in Japan and China. J. Physiol. Anthropol. 2021, 40, 7. [Google Scholar] [CrossRef]
- Crowley, S.J.; Eastman, C.I. Phase advancing human circadian rhythms with morning bright light, afternoon melatonin, and gradually shifted sleep: Can we reduce morning bright-light duration? Sleep. Med. 2015, 16, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, Y.; Hashimoto, S.; Masubuchi, S.; Natsubori, A.; Nishide, S.Y.; Honma, S.; Honma, K. Differential regulation of circadian melatonin rhythm and sleep-wake cycle by bright lights and nonphotic time cues in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 307, R546–R557. [Google Scholar] [CrossRef]
- Ohashi, M.; Lee, S.I.; Eto, T.; Uotsu, N.; Tarumizu, C.; Matsuoka, S.; Yasuo, S.; Higuchi, S. Intake of L-serine before bedtime prevents the delay of the circadian phase in real life. J. Physiol. Anthropol. 2022, 41, 31. [Google Scholar] [CrossRef] [PubMed]
- Eto, T.; Ohashi, M.; Nagata, K.; Shin, N.; Motomura, Y.; Higuchi, S. Crystalline lens transmittance spectra and pupil sizes as factors affecting light-induced melatonin suppression in children and adults. Ophthalmic Physiol. Opt. 2021, 41, 900–910. [Google Scholar] [CrossRef]
- Phillips, A.J.K.; Vidafar, P.; Burns, A.C.; McGlashan, E.M.; Anderson, C.; Rajaratnam, S.M.W.; Lockley, S.W.; Cain, S.W. High sensitivity and interindividual variability in the response of the human circadian system to evening light. Proc. Natl. Acad. Sci. USA 2019, 116, 12019–12024. [Google Scholar] [CrossRef]
- Kantermann, T.; Eastman, C.I. Circadian phase, circadian period and chronotype are reproducible over months. Chronobiol. Int. 2018, 35, 280–288. [Google Scholar] [CrossRef]
- Chang, A.M.; Scheer, F.A.; Czeisler, C.A. The human circadian system adapts to prior photic history. J. Physiol. 2011, 589, 1095–1102. [Google Scholar] [CrossRef]
- Hébert, M.; Martin, S.K.; Lee, C.; Eastman, C.I. The effects of prior light history on the suppression of melatonin by light in humans. J. Pineal Res. 2002, 33, 198–203. [Google Scholar] [CrossRef]
- Smith, K.A.; Schoen, M.W.; Czeisler, C.A. Adaptation of human pineal melatonin suppression by recent photic history. J. Clin. Endocrinol. Metab. 2004, 89, 3610–3614. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Ryu, S.-H.; Lee, B.R.; Kim, K.H.; Lee, E.; Choi, J. Effects of artificial light at night on human health: A literature review of observational and experimental studies applied to exposure assessment. Chronobiol. Int. 2015, 32, 1294–1310. [Google Scholar] [CrossRef] [PubMed]
- Muscogiuri, G.; Poggiogalle, E.; Barrea, L.; Tarsitano, M.G.; Garifalos, F.; Liccardi, A.; Pugliese, G.; Savastano, S.; Colao, A. Exposure to artificial light at night: A common link for obesity and cancer? Eur. J. Cancer 2022, 173, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Bonmati-Carrion, M.A.; Arguelles-Prieto, R.; Martinez-Madrid, M.J.; Reiter, R.; Hardeland, R.; Rol, M.A.; Madrid, J.A. Protecting the melatonin rhythm through circadian healthy light exposure. Int. J. Mol. Sci. 2014, 15, 23448–23500. [Google Scholar] [CrossRef] [PubMed]
- Horne, J.A.; Ostberg, O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int. J. Chronobiol. 1976, 4, 97–110. [Google Scholar] [PubMed]
- Ishihara, K.; Saitoh, T.; Inoue, Y.; Miyata, Y. Validity of the Japanese Version of the Morningness-Eveningness Questionnaire. Percept. Mot. Ski. 1984, 59, 863–866. [Google Scholar] [CrossRef]
- Brown, T.M.; Brainard, G.C.; Cajochen, C.; Czeisler, C.A.; Hanifin, J.P.; Lockley, S.W.; Lucas, R.J.; Münch, M.; O’Hagan, J.B.; Peirson, S.N.; et al. Recommendations for daytime, evening, and nighttime indoor light exposure to best support physiology, sleep, and wakefulness in healthy adults. PLoS Biol. 2022, 20, e3001571. [Google Scholar] [CrossRef]
- Kitamura, S.; Hida, A.; Aritake, S.; Higuchi, S.; Enomoto, M.; Kato, M.; Vetter, C.; Roenneberg, T.; Mishima, K. Validity of the Japanese version of the Munich ChronoType Questionnaire. Chronobiol. Int. 2014, 31, 845–850. [Google Scholar] [CrossRef]
- Roenneberg, T.; Wirz-Justice, A.; Merrow, M. Life between Clocks: Daily Temporal Patterns of Human Chronotypes. J. Biol. Rhythm. 2003, 18, 80–90. [Google Scholar] [CrossRef]
- Lewy, A.J.; Sack, R.L. The Dim Light Melatonin Onset as a Marker for Orcadian Phase Position. Chronobiol. Int. 1989, 6, 93–102. [Google Scholar] [CrossRef] [PubMed]
Mean | SD | Pearson’s r with PS1 | Pearson’s r with PS2 | ||
---|---|---|---|---|---|
Day 1 DLMO | 22:17 | 1:26 | −0.21 | 0.47 | |
MEQ score | 47.6 | 9.6 | −0.23 | −0.18 | |
Weekday | Sleep Onset | 1:11 | 1:06 | −0.14 | 0.28 |
Phase Angle [h] | 2.91 | 1.02 | 0.15 | −0.36 | |
Midsleep | 4:43 | 1:04 | 0.01 | 0.16 | |
Phase Angle [h] | 6.45 | 1.06 | 0.30 | −0.48 | |
Wake | 8:15 | 1:09 | 0.15 | 0.03 | |
Phase Angle [h] | 9.98 | 1.21 | 0.40 | −0.53 | |
Sleep Duration [h] | 7.06 | 0.75 | 0.44 | −0.36 | |
Free day | Sleep Onset | 1:55 | 1:25 | −0.09 | 0.16 |
Phase Angle [h] | 3.64 | 1.19 | 0.15 | −0.39 | |
Midsleep | 5:42 | 1:21 | 0.04 | 0.13 | |
Phase Angle [h] | 7.43 | 1.16 | 0.31 | −0.44 | |
Wake | 9:30 | 1:27 | 0.16 | 0.08 | |
Phase Angle [h] | 11.22 | 1.34 | 0.40 | −0.42 | |
Sleep Duration [h] | 7.59 | 0.98 | 0.37 | −0.11 | |
MSFsc | 5:33 | 1:22 | 0.04 | 0.09 | |
Social Jetlag [h] | 0.98 | 0.69 | 0.06 | 0.00 |
Mean | SD | |
---|---|---|
Age [years] | 22.2 | 2.3 |
Weight [kg] | 53.7 | 8.7 |
Height [cm] | 164.8 | 9.5 |
BMI [kg/m2] | 19.7 | 2.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ohashi, M.; Eto, T.; Takasu, T.; Motomura, Y.; Higuchi, S. Relationship between Circadian Phase Delay without Morning Light and Phase Advance by Bright Light Exposure the Following Morning. Clocks & Sleep 2023, 5, 615-626. https://doi.org/10.3390/clockssleep5040041
Ohashi M, Eto T, Takasu T, Motomura Y, Higuchi S. Relationship between Circadian Phase Delay without Morning Light and Phase Advance by Bright Light Exposure the Following Morning. Clocks & Sleep. 2023; 5(4):615-626. https://doi.org/10.3390/clockssleep5040041
Chicago/Turabian StyleOhashi, Michihiro, Taisuke Eto, Toaki Takasu, Yuki Motomura, and Shigekazu Higuchi. 2023. "Relationship between Circadian Phase Delay without Morning Light and Phase Advance by Bright Light Exposure the Following Morning" Clocks & Sleep 5, no. 4: 615-626. https://doi.org/10.3390/clockssleep5040041
APA StyleOhashi, M., Eto, T., Takasu, T., Motomura, Y., & Higuchi, S. (2023). Relationship between Circadian Phase Delay without Morning Light and Phase Advance by Bright Light Exposure the Following Morning. Clocks & Sleep, 5(4), 615-626. https://doi.org/10.3390/clockssleep5040041