Sleep Fragmentation Modulates the Neurophysiological Correlates of Cognitive Fatigue
Abstract
:1. Introduction
2. Results
2.1. Resting-States EEG
2.1.1. Theta Band (~4.75–6 Hz)
2.1.2. Alpha Band (~9–12.25 Hz)
2.1.3. Beta Band (~13–19 Hz)
2.2. TloadDback EEG
Beta Band (~12.5–24 Hz)
3. Materials and Methods
3.1. Participants
3.2. General Experimental Procedure
3.3. Sleep-Fragmentation Procedure
3.4. Cognitive Fatigue-Inducing TloadDback Task
3.5. Electroencephalography
3.6. Statistics
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xie, L.; Kang, H.; Xu, Q.; Chen, M.J.; Liao, Y.; Thiyagarajan, M.; O’Donnell, J.M.; Christensen, D.J.; Nicholson, C.; Iliff, J.J.; et al. Sleep drives metabolite clearance from the adult brain. Science 2013, 342, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Chai, Y.; Yang, F.; Xu, S.; Basner, M.; Detre, J.A.; Dinges, D.F.; Rao, H. Effects of Sleep Deprivation and Recovery Sleep on Human Brain Network Organization. Sleep 2018, 41 (Suppl. S1), A85–A86. [Google Scholar] [CrossRef]
- Laharnar, N.; Fatek, J.; Zemann, M.; Glos, M.; Lederer, K.; Suvorov, A.V.; Demin, A.V.; Penzel, T.; Fietze, I. A sleep intervention study comparing effects of sleep restriction and fragmentation on sleep and vigilance and the need for recovery. Physiol. Behav. 2020, 215, 112794. [Google Scholar] [CrossRef] [PubMed]
- Killgore WD, S. Effects of sleep deprivation on cognition. Prog. Brain Res. 2010, 185, 105–129. [Google Scholar]
- Sharma, S.; Kavuru, M. Sleep and Metabolism: An Overview. Int. J. Endocrinol. 2010, 2010, 270832. [Google Scholar] [CrossRef]
- Hirshkowitz, M.; Whiton, K.; Albert, S.M.; Alessi, C.; Bruni, O.; DonCarlos, L.; Hazen, N.; Herman, J.; Katz, E.S.; Kheirandish-Gozal, L.; et al. National Sleep Foundation’s sleep time duration recommendations: Methodology and results summary. Sleep Health 2015, 1, 40–43. [Google Scholar] [CrossRef]
- Watson, N.F.; Badr, M.S.; Belenky, G.; Bliwise, D.L.; Buxton, O.M.; Buysse, D.; Dinges, D.F.; Gangwisch, J.; Grandner, M.A.; Kushida, C.; et al. Recommended amount of sleep for a healthy adult: A joint consensus statement of the American Academy of Sleep Medicine and Sleep Research Society. Sleep 2015, 38, 843–844. [Google Scholar] [CrossRef]
- Touzet, C. Cognitive fatigue: An impaired cortical inhibitory replenishment. Brain Inj. 2017, 31, 1625–1631. [Google Scholar] [CrossRef]
- Ohayon, M.M. Prévalence et comorbidité des troubles du sommeil dans la population générale. Rev. Prat. 2007, 57, 1521–1528. [Google Scholar]
- Philip, P.; Stoohs, R.; Guilleminault, C. Sleep fragmentation in normals: A model for sleepiness associated with upper airway resistance syndrome. Sleep 1994, 17, 242–247. [Google Scholar] [CrossRef]
- Durmer, J.S.; Dinges, D.F. Neurocognitive consequences of sleep deprivation. Semin. Neurol. 2005, 25, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Riemann, D.; Spiegelhalder, K.; Nissen, C.; Hirscher, V.; Baglioni, C.; Feige, B. REM sleep instability–a new pathway for insomnia? Pharmacopsychiatry 2012, 45, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Ren, R.; Zhang, Y.; Yang, L.; Shi, Y.; Covassin, N.; Tang, X. Sleep fragmentation during rapid eye movement sleep and hypertension in obstructive sleep apnea. J. Hypertens. 2023, 41, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Stepanski, E.J. The Effect of Sleep Fragmentation on Daytime Function. Sleep 2002, 25, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Nair, D.; Zhang, S.X.; Ramesh, V.; Hakim, F.; Kaushal, N.; Wang, Y.; Gozal, D. Sleep fragmentation induces cognitive deficits via nicotinamide adenine dinucleotide phosphate oxidase–dependent pathways in mouse. Am. J. Respir. Crit. Care Med. 2011, 184, 1305–1312. [Google Scholar] [CrossRef]
- Mannarino, M.R.; Di Filippo, F.; Pirro, M. Obstructive sleep apnea syndrome. Eur. J. Intern. Med. 2012, 23, 586–593. [Google Scholar] [CrossRef]
- Alomri, R.M.; Kennedy, G.A.; Wali, S.O.; Ahejaili, F.; Robinson, S.R. Differential associations of hypoxia, sleep fragmentation, and depressive symptoms with cognitive dysfunction in obstructive sleep apnea. Sleep 2021, 44, zsaa213. [Google Scholar] [CrossRef]
- Colt, H.G.; Haas, H.; Rich, G.B. Hypoxemia vs sleep fragmentation as cause of excessive daytime sleepiness in obstructive sleep apnea. Chest 1991, 100, 1542–1548. [Google Scholar] [CrossRef]
- Valencia-Flores, M.; Mokhlesi, B.; Santiago-Ayala, V.; Reséndiz-García, M.; Castaño-Meneses, A.; Meza-Vargas, M.S.; Mendoza, A.; Orea-Tejeda, A.; García-Ramos, G.; Aguilar-Salinas, C.; et al. Intermittent hypoxemia and sleep fragmentation: Associations with daytime alertness in obese sleep apnea patients living at moderate altitude. Sleep Med. 2016, 20, 103–109. [Google Scholar] [CrossRef]
- Verstraeten, E. Neurocognitive effects of obstructive sleep apnea syndrome. Curr. Neurol. Neurosci. Rep. 2007, 7, 161–166. [Google Scholar] [CrossRef]
- Krysta, K.; Bratek, A.; Zawada, K.; Stepańczak, R. Cognitive deficits in adults with obstructive sleep apnea compared to children and adolescents. J. Neural Transm. 2017, 124 (Suppl. S1), 187–201. [Google Scholar] [CrossRef] [PubMed]
- Daurat, A.; Sarhane, M.; Tiberge, M. Syndrome d’apnées obstructives du sommeil et cognition: Une revue. Neurophysiol. Clin. 2016, 46, 201–215. [Google Scholar] [CrossRef] [PubMed]
- Csábi, E.; Benedek, P.; Janacsek, K.; Katona, G.; Nemeth, D. Sleep disorder in childhood impairs declarative but not nondeclarative forms of learning. J. Clin. Exp. Neuropsychol. 2013, 35, 677–685. [Google Scholar] [CrossRef]
- Daurat, A.; Foret, J.; Bret-Dibat, J.L.; Fureix, C.; Tiberge, M. Spatial and temporal memories are affected by sleep fragmentation in obstructive sleep apnea syndrome. J. Clin. Exp. Neuropsychol. 2008, 30, 91–101. [Google Scholar] [CrossRef]
- Djonlagic, I.; Saboisky, J.; Carusona, A.; Stickgold, R.; Malhotra, A. Increased sleep fragmentation leads to impaired off-line consolidation of motor memories in humans. PLoS ONE 2012, 7, e34106. [Google Scholar] [CrossRef]
- Olaithe, M.; Bucks, R.S. Executive Dysfunction in OSA before and after Treatment: A Meta-Analysis. Sleep 2013, 36, 1297–1305. [Google Scholar] [CrossRef]
- Weaver, T.E.; George, C.F.P. Cognition Performance in Patients with Obstructive Sleep Apnea. In Principles and Practice of Sleep Medicine, 5th ed.; Kryger, M., Roth, T., Dement, W., Eds.; Elsevier Saunders: St. Louis, MO, USA, 2011; pp. 1194–1205. [Google Scholar]
- Sériès, F.; Roy, N.; Marc, I. Effects of sleep deprivation and sleep fragmentation on upper airway collapsibility in normal subjects. Am. J. Respir. Crit. Care Med. 1994, 150, 481–485. [Google Scholar] [CrossRef] [PubMed]
- Griefahn, B.; Bröde, P.; Marks, A.; Basner, M. Autonomic arousals related to traffic noise during sleep. Sleep 2008, 31, 569–577. [Google Scholar] [CrossRef]
- Mairesse, O.; Damen, V.; Newell, J.; Kornreich, C.; Verbanck, P.; Neu, D. The Brugmann Fatigue Scale: An Analogue to the Epworth Sleepiness Scale to Measure Behavioral Rest Propensity. Behav. Sleep Med. 2019, 24, 437–458. [Google Scholar] [CrossRef]
- Aziezah, F.; Pratama, S.H.; Yulianti; Wahidah, E.; Haryanto, F. Suprijadi Characterization of Individual Alpha Frequency of EEG Signals as an Indicator of Cognitive Fatigue. J. Phys. Conf. Ser. 2020, 1505, 012068. [Google Scholar] [CrossRef]
- Hamann, A.; Carstengerdes, N. Assessing the development of mental fatigue during simulated flights with concurrent EEG-fNIRS measurement. Sci. Rep. 2023, 13, 4738. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, E. Fatigue in industry. Br. J. Ind. Med. 1979, 36, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Marcora, S.M.; Staiano, W.; Manning, V. Mental fatigue impairs physical performance in humans. J. Appl. Physiol. 2009, 106, 857–864. [Google Scholar] [CrossRef]
- Holtzer, R.; Shuman, M.; Mahoney, J.R.; Lipton, R.; Verghese, J. Cognitive fatigue defined in the context of attention networks. Neuropsychology, Development, and Cognition. Sect. B Aging Neuropsychol. Cogn. 2011, 18, 108–128. [Google Scholar] [CrossRef]
- Massar, S.A.A.; Wester, A.E.; Volkerts, E.R.; Kenemans, J.L. Manipulation specific effects of mental fatigue: Evidence from novelty processing and simulated driving. Psychophysiology 2010, 47, 1119–1126. [Google Scholar] [CrossRef]
- Kato, Y.; Endo, H.; Kizuka, T. Mental fatigue and impaired response processes: Eventrelated brain potentials in a Go/NoGo task. Int. J. Psychophysiol. 2009, 72, 204–211. [Google Scholar] [CrossRef]
- Neu, D.; Mairesse, O.; Hoffmann, G.; Valsamis, J.-B.; Verbanck, P.; Linkowski, P.; Le Bon, O. Do “sleepy” and “tired” go together? Rasch analysis of the relationships between sleepiness, fatigue and nonrestorative sleep complaints in a nonclinical population sample. Neuroepidemiology 2010, 35, 1–11. [Google Scholar] [CrossRef]
- Stone, M.H.; Pierce, K.; Wilson, G.D.; Rozenek, R. Heart rate and lactate levels during weight-training exercise in trained and untrained men. Physician Sportsmed. 1987, 15, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Neu, D.; Kajosch, H.; Peigneux, P.; Verbanck, P.; Linkowski, P.; Le Bon, O. Cognitive impairment in fatigue and sleepiness associated conditions. Psychiatry Res. 2011, 189, 128–134. [Google Scholar] [CrossRef]
- Trejo, L.; Kubitz, K.; Rosipal, R.; Kochavi, R.; Montgomery, L. EEG-Based Estimation and Classification of Mental Fatigue. Psychology 2015, 6, 572–589. [Google Scholar] [CrossRef]
- Lorist, M.M.; Klein, M.; Nieuwenhuis, S. Mental fatigue and task control: Planning and preparation. Psychophysiology 2000, 37, 614–625. [Google Scholar] [CrossRef] [PubMed]
- Lorist, M.M.; Boksem, M.S.; Ridderinkhof, K.R. Impaired cognitive control and reduced cingulate activity during mental fatigue. Brain Research. Cogn. Brain Res. 2005, 24, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, K.; Tanaka, M.; Fukuda, S.; Imai-Matsumura, K.; Watanabe, Y. Relationship between cognitive functions and prevalence of fatigue in elementary and junior high school students. Brain Dev. 2011, 33, 470–479. [Google Scholar] [CrossRef] [PubMed]
- Van der Linden, D.; Frese, M.; Sonnentag, S. The impact of mental fatigue on exploration in a complex computer task: Rigidity and loss of systematic strategies. Hum. Factors 2003, 45, 483–494. [Google Scholar] [CrossRef]
- Ackerman, P.L.; Kanfer, R. Test Length and Cognitive Fatigue: An Empirical Examination of Effects on Performance and Test-Taker Reactions. J. Exp. Psychol. Appl. 2009, 15, 163–181. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Wu, W.; Wang, J.; Detre, J.A.; Dinges, D.F. Perfusion Study of the Time-on-Task Effect. NeuroImage 2010, 49, 3426–3435. [Google Scholar] [CrossRef] [PubMed]
- Cook, D.B.; O’Connor, P.J.; Lange, G.; Steffener, J. Functional neuroimaging correlates of mental fatigue induced by cognition among chronic fatigue syndrome patients and controls. NeuroImage 2007, 36, 108–122. [Google Scholar] [CrossRef]
- Shigihara, Y.; Tanaka, M.; Ishii, A.; Kanai, E.; Funakura, M.; Watanabe, Y. Two types of mental fatigue affect spontaneous oscillatory brain activities in different ways. Behav. Brain Funct. 2013, 9, 2. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Ding, M.; Kluger, B.M. Change in intraindividual variability over time as a key metric for defining performance-based cognitive fatigability. Brain Cogn. 2014, 85, 251–258. [Google Scholar] [CrossRef]
- Wang, C.; Trongnetrpunya, A.; Samuel, I.B.H.; Ding, M.; Kluger, B.M. Compensatory neural activity in response to cognitive fatigue. J. Neurosci. 2016, 36, 3919–3924. [Google Scholar] [CrossRef]
- Borragán, G.; Slama, H.; Bartolomei, M.; Peigneux, P. Cognitive fatigue: A Time-based Resource-sharing account. Cortex 2017, 89, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Barrouillet, P.; Camos, V. As Time Goes By: Temporal Constraints in Working Memory. Curr. Dir. Psychol. Sci. 2012, 21, 413–419. [Google Scholar] [CrossRef]
- Borragán, G.; Guerrero-Mosquera, C.; Guillaume, C.; Slama, H.; Peigneux, P. Decreased prefrontal connectivity parallels cognitive fatigue-related performance decline after sleep deprivation. Opt. Imaging Study. Biol. Psychol. 2019, 144, 115–124. [Google Scholar]
- Borragán, G.; Gilson, M.; Atas, A.; Slama, H.; Lysandropoulos, A.; De Schepper, M.; Peigneux, P. Cognitive Fatigue, Sleep and Cortical Activity in Multiple Sclerosis Disease. A Behavioral, Polysomnographic and Functional Near-Infrared Spectroscopy Investigation. Front. Hum. Neurosci. 2018, 12, 378. [Google Scholar] [CrossRef]
- Benkirane, O.; Delwiche, B.; Mairesse, O.; Peigneux, P. Impact of Sleep Fragmentation on Cognition and Fatigue. Int. J. Environ. Res. Public Health 2022, 19, 15485. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Huang, S.; Xu, W.; Jiao, W.; Jiang, Y.; Gao, Z.; Zhang, J. The impact of mental fatigue on brain activity: A comparative study both in resting state and task state using EEG. BMC Neurosci. 2020, 21, 20. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Z.; Wang, Y.; Zhou, G.; Wang, L. EEG beta power and corticomuscular coherence as a mechanism for effective brain-computer interface control. Front. Neurosci. 2020, 14, 22. [Google Scholar]
- Tran, Y.; Craig, A.; Craig, R.; Chai, R.; Nguyen, H. The influence of mental fatigue on brain activity: Evidence from a systematic review with meta-analyses. Psychophysiology 2020, 57, e13554. [Google Scholar] [CrossRef]
- Tian, S.; Wang, Y.; Dong, G.; Pei, W.; Chen, H. Mental fatigue estimation using EEG in a vigilance task and resting states. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 1980–1983. [Google Scholar]
- Wascher, E.; Rasch, B.; Sänger, J.; Hoffmann, S.; Schneider, D.; Rinkenauer, G.; Heuer, H.; Gutberlet, I. Frontal theta activity reflects distinct aspects of mental fatigue. Biol. Psychol. 2014, 96, 57–65. [Google Scholar] [CrossRef]
- Tanaka, M.; Shigihara, Y.; Funakura, M.; Kanai, E.; Watanabe, Y. Fatigue-Associated Alterations of Cognitive Function and Electroencephalographic Power Densities. PLoS ONE 2012, 7, e34774. [Google Scholar] [CrossRef]
- Arnau, S.; Liegel, N.; Wascher, E. Frontal midline theta power during the cue-target-interval reflects increased cognitive effort in rewarded task-switching. Cortex 2024, 180, 94–110. [Google Scholar] [CrossRef] [PubMed]
- Balconi, M.; Acconito, C.; Allegretta, R.A.; Crivelli, D. What is the relationship between metacognition and mental effort in executive functions? the contribution of neurophysiology. Behav. Sci. 2023, 13, 918. [Google Scholar] [CrossRef] [PubMed]
- So, W.K.Y.; Wong, S.S.; Mak, J.N.; Chan, R.H.M. An evaluation of mental workload with frontal eeg. PLoS ONE 2017, 12, e0174949. [Google Scholar] [CrossRef]
- Vogel, W.; Broverman, D.M.; Klaiber, E.L. EEG and mental abilities. Electroencephalogr. Clin. Neurophysiol. 1968, 24, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Ellis, B.W.; Johns, M.W.; Lancaster, R.; Raptopoulos, P.; Angelopoulos, N.; Priest, R.G. The St. Mary’s Hospital sleep questionnaire: A study of reliability. Sleep 1981, 4, 93–97. [Google Scholar] [CrossRef]
- Lee, K.A.; Hicks, G.; Nino-Murcia, G. Validity and reliability of a scale to assess fatigue. Psychiatry Res. 1991, 36, 291–298. [Google Scholar] [CrossRef]
- Keil, A.; Debener, S.; Gratton, G.; Junghöfer, M.; Kappenman, E.S.; Luck, S.J.; Yee, C.M. Committee report: Publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography. Psychophysiology 2014, 51, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Oostenveld, R.; Fries, P.; Maris, E.; Schoffelen, J.-M. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 2011, 156869. [Google Scholar] [CrossRef]
- Campos Viola, F.; Thorne, J.; Edmonds, B.; Schneider, T.; Eichele, T.; Debener, S. Semi-automatic identification of independent components representing EEG artifact. Clin. Neurophysiol. 2009, 120, 868–877. [Google Scholar] [CrossRef]
- Maris, E.; Oostenveld, R. Nonparametric statistical testing of EEG- and MEG-data. J. Neurosci. Methods 2007, 164, 177–190. [Google Scholar] [CrossRef]
- Tarokh, L.; Carskadon, M.A.; Achermann, P. Developmental changes in brain connectivity assessed using the sleep EEG. Neuroscience 2010, 171, 622–634. [Google Scholar] [CrossRef] [PubMed]
- Corsi-Cabrera, M.; Ramos, J.; Arce, C.; Guevara, M.A.; Ponce de León, M.; Lorenzo, I. Changes in the waking EEG as a consequence of sleep and sleep deprivation. Sleep 1992, 15, 550–555. [Google Scholar] [CrossRef]
- Zhang, J.; Lau, E.Y.Y.; Hsiao, J.H. Sleep deprivation compromises resting-state emotional regulatory processes: An EEG study. J. Sleep Res. 2019, 28, e12671. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, I.; Ramos, J.; Arce, C.; Guevara, M.A.; Corsi-Cabrera, M. Effect of total sleep deprivation on reaction time and waking EEG activity in man. Sleep 1995, 18, 346–354. [Google Scholar] [CrossRef]
- Corsi-Cabrera, M.; Arce, C.; Ramos, J.; Lorenzo, I.; Guevara, M.A. Time course of reaction time and EEG while performing a vigilance task during total sleep deprivation. Sleep 1996, 19, 563–569. [Google Scholar] [CrossRef]
- Miraglia, F.; Tomino, C.; Vecchio, F.; Gorgoni, M.; De Gennaro, L.; Rossini, P.M. The brain network organization during sleep onset after deprivation. Clin. Neurophysiol. 2020, 131, 2841–2851. [Google Scholar] [CrossRef]
- Matta, P.-M.; Baurès, R.; Duclay, J.; Alamia, A. Modulation of beta oscillatory dynamics in motor and frontal areas during physical fatigue. bioRxiv 2024. [Google Scholar] [CrossRef]
- Egner, T.; Gruzelier, J.H. EEG Biofeedback of low beta band components: Frequency-specific effects on variables of attention and event-related brain potentials. Clin. Neurophysiol. 2004, 115, 131–139. [Google Scholar] [CrossRef]
- Stoll, F.M.; Wilson, C.R.E.; Faraut, M.C.M.; Vezoli, J.; Knoblauch, K.; Procyk, E. The effects of cognitive control and time on frontal beta oscillations. Cereb. Cortex 2016, 26, 1715–1732. [Google Scholar] [CrossRef]
- Khanna, P.; Carmena, J.M. Neural oscillations: Beta band activity across motor networks. Curr. Opin. Neurobiol. 2015, 32, 60–67. [Google Scholar] [CrossRef]
- Spitzer, B.; Haegens, S. Beyond the status quo: A role for beta oscillations in endogenous content (re)activation. eNeuro 2017, 4, ENEURO.0170-17.2017. [Google Scholar] [CrossRef] [PubMed]
- Mairesse, O.; Neu, D.; Rosseel, Y.; Van Acker, F.; Cluydts, R.; Theuns, P. Comparative sensitivity of outcome variables of a software-based behavioral sleep resistance task. Ind. Health 2009, 47, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Palacios-García, I.; Silva, J.; Villena-González, M.; Campos-Arteaga, G.; Artigas-Vergara, C.; Luarte, N.; Rodríguez, E.; Bosman, C.A. Increase in beta power reflects attentional top-down modulation after psychosocial stress induction. Front. Hum. Neurosci. 2021, 15, 630813. [Google Scholar] [CrossRef] [PubMed]
- Engel, A.K.; Fries, P. Beta-band oscillations—Signalling the status quo? Curr. Opin. Neurobiol. 2010, 20, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, M.; Arand, D. Clinical effects of sleep fragmentation versus sleep deprivation. Sleep Med. Rev. 2003, 7, 297–310. [Google Scholar] [CrossRef]
- Steriade, M.; Nunez, A.; Amzica, F. A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: Depolarizing and hyperpolarizing components. J. Neurosci. 1993, 13, 3252–3265. [Google Scholar]
- Belyavin, A.; Wright, N.A. Changes in electrical activity of the brain with vigilance. Electroencephalogr. Clin. Neurophysiol. 1987, 66, 137–144. [Google Scholar] [CrossRef]
- Mander, B.A.; Reid, K.J.; Baron, K.G.; Tjoa, T.; Parrish, T.B.; Paller, K.A.; Gitelman, D.R.; Zee, P.C. Eeg measures index neural and cognitive recovery from sleep deprivation. J. Neurosci. 2010, 30, 2686–2693. [Google Scholar] [CrossRef]
- Michalopoulos, K.; Sakkalis, V.; Iordanidou, V.; Zervakis, M. Activity detection and causal interaction analysis among independent eeg components from memory related tasks. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009. [Google Scholar] [CrossRef]
- Zhang, Y.; Ku, Y.; Sun, J.; Daskalakis, Z.J.; Yuan, T. Intermittent theta burst stimulation to the left dorsolateral prefrontal cortex improves working memory of subjects with methamphetamine use disorder. Psychol. Med. 2021, 53, 2427–2436. [Google Scholar] [CrossRef]
- Dimpfel, W.; Tausend, S.; Suliman, S.; Dipah, G.N.C. Psychophysiological effectiveness of calmvalera hevert tablets as measured by enkephalovision in anxious subjects during audio-visual cognitive and emotional challenges: A double-blind, randomized, placebo-controlled, 2-armed, phase iv study in parallel design. J. Behav. Brain Sci. 2016, 6, 404–431. [Google Scholar] [CrossRef]
- Rosenblum, Y.; Maidan, I.; Goldstein, O.; Gana-Weisz, M.; Orr-Urtreger, A.; Bregman, N.; Giladi, N.; Mirelman, A.; Shiner, T. Event-related oscillations in dementia with lewy bodies with a mutation in the gba gene. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res. Rev. 1999, 29, 169–195. [Google Scholar] [CrossRef] [PubMed]
- Hanslmayr, S.; Gross, J.; Klimesch, W.; Shapiro, K.L. The role of α oscillations in temporal attention. Brain Res. Rev. 2011, 67, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Sauseng, P.; Griesmayr, B.; Freunberger, R.; Klimesch, W. Control mechanisms in working memory: A possible function of EEG theta oscillations. Neurosci. Biobehav. Rev. 2010, 34, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
- Makeig, S.; Jung, T.P.; Sejnowski, T.J. Awareness during drowsiness: Dynamics and electrophysiological correlates. Can. J. Exp. Psychol. 2000, 54, 266–273. [Google Scholar] [CrossRef]
- Oken, B.S.; Salinsky, M.C.; Elsas, S.M. Vigilance, alertness, or sustained attention: Physiological basis and measurement. Clin. Neurophysiol. 2006, 117, 1885–1901. [Google Scholar] [CrossRef]
- Lal, S.K.L.; Craig, A. Driver fatigue: Electroencephalography and psychological assessment. Psychophysiology 2002, 39, 313–321. [Google Scholar] [CrossRef]
- Gorgoni, M.; D’Atri, A.; Scarpelli, S.; Ferrara, M.; Gennaro, L. The electroencephalographic features of the sleep onset process and their experimental manipulation with sleep deprivation and transcranial electrical stimulation protocols. Neurosci. Biobehav. Rev. 2020, 114, 25–37. [Google Scholar] [CrossRef]
- Cote, K.A.; Milner, C.E.; Osip, S.L.; Ray, L.B.; Baxter, K.D. Waking quantitative electroencephalogram and auditory event-related potentials following experimentally induced sleep fragmentation. Sleep 2003, 26, 687–694. [Google Scholar] [CrossRef]
- Kingshott, R.N.; Cosway, R.J.; Deary, I.J.; Douglas, N.J. The effect of sleep fragmentation on cognitive processing using computerized topographic brain mapping. J. Sleep Res. 2000, 9, 353–357. [Google Scholar] [CrossRef]
- Ko, C.-H.; Fang, Y.-W.; Tsai, L.-L.; Hsieh, S. The effect of experimental sleep fragmentation on error monitoring. Biol. Psychol. 2015, 104, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Cano, G.; Mochizuki, T.; Saper, C. Neural circuitry of stress-induced insomnia in rats. J. Neurosci. 2008, 28, 10167–10184. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Mückschel, M.; Beste, C. Event-related synchronization/desynchronization and functional neuroanatomical regions associated with fatigue effects on cognitive flexibility. J. Neurophysiol. 2021, 126, 383–397. [Google Scholar] [CrossRef] [PubMed]
- Dasari, D.; Crowe, C.; Ling, C.; Zhu, M.; Ding, L. EEG pattern analysis for physiological indicators of mental fatigue in simulated air traffic control tasks. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2010, 54, 205–209. [Google Scholar] [CrossRef]
- Nguyen, T.; Ahn, S.; Jang, H.; Jun, S.C.; Kim, J.G. Utilization of a combined EEG/NIRS system to predict driver drowsiness. Sci. Rep. 2017, 7, 43933. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benkirane, O.; Simor, P.; Mairesse, O.; Peigneux, P. Sleep Fragmentation Modulates the Neurophysiological Correlates of Cognitive Fatigue. Clocks & Sleep 2024, 6, 602-618. https://doi.org/10.3390/clockssleep6040041
Benkirane O, Simor P, Mairesse O, Peigneux P. Sleep Fragmentation Modulates the Neurophysiological Correlates of Cognitive Fatigue. Clocks & Sleep. 2024; 6(4):602-618. https://doi.org/10.3390/clockssleep6040041
Chicago/Turabian StyleBenkirane, Oumaïma, Peter Simor, Olivier Mairesse, and Philippe Peigneux. 2024. "Sleep Fragmentation Modulates the Neurophysiological Correlates of Cognitive Fatigue" Clocks & Sleep 6, no. 4: 602-618. https://doi.org/10.3390/clockssleep6040041
APA StyleBenkirane, O., Simor, P., Mairesse, O., & Peigneux, P. (2024). Sleep Fragmentation Modulates the Neurophysiological Correlates of Cognitive Fatigue. Clocks & Sleep, 6(4), 602-618. https://doi.org/10.3390/clockssleep6040041