Impact of Varying Sleep Pressure on Daytime Sleep Propensity in Healthy Young and Older Adults
Abstract
:1. Introduction
2. Results
2.1. Observed Total Sleep Time over the Baseline Night and Subsequent Nap Sleep Opportunities
2.2. Modelling Varying Homeostatic Sleep Pressure at the Start of the Study: Impact on Daytime Sleep
- For 1 ≤ H0′/H0 < 1.034, sleep is predicted only starting from S4 onwards;
- For 1.034 ≤ H0′/H0 < 1.060, sleep appears and TST increases in S3 and decreases (but is non-zero) in S4;
- For 1.060 ≤ H0′/H0 < 1.065, sleep starts to appear in S2, which leads to decreasing TST in S3 to zero and increasing TST in S4;
- For 1.065 ≤ H0′/H0 < 1.079, TST increases in S2 while sleep is no longer generated in S3 and stays constant in S4;
- For 1.079 ≤ H0′/H0 < 1.081, sleep is initiated in S1 and decreases in S2;
- For 1.081 ≤ H0′/H0 < 1.084, sleep starts occurring in S3 and sleep increases in S1, while sleep decreases in S2 and S4;
- For 1.084 ≤ H0′/H0 < 1.090, sleep is no longer generated in S2;
- For 1.090 ≤ H0′/H0 < 1.096, TST increases in S1, S2, and S4 while TST decreases in S3;
- For 1.096 ≤ H0′/H0 < 1.109, sleep is no longer generated in S3;
- For 1.109 ≤ H0′/H0 < 1.201, sleep is initiated in S3 again, first decreasing but ultimately increasing TST in S4;
- For 1.201 ≤ H0′/H0 < 1.305, maximum sleep (>90% of the time) is achieved in S1–S4;
- For H0′/H0 ≥ 1.305, maximum sleep is achieved in all nap sleep opportunities S1–S10.
2.3. Wash-Out Effect of Modelled Sleep Debt in the Multiple Nap Protocol
3. Discussion
4. Methods
4.1. Participants
4.2. Experimental Protocol
4.3. Melatonin
4.4. EEG Data Acquisition and Analysis
4.5. Statistical Analysis
4.6. Biomathematical Model
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borbely, A.A. A Two Process Model of Sleep Regulation. Hum. Neurobiol. 1982, 1, 195–204. [Google Scholar]
- Daan, S.; Beersma, D.G.; Borbély, A.A. Timing of Human Sleep: Recovery Process Gated by a Circadian Pacemaker. Am. J. Physiol. 1984, 246, R161–R183. [Google Scholar] [CrossRef] [PubMed]
- Edgar, D.; Dement, W.; Fuller, C. Effect of SCN Lesions on Sleep in Squirrel Monkeys: Evidence for Opponent Processes in Sleep-Wake Regulation. J. Neurosci. 1993, 13, 1065–1079. [Google Scholar] [CrossRef]
- Borbély, A.A.; Achermann, P. Chapter 33—Sleep Homeostasis and Models of Sleep Regulation. In Principles and Practice of Sleep Medicine (Fourth Edition); Kryger, M.H., Roth, T., Dement, W.C., Eds.; W.B. Saunders: Philadelphia, PA, USA, 2005; pp. 405–417. ISBN 978-0-7216-0797-9. [Google Scholar]
- Dijk, D.J.; Czeisler, C.A. Paradoxical Timing of the Circadian Rhythm of Sleep Propensity Serves to Consolidate Sleep and Wakefulness in Humans. Neurosci. Lett. 1994, 166, 63–68. [Google Scholar] [CrossRef]
- Golombek, D.A.; Rosenstein, R.E. Physiology of Circadian Entrainment. Physiol. Rev. 2010, 90, 1063–1102. [Google Scholar] [CrossRef] [PubMed]
- Dijk, D.J.; Duffy, J.F.; Riel, E.; Shanahan, T.L.; Czeisler, C.A. Ageing and the Circadian and Homeostatic Regulation of Human Sleep during Forced Desynchrony of Rest, Melatonin and Temperature Rhythms. J. Physiol. 1999, 516 Pt 2, 611–627. [Google Scholar] [CrossRef]
- Li, J.; Vitiello, M.V.; Gooneratne, N.S. Sleep in Normal Aging. Sleep Med. Clin. 2018, 13, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Vitiello, M.V. Sleep in Normal Aging. Sleep Med. Clin. 2006, 1, 171–176. [Google Scholar] [CrossRef]
- Duffy, J.F.; Dijk, D.J. Getting Through to Circadian Oscillators: Why Use Constant Routines? J. Biol. Rhythms 2002, 17, 4–13. [Google Scholar] [CrossRef]
- McMahon, W.R.; Ftouni, S.; Phillips, A.J.K.; Beatty, C.; Lockley, S.W.; Rajaratnam, S.M.W.; Maruff, P.; Drummond, S.P.A.; Anderson, C. The Impact of Structured Sleep Schedules Prior to an In-Laboratory Study: Individual Differences in Sleep and Circadian Timing. PLoS ONE 2020, 15, e0236566. [Google Scholar] [CrossRef]
- Buysse, D.J.; Monk, T.H.; Carrier, J.; Begley, A. Circadian Patterns of Sleep, Sleepiness, and Performance in Older and Younger Adults. Sleep 2005, 28, 1365–1376. [Google Scholar] [CrossRef]
- Deantoni, M.; Reyt, M.; Berthomier, C.; Muto, V.; Hammad, G.; De Haan, S.; Dourte, M.; Taillard, J.; Lambot, E.; Cajochen, C.; et al. Association between Circadian Sleep Regulation and Cortical Gyrification in Young and Older Adults. Sleep 2023, 46, zsad094. [Google Scholar] [CrossRef] [PubMed]
- Maire, M.; Reichert, C.F.; Gabel, V.; Viola, A.U.; Phillips, C.; Krebs, J.; Scheffler, K.; Klarhöfer, M.; Strobel, W.; Cajochen, C.; et al. Fighting Sleep at Night: Brain Correlates and Vulnerability to Sleep Loss. Ann. Neurol. 2015, 78, 235–247. [Google Scholar] [CrossRef] [PubMed]
- Münch, M.; Knoblauch, V.; Blatter, K.; Schröder, C.; Schnitzler, C.; Kräuchi, K.; Wirz-Justice, A.; Cajochen, C. Age-Related Attenuation of the Evening Circadian Arousal Signal in Humans. Neurobiol. Aging 2005, 26, 1307–1319. [Google Scholar] [CrossRef]
- Abel, J.H.; Lecamwasam, K.; St Hilaire, M.A.; Klerman, E.B. Recent Advances in Modeling Sleep: From the Clinic to Society and Disease. Curr. Opin. Physiol. 2020, 15, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Postnova, S. Sleep Modelling across Physiological Levels. Clocks Sleep 2019, 1, 166–184. [Google Scholar] [CrossRef] [PubMed]
- Skeldon, A.C.; Dijk, D.-J.; Derks, G. Mathematical Models for Sleep-Wake Dynamics: Comparison of the Two-Process Model and a Mutual Inhibition Neuronal Model. PLoS ONE 2014, 9, e103877. [Google Scholar] [CrossRef]
- Borbély, A.A.; Achermann, P. Sleep Homeostasis and Models of Sleep Regulation. J. Biol. Rhythms 1999, 14, 557–568. [Google Scholar] [CrossRef]
- Behn, C.D.; Brown, E.N.; Scammell, T.E.; Kopell, N. A Mathematical Model of Network Dynamics Governing Sleep-Wake Patterns in Mice. J. Neurophysiol. 2007, 97, 3828–3840. [Google Scholar] [CrossRef]
- Booth, V.; Diniz Behn, C.G. Physiologically-Based Modeling of Sleep–Wake Regulatory Networks. Math. Biosci. 2014, 250, 54–68. [Google Scholar] [CrossRef] [PubMed]
- Phillips, A.J.K.; Czeisler, C.A.; Klerman, E.B. Revisiting Spontaneous Internal Desynchrony Using a Quantitative Model of Sleep Physiology. J. Biol. Rhythms 2011, 26, 441–453. [Google Scholar] [CrossRef]
- Phillips, A.J.K.; Robinson, P.A. A Quantitative Model of Sleep-Wake Dynamics Based on the Physiology of the Brainstem Ascending Arousal System. J. Biol. Rhythms 2007, 22, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Postnova, S.; Lockley, S.W.; Robinson, P.A. Sleep Propensity under Forced Desynchrony in a Model of Arousal State Dynamics. J. Biol. Rhythms 2016, 31, 498–508. [Google Scholar] [CrossRef] [PubMed]
- Puckeridge, M.; Fulcher, B.D.; Phillips, A.J.K.; Robinson, P.A. Incorporation of Caffeine into a Quantitative Model of Fatigue and Sleep. J. Theor. Biol. 2011, 273, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Rempe, M.J.; Best, J.; Terman, D. A Mathematical Model of the Sleep/Wake Cycle. J. Math. Biol. 2010, 60, 615–644. [Google Scholar] [CrossRef] [PubMed]
- Knock, S.A.; Magee, M.; Stone, J.E.; Ganesan, S.; Mulhall, M.D.; Lockley, S.W.; Howard, M.E.; Rajaratnam, S.M.W.; Sletten, T.L.; Postnova, S. Prediction of Shiftworker Alertness, Sleep, and Circadian Phase Using a Model of Arousal Dynamics Constrained by Shift Schedules and Light Exposure. Sleep 2021, 44, zsab146. [Google Scholar] [CrossRef] [PubMed]
- Fulcher, B.D.; Phillips, A.J.K.; Robinson, P.A. Quantitative Physiologically Based Modeling of Subjective Fatigue during Sleep Deprivation. J. Theor. Biol. 2010, 264, 407–419. [Google Scholar] [CrossRef]
- Phillips, A.J.K.; Robinson, P.A. Sleep Deprivation in a Quantitative Physiologically Based Model of the Ascending Arousal System. J. Theor. Biol. 2008, 255, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Skeldon, A.C.; Derks, G.; Dijk, D.-J. Modelling Changes in Sleep Timing and Duration across the Lifespan: Changes in Circadian Rhythmicity or Sleep Homeostasis? Sleep Med. Rev. 2016, 28, 96–107. [Google Scholar] [CrossRef] [PubMed]
- Van Dongen, H.P.A.; Maislin, G.; Mullington, J.M.; Dinges, D.F. The Cumulative Cost of Additional Wakefulness: Dose-Response Effects on Neurobehavioral Functions and Sleep Physiology From Chronic Sleep Restriction and Total Sleep Deprivation. Sleep 2003, 26, 117–126. [Google Scholar] [CrossRef]
- Piltz, S.H.; Diniz Behn, C.G.; Booth, V. Habitual Sleep Duration Affects Recovery from Acute Sleep Deprivation: A Modeling Study. J. Theor. Biol. 2020, 504, 110401. [Google Scholar] [CrossRef] [PubMed]
- Phillips, A.J.K.; Chen, P.Y.; Robinson, P.A. Probing the Mechanisms of Chronotype Using Quantitative Modeling. J. Biol. Rhythms 2010, 25, 217–227. [Google Scholar] [CrossRef]
- Phillips, A.J.K.; Robinson, P.A.; Kedziora, D.J.; Abeysuriya, R.G. Mammalian Sleep Dynamics: How Diverse Features Arise from a Common Physiological Framework. PLoS Comput. Biol. 2010, 6, e1000826. [Google Scholar] [CrossRef] [PubMed]
- Roenneberg, T. Chronobiology: The Human Sleep Project. Nature 2013, 498. [Google Scholar] [CrossRef] [PubMed]
- Rajaratnam, S.M.W.; Middleton, B.; Stone, B.M.; Arendt, J.; Dijk, D.-J. Melatonin Advances the Circadian Timing of EEG Sleep and Directly Facilitates Sleep without Altering Its Duration in Extended Sleep Opportunities in Humans. J. Physiol. 2004, 561, 339–351. [Google Scholar] [CrossRef]
- Wehr, T.A.; Moul, D.E.; Barbato, G.; Giesen, H.A.; Seidel, J.A.; Barker, C.; Bender, C. Conservation of Photoperiod-Responsive Mechanisms in Humans. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 1993, 265, R846–R857. [Google Scholar] [CrossRef] [PubMed]
- Carskadon, M.A.; Brown, E.D.; Dement, W.C. Sleep Fragmentation in the Elderly: Relationship to Daytime Sleep Tendency. Neurobiol. Aging 1982, 3, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Klerman, E.B.; Dijk, D.-J. Age-Related Reduction in the Maximal Capacity for Sleep--Implications for Insomnia. Curr. Biol. CB 2008, 18, 1118–1123. [Google Scholar] [CrossRef]
- Mander, B.A.; Winer, J.R.; Walker, M.P. Sleep and Human Aging. Neuron 2017, 94, 19–36. [Google Scholar] [CrossRef]
- Okamoto-Mizuno, K.; Mizuno, K. Effects of Thermal Environment on Sleep and Circadian Rhythm. J. Physiol. Anthropol. 2012, 31, 14. [Google Scholar] [CrossRef] [PubMed]
- Johns, M.W. Sleep Propensity Varies with Behaviour and the Situation in Which It Is Measured: The Concept of Somnificity. J. Sleep Res. 2002, 11, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Rial, R.V.; Canellas, F.; Gamundí, A.; Akaârir, M.; Nicolau, M.C. Pleasure: The Missing Link in the Regulation of Sleep. Neurosci. Biobehav. Rev. 2018, 88, 141–154. [Google Scholar] [CrossRef]
- Reichert, C.F.; Maire, M.; Gabel, V.; Viola, A.U.; Kolodyazhniy, V.; Strobel, W.; Götz, T.; Bachmann, V.; Landolt, H.-P.; Cajochen, C.; et al. Insights into Behavioral Vulnerability to Differential Sleep Pressure and Circadian Phase from a Functional ADA Polymorphism. J. Biol. Rhythms 2014, 29, 119–130. [Google Scholar] [CrossRef]
- Reyt, M.; Deantoni, M.; Baillet, M.; Lesoinne, A.; Laloux, S.; Lambot, E.; Demeuse, J.; Calaprice, C.; LeGoff, C.; Collette, F.; et al. Daytime Rest: Association with 24-h Rest-Activity Cycles, Circadian Timing and Cognition in Older Adults. J. Pineal Res. 2022, 73, e12820. [Google Scholar] [CrossRef] [PubMed]
- Van Someren, E.J.W.; Nagtegaal, E. Improving Melatonin Circadian Phase Estimates. Sleep Med. 2007, 8, 590–601. [Google Scholar] [CrossRef] [PubMed]
- Berry, R.B.; Gamaldo, C.E.; Harding, S.M.; Brooks, R.; Lloyd, R.M.; Vaughn, B.V.; Marcus, C.L. AASM Scoring Manual Version 2.2 Updates: New Chapters for Scoring Infant Sleep Staging and Home Sleep Apnea Testing. J. Clin. Sleep Med. JCSM 2015, 11, 1253–1254. [Google Scholar] [CrossRef] [PubMed]
- Berthomier, C.; Drouot, X.; Herman-Stoïca, M.; Berthomier, P.; Prado, J.; Bokar-Thire, D.; Benoit, O.; Mattout, J.; d’Ortho, M.-P. Automatic Analysis of Single-Channel Sleep EEG: Validation in Healthy Individuals. Sleep 2007, 30, 1587–1595. [Google Scholar] [CrossRef]
- Berthomier, C.; Muto, V.; Schmidt, C.; Vandewalle, G.; Jaspar, M.; Devillers, J.; Gaggioni, G.; Chellappa, S.L.; Meyer, C.; Phillips, C.; et al. Exploring Scoring Methods for Research Studies: Accuracy and Variability of Visual and Automated Sleep Scoring. J. Sleep Res. 2020, 29, e12994. [Google Scholar] [CrossRef]
- Chylinski, D.; Berthomier, C.; Lambot, E.; Frenette, S.; Brandewinder, M.; Carrier, J.; Vandewalle, G.; Muto, V. Variability of Sleep Stage Scoring in Late Midlife and Early Old Age. J. Sleep Res. 2022, 31, e13424. [Google Scholar] [CrossRef] [PubMed]
- Deantoni, M.; Reyt, M.; Baillet, M.; Dourte, M.; De Haan, S.; Lesoinne, A.; Vandewalle, G.; Maquet, P.; Berthomier, C.; Muto, V.; et al. Napping and Circadian Sleep-Wake Regulation during Healthy Aging. Sleep 2023, zsad287. [Google Scholar] [CrossRef] [PubMed]
- Saper, C.B.; Scammell, T.E.; Lu, J. Hypothalamic Regulation of Sleep and Circadian Rhythms. Nature 2005, 437, 1257–1263. [Google Scholar] [CrossRef] [PubMed]
- Abeysuriya, R.G.; Lockley, S.W.; Robinson, P.A.; Postnova, S. A Unified Model of Melatonin, 6-sulfatoxymelatonin, and Sleep Dynamics. J. Pineal Res. 2018, 64. [Google Scholar] [CrossRef] [PubMed]
Older | Younger | |||||
---|---|---|---|---|---|---|
p-Value | Day 2, TST ± SD [h] | Day 1, TST± SD [h] | p-Value | Day 2, TST ± SD [h] | Day 1, TST± SD [h] | TST: Day 1 vs. Day 2 |
0.06 | 0.83 ± 0.27 | 0.69 ± 0.37 | 0.0070 | 1.22 ± 0.06 | 0.99 ± 0.39 | S1 vs. S7 (10:00) |
0.19 | 0.60 ± 0.36 | 0.71 ± 0.32 | 0.25 | 0.85 ± 0.33 | 0.95 ± 0.36 | S2 vs. S8 (14:00) |
0.20 | 0.47 ± 0.30 | 0.57 ± 0.36 | 0.11 | 0.70 ± 0.38 | 0.84 ± 0.36 | S3 vs. S9 (18:00) |
0.029 | 0.45 ± 0.30 | 0.63 ± 0.32 | 0.44 | 0.30 ± 0.33 | 0.37 ± 0.38 | S4 vs. S10 (22:00) |
0.12 | 2.37 ± 0.64 | 2.60 ± 0.98 | 0.73 | 3.06 ± 0.75 | 3.14 ± 0.98 | S1–4 vs. S7–10 (Total) |
p-Value | Day 2, 24 h TST± SD [h] | Day 1, 24 h TST± SD [h] | p-Value | Day 2, 24 h TST± SD [h] | Day 1, 24 h TST± SD [h] | 24 h TST: Day 1 vs. Day 2 |
<0.001 | 4.68 ± 1.21 | 6.35 ± 0.69 | <0.001 | 5.37 ± 1.14 | 7.39 ± 0.50 | S1 vs. S7 (10:00) |
<0.001 | 4.83 ± 1.05 | 7.04 ± 0.80 | <0.001 | 5.60 ± 0.91 | 8.37 ± 0.65 | S2 vs. S8 (14:00) |
<0.001 | 4.72 ± 1.06 | 7.75 ± 0.94 | <0.001 | 5.51 ± 0.95 | 9.32 ± 0.87 | S3 vs. S9 (18:00) |
<0.001 | 4.62 ± 0.97 | 8.32 ± 1.08 | <0.001 | 5.37 ± 0.93 | 10.16 ± 0.97 | S4 vs. S10 (22:00) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Haan, S.; Dourte, M.; Deantoni, M.; Reyt, M.; Baillet, M.; Berthomier, C.; Muto, V.; Hammad, G.; Cajochen, C.; Reichert, C.F.; et al. Impact of Varying Sleep Pressure on Daytime Sleep Propensity in Healthy Young and Older Adults. Clocks & Sleep 2025, 7, 2. https://doi.org/10.3390/clockssleep7010002
de Haan S, Dourte M, Deantoni M, Reyt M, Baillet M, Berthomier C, Muto V, Hammad G, Cajochen C, Reichert CF, et al. Impact of Varying Sleep Pressure on Daytime Sleep Propensity in Healthy Young and Older Adults. Clocks & Sleep. 2025; 7(1):2. https://doi.org/10.3390/clockssleep7010002
Chicago/Turabian Stylede Haan, Stella, Marine Dourte, Michele Deantoni, Mathilde Reyt, Marion Baillet, Christian Berthomier, Vincenzo Muto, Gregory Hammad, Christian Cajochen, Carolin F. Reichert, and et al. 2025. "Impact of Varying Sleep Pressure on Daytime Sleep Propensity in Healthy Young and Older Adults" Clocks & Sleep 7, no. 1: 2. https://doi.org/10.3390/clockssleep7010002
APA Stylede Haan, S., Dourte, M., Deantoni, M., Reyt, M., Baillet, M., Berthomier, C., Muto, V., Hammad, G., Cajochen, C., Reichert, C. F., Maire, M., Schmidt, C., & Postnova, S. (2025). Impact of Varying Sleep Pressure on Daytime Sleep Propensity in Healthy Young and Older Adults. Clocks & Sleep, 7(1), 2. https://doi.org/10.3390/clockssleep7010002