The Impact of Sleep on Haematological Parameters in Firefighters
Abstract
:1. Introduction
2. Results
2.1. Participant Characteristics
2.2. Quality of Sleep Assessment
2.3. Haematological Profile
2.4. The Effect of Sleep Quality on Haematological Profile
3. Discussion
4. Materials and Methods
4.1. Design
4.2. Study Procedures
4.3. Questionnaire
4.4. Blood Collection and Hemogram Profile Assessment
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keene, A.C.; Duboue, E.R. The Origins and Evolution of Sleep. J. Exp. Biol. 2018, 221, jeb159533. [Google Scholar] [CrossRef] [PubMed]
- Yao, G. Modelling Mammalian Cellular Quiescence. Interface Focus 2014, 4, 20130074. [Google Scholar] [CrossRef] [PubMed]
- Swanson, C.M.; Kohrt, W.M.; Buxton, O.M.; Everson, C.A.; Wright, K.P.; Orwoll, E.S.; Shea, S.A. The Importance of the Circadian System & Sleep for Bone Health. Metabolism 2018, 84, 28–43. [Google Scholar] [CrossRef] [PubMed]
- Besedovsky, L.; Lange, T.; Born, J. Sleep and Immune Function. Pflug. Arch 2012, 463, 121–137. [Google Scholar] [CrossRef] [PubMed]
- Mullington, J.M. Immunologic Changes. Encycl. Sleep 2013, 244–245. [Google Scholar] [CrossRef]
- Besedovsky, L.; Lange, T.; Haack, M. The Sleep-Immune Crosstalk in Health and Disease. Physiol. Rev. 2019, 99, 1325–1380. [Google Scholar] [CrossRef] [PubMed]
- Provalova, N.V.; Skurikhin, E.G.; Pershina, O.V.; Suslov, N.I.; Minakova, M.Y.; Dygai, A.M.; Gol’dberg, E.D. Mechanisms Underlying the Effects of Adaptogens on Erythropoiesis during Paradoxical Sleep Deprivation. Bull. Exp. Biol. Med. 2002, 133, 428–432. [Google Scholar] [CrossRef] [PubMed]
- McAlpine, C.S.; Kiss, M.G.; Rattik, S.; He, S.; Vassalli, A.; Valet, C.; Anzai, A.; Chan, C.T.; Mindur, J.E.; Kahles, F.; et al. Sleep Modulates Haematopoiesis and Protects against Atherosclerosis. Nature 2019, 566, 383–387. [Google Scholar] [CrossRef]
- Rieger, M.A.; Schroeder, T. Hematopoiesis. Cold Spring Harb. Perspect. Biol. 2012, 4, a008250. [Google Scholar] [CrossRef]
- Notta, F.; Zandi, S.; Takayama, N.; Dobson, S.; Gan, O.I.; Wilson, G.; Kaufmann, K.B.; McLeod, J.; Laurenti, E.; Dunant, C.F.; et al. Distinct Routes of Lineage Development Reshape the Human Blood Hierarchy across Ontogeny. Science 2016, 351, 139. [Google Scholar] [CrossRef]
- Cool, T.; Forsberg, E.C. Chasing Mavericks: The Quest for Defining Developmental Waves of Hematopoiesis. Curr. Top Dev. Biol. 2019, 132, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Hoggatt, J.; Pelus, L.M. Hematopoiesis. In Brenner’s Encyclopedia of Genetics, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 418–421. [Google Scholar] [CrossRef]
- Sen Gupta, A. Hemoglobin-based Oxygen Carriers: Current State-of-the-art and Novel Molecules. Shock 2019, 52, 70. [Google Scholar] [CrossRef] [PubMed]
- Benedik, P.S.; Hamlin, S.K. The Physiologic Role of Erythrocytes in Oxygen Delivery and Implications for Blood Storage. Crit. Care Nurs. Clin. N. Am. 2014, 26, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Dzierzak, E.; Philipsen, S. Erythropoiesis: Development and Differentiation. Cold Spring Harb. Perspect. Med. 2013, 3, a011601. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K. Erythropoiesis: The Roles of Erythropoietin and Iron. In Textbook of Nephro-Endocrinology; Elsevier: Amsterdam, The Netherlands, 2018; pp. 207–215. [Google Scholar] [CrossRef]
- Eggold, J.T.; Rankin, E.B. Erythropoiesis, EPO, Macrophages, and Bone. Bone 2019, 119, 36. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Dey, S.; Alnaeeli, M.; Suresh, S.; Rogers, H.; Teng, R.; Noguchi, C.T. Erythropoietin Action in Stress Response, Tissue Maintenance and Metabolism. Int. J. Mol. Sci. 2014, 15, 10296–10333. [Google Scholar] [CrossRef] [PubMed]
- Jelkmann, W. Erythropoietin. Front. Horm Res. 2016, 47, 115–127. [Google Scholar] [CrossRef]
- Schoener, B.; Borger, J. Erythropoietin Stimulating Agents; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- Semenza, G.L.; Nejfelt, M.K.; Chi, S.M.; Antonarakis, S.E. Hypoxia-Inducible Nuclear Factors Bind to an Enhancer Element Located 3’ to the Human Erythropoietin Gene. Proc. Natl. Acad. Sci. USA 1991, 88, 5680–5684. [Google Scholar] [CrossRef] [PubMed]
- Weiss, M.J.; Bhoopalan, S.V.; Huang, L.J. Shen Erythropoietin Regulation of Red Blood Cell Production: From Bench to Bedside and Back. F1000Research 2020, 9, 1153. [Google Scholar] [CrossRef]
- Jelkmann, W. Regulation of Erythropoietin Production. J. Physiol. 2011, 589, 1251. [Google Scholar] [CrossRef]
- Tsiftsoglou, A.S. Erythropoietin (EPO) as a Key Regulator of Erythropoiesis, Bone Remodeling and Endothelial Transdifferentiation of Multipotent Mesenchymal Stem Cells (MSCs): Implications in Regenerative Medicine. Cells 2021, 10, 2140. [Google Scholar] [CrossRef]
- Beckman, B.; Silberstein, P.; Aldoss, I.T. Erythropoiesis. In xPharm: The Comprehensive Pharmacology Reference; Elsevier: Amsterdam, The Netherlands, 2010; pp. 1–4. [Google Scholar] [CrossRef]
- Haase, V.H. Hypoxic Regulation of Erythropoiesis and Iron Metabolism. Am. J. Physiol. Renal. Physiol. 2010, 299, F1–F13. [Google Scholar] [CrossRef]
- Jelkmann, W. Physiology and Pharmacology of Erythropoietin. Transfus. Med. Hemotherapy 2013, 40, 302. [Google Scholar] [CrossRef]
- Noguchi, C.T.; Wang, L.; Rogers, H.M.; Teng, R.; Jia, Y. Survival and Proliferative Roles of Erythropoietin beyond the Erythroid Lineage. Expert Rev. Mol. Med. 2008, 10, e36. [Google Scholar] [CrossRef]
- Wide, L.; And, C.B.; Birgegárrd, G. Circadian Rhythm of Erythropoietin in Human Serum. Br. J. Haematol. 1989, 72, 85–90. [Google Scholar] [CrossRef]
- Pasqualetti, P.; Collacciani, A.; Casale, R. Circadian Rhythm of Serum Erythropoietin in Multiple Myeloma. Am. J. Hematol. 1996, 53, 996. [Google Scholar] [CrossRef]
- Sciesielski, L.K.; Felten, M.; Michalick, L.; Kirschner, K.M.; Lattanzi, G.; Jacobi, C.L.J.; Wallach, T.; Lang, V.; Landgraf, D.; Kramer, A.; et al. The Circadian Clock Regulates Rhythmic Erythropoietin Expression in the Murine Kidney. Kidney Int. 2021, 100, 1071–1080. [Google Scholar] [CrossRef]
- Takahashi, J.S. Molecular Components of the Circadian Clock in Mammals. Diabetes Obes. Metab. 2015, 17, 6. [Google Scholar] [CrossRef]
- Potter, G.D.M.; Skene, D.J.; Arendt, J.; Cade, J.E.; Grant, P.J.; Hardie, L.J. Circadian Rhythm and Sleep Disruption: Causes, Metabolic Consequences, and Countermeasures. Endocr. Rev. 2016, 37, 584. [Google Scholar] [CrossRef]
- McEwen, B.S.; Karatsoreos, I.N. Sleep Deprivation and Circadian Disruption: Stress, Allostasis, and Allostatic Load. Sleep Med. Clin. 2015, 10, 1. [Google Scholar] [CrossRef] [PubMed]
- Tribis-Arrospe, B.; Ballesteros-Peña, S.; Inchaurregui, L.C.A.; Egea-Santaolalla, C.; Guerra-Martin, L.; Álvarez Ruiz de Larrinaga, A. Calidad Del Sueño y Adaptación a Los Turnos Rotatorios En Trabajadores de Ambulancias de Emergencias Del País Vasco. An. Sist. Sanit. Navar. 2020, 43, 189–202. [Google Scholar] [CrossRef]
- Kalmbach, D.A.; Fang, Y.; Arnedt, J.T.; Cochran, A.L.; Deldin, P.J.; Kaplin, A.I.; Sen, S. Effects of Sleep, Physical Activity, and Shift Work on Daily Mood: A Prospective Mobile Monitoring Study of Medical Interns. J. Gen. Intern. Med. 2018, 33, 914–920. [Google Scholar] [CrossRef]
- Wright, H.E.; Larose, J.; McLellan, T.M.; Miller, S.; Boulay, P.; Kenny, G.P. Do Older Firefighters Show Long-Term Adaptations to Work in the Heat? J. Occup. Environ. Hyg. 2013, 10, 705–715. [Google Scholar] [CrossRef]
- Roskoden, F.C.; Krüger, J.; Vogt, L.J.; Gärtner, S.; Hannich, H.J.; Steveling, A.; Lerch, M.M.; Aghdassi, A.A. Physical Activity, Energy Expenditure, Nutritional Habits, Quality of Sleep and Stress Levels in Shift-Working Health Care Personnel. PLoS ONE 2017, 12, e0169983. [Google Scholar] [CrossRef]
- Sørengaard, T.A.; Olsen, A.; Langvik, E.; Saksvik-Lehouillier, I. Associations between Sleep and Work-Related Cognitive and Emotional Functioning in Police Employees. Saf. Health Work 2021, 12, 359–364. [Google Scholar] [CrossRef]
- Telles, S.; Gupta, R.K.; Verma, S.; Kala, N.; Balkrishna, A. Changes in Vigilance, Self Rated Sleep and State Anxiety in Military Personnel in India Following Yoga. BMC Res. Notes 2018, 11, 518. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, G.; Hou, N.; Chen, M.; Yang, K.; Wen, K.; Lan, Y.; Li, W. Effects and Differences of Sleep Duration on the Risk of New-Onset Chronic Disease Conditions in Middle-Aged and Elderly Populations. Eur. J. Intern. Med. 2023, 107, 73–80. [Google Scholar] [CrossRef]
- Magee, C.A.; Kritharides, L.; Attia, J.; McElduff, P.; Banks, E. Short and Long Sleep Duration Are Associated with Prevalent Cardiovascular Disease in Australian Adults. J. Sleep Res. 2012, 21, 441–447. [Google Scholar] [CrossRef]
- Reis, C.; Dias, S.; Rodrigues, A.M.; Sousa, R.D.; Gregório, M.J.; Branco, J.; Canhão, H.; Paiva, T. Sleep Duration, Lifestyles and Chronic Diseases: A Cross-Sectional-Based Study. Sleep Sci. 2018, 11, 217. [Google Scholar] [CrossRef]
- Li, C.; Shang, S. Relationship between Sleep and Hypertension: Findings from the NHANES (2007–2014). Int. J. Environ. Res. Public Health 2021, 18, 7867. [Google Scholar] [CrossRef]
- Colten, H.R.; Altevogt, B.M. Sleep Disorders and Sleep Deprivation: An Unmet Public Health Problem; The National Academies Press: Washington, DC, USA, 2006; pp. 1–404. [Google Scholar] [CrossRef]
- Watson, N.F.; Badr, M.S.; Belenky, G.; Bliwise, D.L.; Buxton, O.M.; Buysse, D.; Dinges, D.F.; Gangwisch, J.; Grandner, M.A.; Kushida, C.; et al. Recommended Amount of Sleep for a Healthy Adult: A Joint Consensus Statement of the American Academy of Sleep Medicine and Sleep Research Society. Sleep 2015, 38, 843. [Google Scholar] [CrossRef]
- Loprinzi, P.D.; Joyner, C. Meeting Sleep Guidelines Is Associated With Better Health-Related Quality of Life and Reduced Premature All-Cause Mortality Risk. Am. J. Heal. Promot. 2017, 32, 68–71. [Google Scholar] [CrossRef]
- Calhoun, D.A.; Harding, S.M. Sleep and Hypertension. Chest 2010, 138, 434. [Google Scholar] [CrossRef]
- Sadabadi, F.; Darroudi, S.; Esmaily, H.; Asadi, Z.; Ferns, G.A.; Mohammadpour, A.H.; Nooriyan, A.H.; Ghayour-Mobarhan, M.; Moohebati, M. The Importance of Sleep Patterns in the Incidence of Coronary Heart Disease: A 6-Year Prospective Study in Mashhad, Iran. Sci. Rep. 2023, 13, 2903. [Google Scholar] [CrossRef]
- Song, C.; Zhang, R.; Liao, J.; Fu, R.; Wang, C.; Liu, Q.; Song, W.; Wang, H.; Dou, K. Sleep Quality and Risk of Coronary Heart Disease-a Prospective Cohort Study from the English Longitudinal Study of Ageing. Aging 2020, 12, 25005. [Google Scholar] [CrossRef]
- Lao, X.Q.; Liu, X.; Deng, H.B.; Chan, T.C.; Ho, K.F.; Wang, F.; Vermeulen, R.; Tam, T.; Wong, M.C.S.; Tse, L.A.; et al. Sleep Quality, Sleep Duration, and the Risk of Coronary Heart Disease: A Prospective Cohort Study With 60,586 Adults. J. Clin. Sleep Med. 2018, 14, 109–117. [Google Scholar] [CrossRef]
- Nagai, M.; Hoshide, S.; Kario, K. Sleep Duration as a Risk Factor for Cardiovascular Disease- a Review of the Recent Literature. Curr. Cardiol. Rev. 2010, 6, 54. [Google Scholar] [CrossRef]
- Maity, K.; Nagarathna, R.; Anand, A.; Patil, S.S.; Singh, A.; Rajesh, S.K.; Ramesh, L.; Sridhar, P.; Thakur, U.K.; Nagendra, H.R. Sleep Disorders in Individuals With High Risk for Diabetes in Indian Population. Ann. Neurosci. 2020, 27, 183–189. [Google Scholar] [CrossRef]
- Leblanc, E.S.; Smith, N.X.; Nichols, G.A.; Allison, M.J.; Clarke, G.N. Insomnia Is Associated with an Increased Risk of Type 2 Diabetes in the Clinical Setting. BMJ Open Diabetes Res. Care 2018, 6, e000604. [Google Scholar] [CrossRef] [PubMed]
- Lou, P.; Chen, P.; Zhang, L.; Zhang, P.; Yu, J.; Zhang, N.; Wu, H.; Zhao, J. Relation of Sleep Quality and Sleep Duration to Type 2 Diabetes: A Population-Based Cross-Sectional Survey. BMJ Open 2012, 2, e000956. [Google Scholar] [CrossRef] [PubMed]
- Grandner, M.A.; Seixas, A.; Shetty, S.; Shenoy, S. Sleep Duration and Diabetes Risk: Population Trends and Potential Mechanisms. Curr. Diabetes Rep. 2016, 16, 106. [Google Scholar] [CrossRef] [PubMed]
- Chaput, J.P.; Dutil, C.; Featherstone, R.; Ross, R.; Giangregorio, L.; Saunders, T.J.; Janssen, I.; Poitras, V.J.; Kho, M.E.; Ross-White, A.; et al. Sleep Duration and Health in Adults: An Overview of Systematic Reviews. Appl. Physiol. Nutr. Metab. 2020, 45, S218–S231. [Google Scholar] [CrossRef] [PubMed]
- Farah, N.M.F.; Yee, T.S.; Rasdi, H.F.M. Self-Reported Sleep Quality Using the Malay Version of the Pittsburgh Sleep Quality Index (PSQI-M) In Malaysian Adults. Int. J. Environ. Res. Public Health 2019, 16, 4750. [Google Scholar] [CrossRef] [PubMed]
- Matsui, K.; Yoshiike, T.; Nagao, K.; Utsumi, T.; Tsuru, A.; Otsuki, R.; Ayabe, N.; Hazumi, M.; Suzuki, M.; Saitoh, K.; et al. Association of Subjective Quality and Quantity of Sleep with Quality of Life among a General Population. Int. J. Environ. Res. Public Health 2021, 18, 12835. [Google Scholar] [CrossRef] [PubMed]
- Zitser, J.; Allen, I.E.; Falgàs, N.; Le, M.M.; Neylan, T.C.; Kramer, J.H.; Walsh, C.M. Pittsburgh Sleep Quality Index (PSQI) Responses Are Modulated by Total Sleep Time and Wake after Sleep Onset in Healthy Older Adults. PLoS ONE 2022, 17, e0270095. [Google Scholar] [CrossRef]
- Self-Perceived Health Statistics-Statistics Explained. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Self-perceived_health_statistics (accessed on 20 June 2023).
- AlDukhail, S.; Bahdila, D. Self-Perception of Health and Physical Activity among Adults before and amidst the COVID-19 Pandemic: United States, 2019–2020. Prev. Med. 2022, 158, 107037. [Google Scholar] [CrossRef] [PubMed]
- Sood, R.; Jenkins, S.M.; Sood, A.; Clark, M.M. Gender Differences in Self-Perception of Health at a Wellness Center. Am. J. Health Behav. 2019, 43, 1129–1135. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.L.; Petruzzello, S.J.; Chludzinski, M.A.; Reed, J.J.; Woods, J.A. Effect of Strenuous Live-Fire Fire Fighting Drills on Hematological, Blood Chemistry and Psychological Measures. J. Therm. Biol. 2001, 26, 375–379. [Google Scholar] [CrossRef]
- National Cancer Institute Composition of the Blood. Available online: https://training.seer.cancer.gov/leukemia/anatomy/composition.html (accessed on 10 January 2024).
- Hunter, A.L.; Shah, A.S.V.; Langrish, J.P.; Raftis, J.B.; Lucking, A.J.; Brittan, M.; Venkatasubramanian, S.; Stables, C.L.; Stelzle, D.; Marshall, J.; et al. Fire Simulation and Cardiovascular Health in Firefighters. Circulation 2017, 135, 1284–1295. [Google Scholar] [CrossRef]
- Cerqueira Teixeira, K.R.; de Medeiros, L.A.; Mendes, J.A.; Vaz, E.R.; Cunha, T.M.; de Oliveira, E.P.; Penha-Silva, N.; Crispim, C.A. The Erythrocyte Membrane Stability Is Associated with Sleep Time and Social Jetlag in Shift Workers. PLoS ONE 2019, 14, e0222698. [Google Scholar] [CrossRef]
- Yen Jean, M.C.; Hsu, C.C.; Hung, W.C.; Lu, Y.C.; Wang, C.P.; Tsai, I.T.; Lu, I.C.; Hung, Y.H.; Chung, F.M.; Lee, Y.J.; et al. Association between Lifestyle and Hematological Parameters: A Study of Chinese Male Steelworkers. J. Clin. Lab. Anal. 2019, 33, e22946. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Kwok, M.K.; Au Yeung, S.L.; Li, A.M.; Lam, S.; Leung, G.M.; Schooling, C.M. The Effect of Sleep Duration on Hemoglobin and Hematocrit: Observational and Mendelian Randomization Study. Sleep 2020, 43, zsz325. [Google Scholar] [CrossRef] [PubMed]
- Chen-Edinboro, L.P.; Murray-Kolb, L.E.; Simonsick, E.M.; Ferrucci, L.; Allen, R.; Payne, M.E.; Spira, A.P. Association Between Non-Iron-Deficient Anemia and Insomnia Symptoms in Community-Dwelling Older Adults: The Baltimore Longitudinal Study of Aging. J. Gerontol. Ser. A 2018, 73, 380–385. [Google Scholar] [CrossRef]
- Benz, R.L.; Pressman, M.R.; Hovick, E.T.; Peterson, D.D. A Preliminary Study of the Effects of Correction of Anemia with Recombinant Human Erythropoietin Therapy on Sleep, Sleep Disorders, and Daytime Sleepiness in Hemodialysis Patients (The SLEEPO Study). Am. J. Kidney Dis. 1999, 34, 1089–1095. [Google Scholar] [CrossRef]
- Indrarini, A.; Zahra, A.N.; Yona, S. The Relationship between Anemia, Depression, Duration of Hemodialysis, and Quality of Sleep among End-Stage Renal Disease Patients. Enferm. Clin. 2019, 29, 24–29. [Google Scholar] [CrossRef]
- Liu, X.; Song, Q.; Hu, W.; Han, X.; Gan, J.; Zheng, X.; Wang, X.; Wu, S. Night Sleep Duration and Risk of Incident Anemia in a Chinese Population: A Prospective Cohort Study. Sci. Rep. 2018, 8, 3975. [Google Scholar] [CrossRef] [PubMed]
- McAlpine, C.S.; Kiss, M.G.; Zuraikat, F.M.; Cheek, D.; Schiroli, G.; Amatullah, H.; Huynh, P.; Bhatti, M.Z.; Wong, L.P.; Yates, A.G.; et al. Sleep Exerts Lasting Effects on Hematopoietic Stem Cell Function and Diversity. J. Exp. Med. 2022, 219, e20220081. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Ferrer, S.; Chow, A.; Merad, M.; Frenette, P.S. Circadian Rhythms Influence Hematopoietic Stem Cells. Curr. Opin. Hematol. 2009, 16, 235. [Google Scholar] [CrossRef] [PubMed]
- Bolsius, Y.G.; Zurbriggen, M.D.; Kim, J.K.; Kas, M.J.; Meerlo, P.; Aton, S.J.; Havekes, R. The Role of Clock Genes in Sleep, Stress and Memory. Biochem. Pharmacol. 2021, 191, 114493. [Google Scholar] [CrossRef]
- Bunn, H.F. Erythropoietin. Cold Spring Harb. Perspect. Med. 2013, 3, a011619. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Lai, Y.-F.; Chen, Y.-H.; Lu, D.-W.; Joachim, C.; Lin, T.-Y.; Lai, Y.-F.; Chen, Y.-H.; Lu, D.-W. The Latest Evidence of Erythropoietin in the Treatment of Glaucoma. Int. J. Mol. Sci. 2022, 23, 16038. [Google Scholar] [CrossRef]
- Murphy, W.G. The Sex Difference in Haemoglobin Levels in Adults—Mechanisms, Causes, and Consequences. Blood Rev. 2014, 28, 41–47. [Google Scholar] [CrossRef]
- Shahani, S.; Braga-Basaria, M.; Maggio, M.; Basaria, S. Androgens and Erythropoiesis: Past and Present. J. Endocrinol. Investig. 2009, 32, 704–716. [Google Scholar] [CrossRef]
- Mong, J.A.; Cusmano, D.M. Sex Differences in Sleep: Impact of Biological Sex and Sex Steroids. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150110. [Google Scholar] [CrossRef]
- Pengo, M.F.; Won, C.H.; Bourjeily, G. Sleep in Women Across the Life Span. Chest 2018, 154, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Phillips, B.A.; Collop, N.A.; Drake, C.; Consens, F.; Vgontzas, A.N.; Weaver, T.E. Sleep Disorders and Medical Conditions in Women. J. Womens Health 2008, 17, 1191–1199. [Google Scholar] [CrossRef] [PubMed]
- Boivin, D.B.; Boudreau, P.; Kosmadopoulos, A. Disturbance of the Circadian System in Shift Work and Its Health Impact. J. Biol. Rhythm. 2022, 37, 3–28. [Google Scholar] [CrossRef]
- Morssinkhof, M.W.L.; van Wylick, D.W.; Priester-Vink, S.; van der Werf, Y.D.; den Heijer, M.; van den Heuvel, O.A.; Broekman, B.F.P. Associations between Sex Hormones, Sleep Problems and Depression: A Systematic Review. Neurosci. Biobehav. Rev. 2020, 118, 669–680. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Dai, F.; Razali, N.S.; Tagore, S.; Chern, B.S.M.; Tan, K.H. Sleep Quality and BMI in Pregnancy—A Prospective Cohort Study. BMC Pregnancy Childbirth 2022, 22, 72. [Google Scholar] [CrossRef]
- Gao, M.; Hu, J.; Yang, L.; Ding, N.; Wei, X.; Li, L.; Liu, L.; Ma, Y.; Wen, D. Association of Sleep Quality during Pregnancy with Stress and Depression: A Prospective Birth Cohort Study in China. BMC Pregnancy Childbirth 2019, 19, 444. [Google Scholar] [CrossRef]
- Ahmad, M.S.; Fatima, R.; Farooq, H.; Maham, S.N. Hemoglobin, Ferritin Levels and RBC Indices among Children Entering School and Study of Their Correlation with One Another. J. Pak. Med. Assoc. 2020, 70, 1582–1586. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.-R.; Song, S.-K.; Ryu, C.-H. Sleep Disturbance Strongly Related to the Development of Postoperative Delirium in Proximal Femoral Fracture Patients Aged 60 or Older. Hip. Pelvis. 2020, 32, 93–98. [Google Scholar] [CrossRef]
- Chomón, B.; Vázquez, L.; Castro, D. Intervalos de Referencia de Parámetros Hematológicos En Ancianos. Sangre 1989, 34, 229–233. [Google Scholar]
- Nordin, G.; Mårtensson, A.; Swolin, B.; Sandberg, S.; Christensen, N.J.; Thorsteinsson, V.; Franzson, L.; Kairisto, V.; Savolainen, E.R. A Multicentre Study of Reference Intervals for Haemoglobin, Basic Blood Cell Counts and Erythrocyte Indices in the Adult Population of the Nordic Countries. Scand. J. Clin. Lab. Investig. 2004, 64, 385–398. [Google Scholar] [CrossRef] [PubMed]
- Eisenstaedt, R.; Penninx, B.W.J.H.; Woodman, R.C. Anemia in the Elderly: Current Understanding and Emerging Concepts. Blood Rev. 2006, 20, 213–226. [Google Scholar] [CrossRef]
- Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 1965, 37, 614–636. [Google Scholar] [CrossRef] [PubMed]
- Lipschitz, D.; Udupa, K.; Milton, K.; Thompson, C. Effect of Age on Hematopoiesis in Man. Blood 1984, 63, 502–509. [Google Scholar] [CrossRef]
- Nilsson-Ehle, H.; Jagenburg, R.; Landahl, S.; Svanborg, A. Blood Haemoglobin Declines in the Elderly: Implications for Reference Intervals from Age 70 to 88. Eur. J. Haematol. 2000, 65, 297–305. [Google Scholar] [CrossRef]
- Carpenter, M.A.; Kendall, R.G.; O’Brien, A.E.; Chapman, C.; Sebastian, J.P.; Belfield, P.W.; Norfolk, D.R. Reduced Erythropoietin Response to Anaemia in Elderly Patients with Normocytic Anaemia. Eur. J. Haematol. 1992, 49, 119–121. [Google Scholar] [CrossRef]
- Zierk, J.; Krebs, A.; Rauh, M.; Metzler, M.; Löscher, A.; Strasser, E.; Krause, S.W. Blood Counts in Adult and Elderly Individuals: Defining the Norms over Eight Decades of Life. Br. J. Haematol. 2020, 189, 777–789. [Google Scholar] [CrossRef]
- Mahlknecht, U.; Kaiser, S. Age-Related Changes in Peripheral Blood Counts in Humans. Exp. Ther. Med. 2010, 1, 1019. [Google Scholar] [CrossRef] [PubMed]
- Kubota, K.; Shirakura, T.; Orui, T.; Muratani, M.; Maki, T.; Tamura, J.; Morita, T. Changes in the Blood Cell Counts with Aging. Nihon Ronen Igakkai Zasshi. Jpn. J. Geriatr. 1991, 28, 509–514. [Google Scholar] [CrossRef]
- Gupta, P.; Srivastava, N.; Gupta, V.; Tiwari, S.; Banerjee, M. Association of Sleep Duration and Sleep Quality with Body Mass Index among Young Adults. J. Family Med. Prim. Care 2022, 11, 3251. [Google Scholar] [CrossRef]
- Kamruzzaman, M. Is BMI Associated with Anemia and Hemoglobin Level of Women and Children in Bangladesh: A Study with Multiple Statistical Approaches. PLoS ONE 2021, 16, e0259116. [Google Scholar] [CrossRef]
- Hotamisligil, G.S. Inflammation and Metabolic Disorders. Nature 2006, 444, 860–867. [Google Scholar] [CrossRef]
- Stȩpień, M.; Stȩpień, A.; Wlazeł, R.N.; Paradowski, M.; Banach, M.; Rysz, J. Obesity Indices and Inflammatory Markers in Obese Non-Diabetic Normo- and Hypertensive Patients: A Comparative Pilot Study. Lipids Health Dis. 2014, 13, 29. [Google Scholar] [CrossRef] [PubMed]
- Ansari, S.; Haboubi, H.; Haboubi, N. Adult Obesity Complications: Challenges and Clinical Impact. Ther. Adv. Endocrinol. Metab. 2020, 11, 2042018820934955. [Google Scholar] [CrossRef]
- Atsma, F.; Veldhuizen, I.; De Kort, W.; Van Kraaij, M.; Pasker-De Jong, P.; Deinum, J. Hemoglobin Level Is Positively Associated with Blood Pressure in a Large Cohort of Healthy Individuals. Hypertension 2012, 60, 936–941. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.J.; Sim, C.S.; Jang, T.W.; Ahn, Y.S.; Jeong, K.S. Association between Sleep Quality and Type of Shift Work in Korean Firefighters. Ann. Occup. Environ. Med. 2022, 34, e27. [Google Scholar] [CrossRef]
- Belviranli, M.; Okudan, N.; Kabak, B. The Effects of Acute High-Intensity Interval Training on Hematological Parameters in Sedentary Subjects. Med. Sci. 2017, 5, 15. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, I. Hemorheological Alterations and Physical Activity. Appl. Sci. 2022, 12, 10374. [Google Scholar] [CrossRef]
- Mairbäurl, H. Red Blood Cells in Sports: Effects of Exercise and Training on Oxygen Supply by Red Blood Cells. Front. Physiol. 2013, 4, 70509. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, M.S.; Ali, N.; Ali, Z.E.S. Haemorheology in Exercise and Training. Sports Med. 2005, 35, 649–670. [Google Scholar] [CrossRef] [PubMed]
- Brun, J.F.; Varlet-Marie, E.; Connes, P.; Aloulou, I. Hemorheological Alterations Related to Training and Overtraining. Biorheology 2010, 47, 95–115. [Google Scholar] [CrossRef] [PubMed]
- Convertino, V.A. Blood Volume: Its Adaptation to Endurance Training. Med. Sci. Sports Exerc. 1991, 23, 1338–1348. [Google Scholar] [CrossRef]
- Buono, M.J.; Krippes, T.; Kolkhorst, F.W.; Williams, A.T.; Cabrales, P. Increases in core temperature counterbalance effects of hemoconcentration on blood viscosity during prolonged exercise in the heat. Exp. Physiol. 2016, 101, 332. [Google Scholar] [CrossRef] [PubMed]
- Wardyn, G.G.; Rennard, S.I.; Brusnahan, S.K.; McGuire, T.R.; Carlson, M.L.; Smith, L.M.; McGranaghan, S.; Sharp, J.G. Effects of Exercise on Hematological Parameters, Circulating Side Population Cells, and Cytokines. Exp. Hematol. 2008, 36, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Chan-Yeung, M.; Ferreira, P.; Frohlich, J.; Schulzer, M.; Tan, F. The Effects of Age, Smoking, and Alcohol on Routine Laboratory Tests. Am. J. Clin. Pathol. 1981, 75, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Malenica, M.; Prnjavorac, B.; Bego, T.; Dujic, T.; Semiz, S.; Skrbo, S.; Gusic, A.; Hadzic, A.; Causevic, A. Effect of Cigarette Smoking on Haematological Parameters in Healthy Population. Med. Arch. 2017, 71, 132. [Google Scholar] [CrossRef]
- Aldosari, K.H.; Ahmad, G.; Al-Ghamdi, S.; Alsharif, M.H.K.; Elamin, A.Y.; Musthafa, M.; Abbas, M.Y.; Alqarni, A.A.; Alqudeebi, S.K.; Binsaqer, A.A.; et al. The Influence and Impact of Smoking on Red Blood Cell Morphology and Buccal Microflora: A Case-Control Study. J. Clin. Lab. Anal. 2020, 34, e23212. [Google Scholar] [CrossRef]
- Ahmed, I.A.; Mohammed, M.A.; Hassan, H.M.; Ali, I.A. Relationship between Tobacco Smoking and Hematological Indices among Sudanese Smokers. J. Health Popul. Nutr. 2024, 43, 5. [Google Scholar] [CrossRef] [PubMed]
- Ballard, H.S. The Hematological Complications of Alcoholism. Alcohol Health Res. World 1997, 21, 42. [Google Scholar] [CrossRef] [PubMed]
- Kelley, K.C.; Salen, P.; Wojda, T.R.; Hasani, A.Z.; Luster, J.; Seoane, J.; Cohen, M.Z.; Castillo, R.; Stawicki, S.P. Impact of blood alcohol concentration on hematologic and serum chemistry parameters in trauma patients: Analysis of data from a high-volume level 1 trauma center. Int. J. Crit. Illn. Inj. Sci. 2021, 11, 18–24. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jain, R.; George, A.B.; Narnoli, S. Haematological Changes in Alcohol and Substance Use Disorders—An Overview. Int. Arch. Subst. Abuse Rehabil. 2020, 2, 006. [Google Scholar] [CrossRef]
- Del Rio João, K.A.; Becker, N.B.; de Neves Jesus, S.; Isabel Santos Martins, R. Validation of the Portuguese Version of the Pittsburgh Sleep Quality Index (PSQI-PT). Psychiatry Res. 2017, 247, 225–229. [Google Scholar] [CrossRef]
- Buysse, D.J.; Reynolds, C.F.; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A New Instrument for Psychiatric Practice and Research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Buysse, D.J.; Reynolds, C.F.; Monk, T.H.; Hoch, C.C.; Yeager, A.L.; Kupfer, D.J. Quantification of Subjective Sleep Quality in Healthy Elderly Men and Women Using the Pittsburgh Sleep Quality Index (PSQI). Sleep 1991, 14, 331–338. [Google Scholar] [CrossRef]
- Simundic, A.M.; Cornes, M.; Grankvist, K.; Lippi, G.; Nybo, M. Standardization of Collection Requirements for Fasting Samples For the Working Group on Preanalytical Phase (WG-PA) of the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM). Clin. Chim. Acta 2014, 432, 33–37. [Google Scholar] [CrossRef]
- WHO Capillary Sampling. WHO Guidelines on Drawing Blood: Best Practices in Phlebotomy; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- WHO. The Blood Cold Chain: Guide to the Selection and Procurement of Equipment and Accessories; Department of Blood Safety and Clinical Technology, World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
Sociodemographic Variables | n | % | |
---|---|---|---|
Sex | Female | 36 | 16% |
Male | 170 | 73% | |
No answer | 27 | 12% | |
Total | 233 | 100% | |
Age group | 18–34 | 89 | 38% |
35–49 | 107 | 46% | |
>50 | 30 | 13% | |
No answer | 7 | 3% | |
Total | 233 | 100% | |
BMI | Underweight (≤16–18.49 kg/m2) | 3 | 1% |
Average weight (18.50–24.99 kg/m2) | 62 | 27% | |
Pre-obesity (25.00–29.99 kg/m2) | 102 | 44% | |
Obesity I (30.00–34.99 kg/m2) | 38 | 16% | |
Obesity II (35.00–39.99 kg/m2) | 8 | 3% | |
Obesity III (≥40.00 kg/m2) | 3 | 1% | |
No answer | 17 | 7% | |
Total | 233 | 100% | |
Physical exercise | Yes | 172 | 74% |
No | 54 | 23% | |
No answer | 7 | 3% | |
Total | 233 | 100% | |
Tobacco Consumptions | Smoker | 93 | 40% |
Nonsmoker | 135 | 58% | |
No answer | 5 | 2% | |
Total | 233 | 100% | |
Alcohol intake | Consumer | 58 | 25% |
Yes | 156 | 67% | |
No | 19 | 8% | |
Total | 233 | 100% | |
Coffee Habits | Yes | 192 | 82% |
No | 31 | 13% | |
No answer | 10 | 4% | |
Total | 233 | 100% |
PSQI Dimensions | % | Mean ± SD | |
---|---|---|---|
PSQI Subjective Quality of Sleep | Very good | 30 | 0.83 ± 0.58 |
Good | 59 | ||
Bad | 8 | ||
Very bad | 4 | ||
Total | 100 | ||
PSQI Sleep latency | ≤15 min | 31 | 1.13 ± 0.86 |
16 to 30 min | 38 | ||
31 to 60 min | 18 | ||
≥60 min | 14 | ||
Total | 100 | ||
PSQI Sleep duration | More than 7 h | 39 | 0.89 ± 0.86 |
6 to 7 h | 34 | ||
5 to 6 h | 24 | ||
Less than 5 h | 4 | ||
Total | 100 | ||
PSQI Sleep efficiency | Above 85% | 74 | 0.42 ± 0.84 |
75% to 84% | 15 | ||
65% to 74% | 5 | ||
Under 65% | 6 | ||
Total | 100 | ||
PSQI Sleep disturbance | Nule disturbance | 10 | 1.03 ± 0 |
Rare disturbance | 78 | ||
Few disturbance | 13 | ||
Many disturbance | 0 | ||
Total | 100 | ||
PSQI Use of sleep medication | Never | 88 | 0.17 ± 0.57 |
Less than once a week | 7 | ||
1 to 2 times a week | 1 | ||
≥3 times a week | 3 | ||
Total | 100 | ||
PSQI Daytime disfunction | No disfunction | 100 | 0.29 ± 0.58 |
Rare disfunction | 74 | ||
Some disfunction | 20 | ||
Few disfunction | 6 | ||
Many disfunction | 1 | ||
Total | 100 | ||
PSQI global score | Good sleeper (PSQI < 5) | 55 | 4.74 ± 3.05 |
Poor sleeper (PSQI > 5) | 45 | ||
Total | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves, S.; Silva, F.; Esteves, F.; Costa, S.; Slezakova, K.; Alves, M.; Pereira, M.; Teixeira, J.; Morais, S.; Fernandes, A.; et al. The Impact of Sleep on Haematological Parameters in Firefighters. Clocks & Sleep 2024, 6, 291-311. https://doi.org/10.3390/clockssleep6030021
Alves S, Silva F, Esteves F, Costa S, Slezakova K, Alves M, Pereira M, Teixeira J, Morais S, Fernandes A, et al. The Impact of Sleep on Haematological Parameters in Firefighters. Clocks & Sleep. 2024; 6(3):291-311. https://doi.org/10.3390/clockssleep6030021
Chicago/Turabian StyleAlves, Sara, Francisca Silva, Filipa Esteves, Solange Costa, Klara Slezakova, Maria Alves, Maria Pereira, João Teixeira, Simone Morais, Adília Fernandes, and et al. 2024. "The Impact of Sleep on Haematological Parameters in Firefighters" Clocks & Sleep 6, no. 3: 291-311. https://doi.org/10.3390/clockssleep6030021
APA StyleAlves, S., Silva, F., Esteves, F., Costa, S., Slezakova, K., Alves, M., Pereira, M., Teixeira, J., Morais, S., Fernandes, A., Queiroga, F., & Vaz, J. (2024). The Impact of Sleep on Haematological Parameters in Firefighters. Clocks & Sleep, 6(3), 291-311. https://doi.org/10.3390/clockssleep6030021