Use of Basket Trials to Solve Sleep Problems in Patients with Rare Diseases
Abstract
:1. Introduction
2. Unmet Sleep Needs in Patients with Rare Diseases
2.1. The Patient Odyssey: Wilson’s Disease
2.2. Challenges in Determining Pathophysiology: Angelman Syndrome
2.3. Finding Potential Solutions: Prader-Willi Syndrome
3. The Need for Better Pathways
4. Rare Disease Sleep Summit and Critical Path Innovation Meeting
5. FDA CPIM Response
6. Our Response
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ahn, S.; Chung, M.L.; Logan, J.G. Sleep deficiency by caregiving status: Findings from nationally representative data. West. J. Nurs. Res. 2023, 45, 1120–1129. [Google Scholar] [CrossRef] [PubMed]
- Gibson, R.; Abey-Nesbit, R.; Gander, P.; Parsons, M. Exploring older care recipients’ sleep status as a predictor for informal carer distress: Evidence from New Zealand’s interRAI home care assessment data. BMJ Open 2023, 13, e073524. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Neurological Disorders and Stroke. Brain Basics: Understanding Sleep. 19 July 2023. Available online: https://www.ninds.nih.gov/health-information/public-education/brain-basics/brain-basics-understanding-sleep#:~:text=sleep%20is%20an%20important%20part,survival%20as%20food%20and%20water (accessed on 17 November 2023).
- Akhlaghi, M.; Kohanmoo, A. Sleep deprivation in development of obesity, effects on appetite regulation, energy metabolism, and dietary choices. Nutr. Res. Rev. 2023, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Cuddapah, V.A.; Hsu, C.T.; Li, Y.; Shah, H.M.; Saul, C.; Killiany, S.; Sehgal, A. Sleepiness, not total sleep amount, increases seizure risk. bioRxiv 2023. [Google Scholar] [CrossRef]
- Mao, T.; Fang, Z.; Chai, Y.; Deng, Y.; Rao, J.; Quan, P.; Goel, N.; Basner, M.; Guo, B.; Dinges, D.F.; et al. Sleep deprivation attenuates neural responses to outcomes from risky decision-making. Psychophysiology 2023, 61, e14465. [Google Scholar] [CrossRef]
- Watson, N.F.; Badr, M.S.; Belenky, G.; Bliwise, D.L.; Buxton, O.M.; Buysse, D.; Dinges, D.F.; Gangwisch, J.; Grandner, M.A.; Kushida, C.; et al. Recommended amount of sleep for a healthy adult: A joint consensus statement of the american academy of sleep medicine and sleep research society. Sleep 2015, 38, 843–844. [Google Scholar] [CrossRef]
- Agar, G.; Brown, C.; Sutherland, D.; Coulborn, S.; Oliver, C.; Richards, C. Sleep disorders in rare genetic syndromes: A meta-analysis of prevalence and profile. Mol. Autism 2021, 12, 18. [Google Scholar] [CrossRef]
- Buonfiglio, D.; Hummer, D.L.; Armstrong, A.; Ehlen, J.C.; DeBruyne, J.P. Angelman syndrome and melatonin: What can they teach us about sleep regulation. J. Pineal Res. 2020, 69, e12697. [Google Scholar] [CrossRef]
- Duis, J.; Pullen, L.C.; Picone, M.; Friedman, N.; Hawkins, S.; Sannar, E.; Pfalzer, A.C.; Shelton, A.R.; Singh, D.; Zee, P.C.; et al. Diagnosis and management of sleep disorders in Prader-Willi syndrome. J. Clin. Sleep Med. 2022, 18, 1687–1696. [Google Scholar] [CrossRef]
- Gadoth, N.; Oksenberg, A. Sleep and sleep disorders in rare hereditary diseases: A reminder for the pediatrician, pediatric and adult neurologist, general practitioner, and sleep specialist. Front. Neurol. 2014, 5, 133. [Google Scholar] [CrossRef]
- Shayota, B.J.; Elsea, S.H. Behavior and sleep disturbance in Smith–Magenis syndrome. Curr. Opin. Psychiatry 2019, 32, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Spruyt, K.; Braam, W.; Curfs, L.M. Sleep in Angelman syndrome: A review of evidence. Sleep Med. Rev. 2018, 37, 69–84. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration (FDA). Rare Diseases at FDA. Updated 13 December 2022. Available online: https://www.fda.gov/patients/rare-diseases-fda (accessed on 17 September 2024).
- About GARD. Genetic and Rare Diseases Information Center. Available online: https://rarediseases.info.nih.gov/about (accessed on 3 September 2024).
- Singh, D.; Miller, J.L.; Wassman, E.R.; Butler, M.G.; Shenk, A.F.; Converse, M.; Picone, M. The arduous path to drug approval for the management of Prader–Willi syndrome: A historical perspective and call to action. Int. J. Mol. Sci. 2023, 24, 11574. [Google Scholar] [CrossRef] [PubMed]
- Prather, A.A. Biomarkers of sleep and insomnia—Challenges and opportunities. Sleep 2022, 45, zsac240. [Google Scholar] [CrossRef] [PubMed]
- Carter, B.; Justin, H.S.; Gulick, D.; Gamsby, J.J. The molecular clock and neurodegenerative disease: A stressful time. Front. Mol. Biosci. 2021, 8, 644747. [Google Scholar] [CrossRef]
- Moysés-Oliveira, M.; Paschalidis, M.; Souza-Cunha, L.A.; Esteves-Guerreiro, P.A.; Adami, L.N.G.; Kloster, A.K.; Mosini, A.C.; Moreira, G.A.; Doria, S.; Tempaku, P.F.; et al. Genetic basis of sleep phenotypes and rare neurodevelopmental syndromes reveal shared molecular pathways. J. Neurosci. Res. 2023, 101, 1058–1067. [Google Scholar] [CrossRef]
- Dubessy, A.-L.; Arnulf, I. Sleepiness in neurological disorders. Rev. Neurol. 2023, 179, 755–766. [Google Scholar] [CrossRef]
- Sandahl, T.D.; Laursen, T.L.; Munk, D.E.; Vilstrup, H.; Weiss, K.H.; Ott, P. The prevalence of Wilson’s disease: An update. Hepatology 2020, 71, 722–732. [Google Scholar] [CrossRef]
- Nevsimalova, S.; Buskova, J.; Bruha, R.; Kemlink, D.; Sonka, K.; Vitek, L.; Marecek, Z. Sleep disorders in Wilson’s disease. Eur. J. Neurol. 2011, 18, 184–190. [Google Scholar] [CrossRef]
- Cheng, X.; Chen, Q.; Ma, H.M.; Ren, Q.M.; Jiao, S. Acute insomnia as the initial manifestation of Wilson’ s disease: A Case Report. Medicine 2024, 103, e39380. [Google Scholar] [CrossRef]
- Członkowska, A.; Litwin, T.; Dusek, P.; Ferenci, P.; Lutsenko, S.; Medici, V.; Rybakowski, J.K.; Weiss, K.H.; Schilsky, M.L. Wilson disease. Nat. Rev. Dis. Primers 2018, 4, 21. [Google Scholar] [CrossRef] [PubMed]
- Amann, V.C.; Maru, N.K.; Jain, V. Hypersomnolence in Wilson Disease. J. Clin. Sleep Med. 2015, 11, 1341–1343. [Google Scholar] [CrossRef] [PubMed]
- De Cock, V.C.; Woimant, F.; Poujois, A. Sleep disorders in Wilson’s disease. Curr. Neurol. Neurosci. Rep. 2019, 19, 84. [Google Scholar] [CrossRef] [PubMed]
- Picone, M.; Naujokas, M.F.; Gorman, C.; Jesteadt, L.; Kelly, E.; Kelly, J.; Bichell, T.J. Underrecognized Sleep Disorders Across Rare Diseases: Real-World Insights from a Patient and Caregiver Summit. TREND Community 9 June 2021. Available online: https://doi.org/10.21203/rs.3.rs-555846/v1 (accessed on 2 November 2023).
- Xu, J.; Deng, Q.; Qin, Q.; Vgontzas, A.N.; Basta, M.; Xie, C.; Li, Y. Sleep disorders in Wilson disease: A systematic review and meta-analysis. J. Clin. Sleep Med. 2020, 16, 219–230. [Google Scholar] [CrossRef]
- Tribl, G.G.; Trindade, M.C.; Bittencourt, T.; Lorenzi-Filho, G.; Alves, R.C.; de Andrade, D.C.; Fonoff, E.T.; Bor-Seng-Shu, E.; Machado, A.A.; Schenck, C.H.; et al. Wilson’s disease with and without rapid eye movement sleep behavior disorder compared to healthy matched controls. Sleep Med. 2016, 17, 179–185. [Google Scholar] [CrossRef]
- Poujois, A.; Mikol, J.; Woimant, F. Wilson disease: Brain pathology. Handb. Clin. Neurol. 2017, 142, 77–89. [Google Scholar] [CrossRef]
- Yuan, X.-Z.; Yang, R.-M.; Wang, X.-P. Management perspective of Wilson’s disease: Early diagnosis and individualized therapy. Curr. Neuropharmacol. 2021, 19, 465–485. [Google Scholar] [CrossRef]
- Yu, M.; Ren, L.; Zheng, M.; Hong, M.; Wei, Z. Delayed diagnosis of Wilson’s disease report from 179 newly diagnosed cases in China. Front. Neurol. 2022, 13, 884840. [Google Scholar] [CrossRef]
- National Organization for Rare Disorders (NORD). Angelman Syndrome. Updated 14 February 2018. Available online: https://rarediseases.org/rare-diseases/angelman-syndrome/ (accessed on 29 August 2024).
- Meng, L.; Person, R.E.; Beaudet, A.L. Ube3a-ATS is an atypical RNA polymerase II transcript that represses the paternal expression of Ube3a. Hum. Mol. Genet. 2012, 21, 3001–3012. [Google Scholar] [CrossRef]
- Williams, C.A.; Beaudet, A.L.; Clayton-Smith, J.; Knoll, J.H.; Kyllerman, M.; Laan, L.A.; Magenis, R.E.; Moncla, A.; Schinzel, A.A.; Summers, J.A.; et al. Angelman syndrome 2005: Updated consensus for diagnostic criteria. Am. J. Med. Genet. Part A 2006, 140A, 413–418. [Google Scholar] [CrossRef]
- Vendrame, M.; Loddenkemper, T.; Zarowski, M.; Gregas, M.; Shuhaiber, H.; Sarco, D.P.; Morales, A.; Nespeca, M.; Sharpe, C.; Haas, K.; et al. Analysis of EEG patterns and genotypes in patients with Angelman syndrome. Epilepsy Behav. 2012, 23, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Bakker, H.D.; Sidorov, M.S.; Fan, Z.; Lee, D.J.; Bird, L.M.; Chu, C.J.; Philpot, B.D. Abnormal coherence and sleep composition in children with Angelman syndrome: A retrospective EEG study. Mol. Autism. 2018, 9, 32. [Google Scholar] [CrossRef] [PubMed]
- Ehlen, J.C.; Jones, K.A.; Pinckney, L.; Gray, C.L.; Burette, S.; Weinberg, R.J.; Evans, J.A.; Brager, A.J.; Zylka, M.J.; Paul, K.N.; et al. Maternal Ube3a loss disrupts sleep homeostasis but leaves circadian rhythmicity largely intact. J. Neurosci. 2015, 35, 13587–13598. [Google Scholar] [CrossRef] [PubMed]
- Colas, D.; Wagstaff, J.; Fort, P.; Salvert, D.; Sarda, N. Sleep disturbances in Ube3a maternal-deficient mice modeling Angelman syndrome. Neurobiol. Dis. 2005, 20, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Miano, S.; Bruni, O.; Leuzzi, V.; Elia, M.; Verrillo, E.; Ferri, R. Sleep polygraphy in Angelman syndrome. Clin. Neurophysiol. 2004, 115, 938–945. [Google Scholar] [CrossRef]
- Takaesu, Y.; Komada, Y.; Inoue, Y. Melatonin profile and its relation to circadian rhythm sleep disorders in Angelman syndrome patients. Sleep Med. 2012, 13, 1164–1170. [Google Scholar] [CrossRef]
- Zhdanova, I.; Wurtman, R.; Wagstaff, J. Effects of a low dose of melatonin on sleep in children with angelman syndrome. J. Pediatr. Endocrinol. Metab. 1999, 12, 57–68. [Google Scholar] [CrossRef]
- Braam, W.; Didden, R.; Smits, M.G.; Curfs, L.M.G. Melatonin for chronic insomnia in angelman syndrome: A randomized placebo-controlled trial. J. Child Neurol. 2008, 23, 649–654. [Google Scholar] [CrossRef]
- Schwichtenberg, A.; Malow, B.A. Melatonin treatment in children with developmental disabilities. Sleep Med. Clin. 2015, 10, 181–187. [Google Scholar] [CrossRef]
- Shi, S.-Q.; Bichell, T.J.; Ihrie, R.A.; Johnson, C.H. Ube3a imprinting impairs circadian robustness in angelman syndrome models. Curr. Biol. 2015, 25, 537–545. [Google Scholar] [CrossRef]
- National Organization for Rare Disorders (NORD). Prader-Willi Syndrome. Updated 12 July 2023. Available online: https://rarediseases.org/rare-diseases/prader-willi-syndrome/ (accessed on 29 August 2024).
- Food and Drug Administration (FDA). Treatment of Short Stature with Prader-Willi Syndrome. Orphan Drug Designations and Approvals. Available online: https://www.accessdata.fda.gov/scripts/opdlisting/oopd/detailedIndex.cfm?cfgridkey=124799 (accessed on 29 August 2024).
- Butler, M.G.; Miller, B.S.; Romano, A.; Ross, J.; Abuzzahab, M.J.; Backeljauw, P.; Bamba, V.; Bhangoo, A.; Mauras, N.; Geffner, M. Genetic conditions of short stature: A review of three classic examples. Front. Endocrinol. 2022, 13, 1011960. [Google Scholar] [CrossRef] [PubMed]
- PR Newswire. Harmony Biosciences Announces Positive Phase 2 Signal Detection Study Evaluating Pitolisant for Excessive Daytime Sleepiness in Prader-Willi Syndrome at SLEEP 2023. 6 June 2023. Available online: https://www.prnewswire.com/news-releases/harmony-biosciences-announces-positive-phase-2-signal-detection-study-evaluating-pitolisant-for-excessive-daytime-sleepiness-in-prader-willi-syndrome-at-sleep-2023-301842901.html (accessed on 17 November 2023).
- Pullen, L.C.; Picone, M.; Tan, L.; Johnston, C.; Stark, H. cognitive improvements in children with prader-willi syndrome following pitolisant treatment—Patient reports. J. Pediatr. Pharmacol. Ther. 2019, 24, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Harmony Biosciences, LLC. Wakix® (Pitolisant). Prescribing Information. 2022. Available online: https://wakixhcp.com/pdf/wakix-tablets-pi.pdf (accessed on 2 November 2023).
- PR Newswire. Harmony Biosciences Announces Plans to Initiate Phase 3 Registrational Study of Pitolisant in Prader-Willi Syndrome Following Positive End-of-Phase 2 Meeting with the U.S. Food and Drug Administration. 20 July 2023. Available online: https://www.prnewswire.com/news-releases/harmony-biosciences-announces-plans-to-initiate-phase-3-registrational-study-of-pitolisant-in-prader-willi-syndrome-following-positive-end-of-phase-2-meeting-with-the-us-food-and-drug-administration-301881691.html (accessed on 6 November 2023).
- Orphan Drug Act of 1983. Pub L. No. 97–414, 96 Stat. 2049. Available online: https://www.congress.gov/bill/97th-congress/house-bill/5238/text (accessed on 3 September 2024).
- Swan, J. The Story Behind the Orphan Drug Act. Food and Drug Administration. 23 February 2018. Available online: https://jamanetwork.com/journals/jama/article-abstract/2725530 (accessed on 3 September 2024).
- Michaeli, D.T.; Michaeli, T.; Albers, S.; Boch, T.; Michaeli, J.C. Special FDA designations for drug development: Orphan, fast track, accelerated approval, priority review, and breakthrough therapy. Eur. J. Health Econ. 2024, 25, 979–997. [Google Scholar] [CrossRef] [PubMed]
- Fermaglich, L.J.; Miller, K.L. A comprehensive study of the rare diseases and conditions targeted by orphan drug designations and approvals over the forty years of the Orphan Drug Act. Orphanet J. Rare Dis. 2023, 18, 163. [Google Scholar] [CrossRef] [PubMed]
- Kesselheim, A.S.; Sinha, M.S.; Avorn, J. Determinants of market exclusivity for prescription drugs in the United States. JAMA Intern. Med. 2017, 177, 1658–1664. [Google Scholar] [CrossRef]
- Handfield, R.; Feldstein, J. Insurance companies’ perspectives on the orphan drug pipeline. Am. Health Drug Benefits 2013, 6, 589–598. [Google Scholar]
- Pearson, C.; Schapiro, L.; Pearson, S.D. Rare disease drug policy: Ensuring both innovation and affordability Institute for Clinical and Economic Review (ICER). 7 April 2022. Available online: https://icer.org/wp-content/uploads/2022/04/ICER-White-Paper_The-Next-Generation-of-Rare-Disease-Drug-Policy_040722.pdf (accessed on 3 September 2024).
- IQVIA Institute. Orphan Drugs in the United States: Rare Disease Innovation and Cost Trends Through 2019. December 2020. Available online: https://www.iqvia.com/insights/the-iqvia-institute/reports-and-publications/reports/orphan-drugs-in-the-united-states-rare-disease-innovation-and-cost-trends-through-2019 (accessed on 3 September 2024).
- Althobaiti, H.; Seoane-Vazquez, E.; Brown, L.M.; Fleming, M.L.; Rodriguez-Monguio, R. Disentangling the Cost of Orphan Drugs Marketed in the United States. Healthcare 2023, 11, 558. [Google Scholar] [CrossRef]
- Fung, A.; Yue, X.; Wigle, P.R.; Guo, J.J. Off-label medication use in rare pediatric diseases in the United States. Intractable Rare Dis. Res. 2021, 10, 238–245. [Google Scholar] [CrossRef]
- Furey, K.; Wilkins, K. Prescribing “off-label”: What should a physician disclose? AMA J Ethic. 2016, 18, 587–593. [Google Scholar] [CrossRef]
- Food and Drug Administration (FDA). Critical Path Innovation Meeting (CPIM) Topics Held to Date. Available online: https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/critical-path-innovation-meeting-cpim-topics-held-date (accessed on 7 November 2023).
- Sasinowski, F. Clinical Trial Design Considerations in Rare Disease Studies. Food and Drug Administration (FDA). 6 September 2019. Available online: https://www.fda.gov/media/131881/download (accessed on 4 September 2024).
- Wilson Disease Association. Do I Have Wilson Disease? Available online: https://wilsondisease.org/do-i-have-wilson-disease/ (accessed on 3 September 2024).
- Angelman Syndrome Foundation. Angelman Syndrome Clinical Trials. Available online: https://www.angelman.org/as-research/clinical-trials/ (accessed on 3 September 2024).
- Lee, M.; Choh, A.C.; Demerath, E.W.; Knutson, K.L.; Duren, D.L.; Sherwood, R.J.; Sun, S.S.; Chumlea, W.C.; Towne, B.; Siervogel, R.M.; et al. Sleep disturbance in relation to health-related quality of life in adults: The fels longitudinal study. J. Nutr. Health Aging 2009, 13, 576–583. [Google Scholar] [CrossRef]
- Reimer, M.A.; Flemons, W. Quality of life in sleep disorders. Sleep Med. Rev. 2003, 7, 335–349. [Google Scholar] [CrossRef] [PubMed]
- Sasinowski, F.J.; Panico, E.B.; Valentine, J.E. Quantum of effectiveness evidence in FDA’s approval of orphan drugs: Update, July 2010 to June 2014. Ther. Innov. Regul. Sci. 2015, 49, 680–697. [Google Scholar] [CrossRef] [PubMed]
- Mulberg, A.E.; Bucci-Rechtweg, C.; Giuliano, J.; Jacoby, D.; Johnson, F.K.; Liu, Q.; Marsden, D.; McGoohan, S.; Nelson, R.; Patel, N.; et al. Regulatory strategies for rare diseases under current global regulatory statutes: A discussion with stakeholders. Orphanet J. Rare Dis. 2019, 14, 36. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration (FDA) Rare Disease Day Public Meeting. Patient Perspectives on the Impact of Rare Diseases: Bridging the Commonalities. 29 April 2019. Available online: https://www.fda.gov/media/127866/download (accessed on 2 November 2023).
- Food and Drug Administration, CDER Small Business and Industry Assistance (SBIA). FDA Modernizes Clinical Trials with Master Protocols. 26 February 2019. Available online: https://www.fda.gov/media/125556/download (accessed on 29 August 2024).
- National Cancer Institute (NCI). Basket Trial. Available online: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/basket-trial (accessed on 29 August 2024).
- Haslam, A.; Olivier, T.; Tuia, J.; Prasad, V. Umbrella review of basket trials testing a drug in tumors with actionable genetic biomarkers. BMC Cancer 2023, 23, 46. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.; Montes, A.; Kamboj, S.; Cacho, J.F. The role of basket trials in drug development for neurodegenerative disorders. Alzheimer’s Res. Ther. 2022, 14, 73. [Google Scholar] [CrossRef]
- Pagel, J.F. Excessive daytime sleepiness. Am. Fam. Physician 2009, 79, 391–396. [Google Scholar]
- Chervin, R.D. Approach to the Patient with Excessive Daytime Sleepiness. In UpToDate; Post, T.W., Ed.; Wolters Kluwer: Alphen aan den Rijn, The Netherlands; Available online: https://www.uptodate.com/contents/approach-to-the-patient-with-excessive-daytime-sleepiness (accessed on 27 November 2023).
- Food and Drug Administration (FDA). Patient-Focused Drug Development: Incorporating Clinical Outcome Assessments into Endpoints for Regulatory Decision-Making. Guidance for Industry, Food and Drug Administration Staff, and Other Stakeholders. April 2023. Available online: https://www.fda.gov/media/166830/download (accessed on 27 November 2023).
|
Category | Burdens |
---|---|
Physical health/fatigue | Weight loss, muscle loss, pain from lying in bed for many hours, poor nutrition, high blood pressure, frequent fatigue, reduced physical endurance, reduced strength, falling asleep during the day |
Activities of daily living | Dependent upon others for housecleaning and cooking, missed school, little time for homework, poor quality homework, lost jobs |
Socialization/emotional | Anxiety, depression, emotional outbursts, behavioral outbursts, reduced emotional regulation, stress from poor school performance, social isolation, missed social opportunities, isolation from depression, moods that stress relationships, limits to caregiver social life, avoiding dating |
Cognition/neurological | Foggy brain, reduced attention span, memory loss, slowed processing speed, loss of consciousness, drop attacks interpreted as tantrums, poor concentration during work and school |
Financial | Reduced or no income, reduced ability to work, costs to pay others to do daily tasks such as housework and cooking, costs associated with reduced independence and reliance on care, costs of travel to disease specialists, costs of finding specialized doctors, high credit card bills to pay for medications |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pullen, L.C.; Bott, N.; McCanless, C.; Revana, A.; Sevinc, G.; Gorman, C.; Duncan, A.; Poliquin, S.; Pfalzer, A.C.; Schmidt, K.Q.; et al. Use of Basket Trials to Solve Sleep Problems in Patients with Rare Diseases. Clocks & Sleep 2024, 6, 656-667. https://doi.org/10.3390/clockssleep6040044
Pullen LC, Bott N, McCanless C, Revana A, Sevinc G, Gorman C, Duncan A, Poliquin S, Pfalzer AC, Schmidt KQ, et al. Use of Basket Trials to Solve Sleep Problems in Patients with Rare Diseases. Clocks & Sleep. 2024; 6(4):656-667. https://doi.org/10.3390/clockssleep6040044
Chicago/Turabian StylePullen, Lara C., Nick Bott, Cate McCanless, Amee Revana, Gunes Sevinc, Casey Gorman, Alexandra Duncan, Sarah Poliquin, Anna C. Pfalzer, Katie Q. Schmidt, and et al. 2024. "Use of Basket Trials to Solve Sleep Problems in Patients with Rare Diseases" Clocks & Sleep 6, no. 4: 656-667. https://doi.org/10.3390/clockssleep6040044
APA StylePullen, L. C., Bott, N., McCanless, C., Revana, A., Sevinc, G., Gorman, C., Duncan, A., Poliquin, S., Pfalzer, A. C., Schmidt, K. Q., Wassman, E. R., Chapman, C., & Picone, M. (2024). Use of Basket Trials to Solve Sleep Problems in Patients with Rare Diseases. Clocks & Sleep, 6(4), 656-667. https://doi.org/10.3390/clockssleep6040044