Cyclic Loading of Metallic Glasses Prepared Using Cryogenic Treatments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Modeling and Software
2.2. Preparation of the Metallic Glasses
2.3. Cryogenic Treatments
2.4. Cyclic Loading
2.5. Diagnostic Tools
3. Results and Discussion
3.1. Atomic Structure Inspection
3.2. Stress–Strain Curves
3.3. Mechanical Properties
3.4. Plastic Behavior
3.5. Variation of Structural Properties
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Johnson, W.L. Bulk metallic glasses—A new engineering material. Curr. Opin. Solid State Mater. Sci. 1996, 1, 383–386. [Google Scholar] [CrossRef]
- Telford, M. The case for bulk metallic glass. Mater. Today 2004, 7, 36–43. [Google Scholar] [CrossRef]
- Wang, W.H. Bulk Metallic Glasses with Functional Physical Properties. Adv. Mater. 2009, 21, 4524–4544. [Google Scholar] [CrossRef]
- Kruzic, J.J. Bulk Metallic Glasses as Structural Materials: A Review. Adv. Eng. Mater. 2016, 18, 1308–1331. [Google Scholar] [CrossRef]
- Gilbert, C.J.; Schroeder, V.; Ritchie, R.O. Mechanisms for fracture and fatigue-crack propagation in a bulk metallic glass. Metall. Mater. Trans. A 1999, 30, 1739–1753. [Google Scholar] [CrossRef]
- Jia, H.; Wang, G.; Chen, S.; Gao, Y.; Li, W.; Liaw, P.K. Fatigue and fracture behavior of bulk metallic glasses and their composites. Prog. Mater. Sci. 2018, 98, 168–248. [Google Scholar] [CrossRef]
- Sha, Z.; Lin, W.; Poh, L.H.; Xing, G.; Liu, Z.; Wang, T.; Gao, H. Fatigue of Metallic Glasses. Appl. Mech. Rev. 2020, 72, 050801. [Google Scholar] [CrossRef]
- Wang, X.; Wu, S.; Qu, R.; Zhang, Z. Shear Band Evolution under Cyclic Loading and Fatigue Property in Metallic Glasses: A Brief Review. Materials 2021, 14, 3595. [Google Scholar] [CrossRef]
- Louzguine-Luzgin, D.; Zadorozhnyy, V.Y.; Ketov, S.; Wang, Z.; Tsarkov, A.; Greer, A. On room-temperature quasi-elastic mechanical behaviour of bulk metallic glasses. Acta Mater. 2017, 129, 343–351. [Google Scholar] [CrossRef]
- Ma, Z.C.; Ma, X.X.; Zhao, H.W.; Zhang, F.; Zhou, L.M.; Ren, L.Q. Novel Crystallization Behaviors of Zr-Based Metallic Glass Under Thermo-Mechanical Coupled Fatigue Loading Condition. Acta Metall. Sin. (Engl. Lett.) 2019, 32, 797–802. [Google Scholar] [CrossRef]
- Li, S.; Huang, P.; Wang, F. Rejuvenation saturation upon cyclic elastic loading in metallic glass. Comput. Mater. Sci. 2019, 166, 318–325. [Google Scholar] [CrossRef]
- Priezjev, N.V. Aging and rejuvenation during elastostatic loading of amorphous alloys: A molecular dynamics simulation study. Comput. Mater. Sci. 2019, 168, 125–130. [Google Scholar] [CrossRef]
- Li, M.-f.; Wang, P.-w.; Malomo, B.; Yang, L. A scheme for achieving strength-ductility trade-off in metallic glasses. Int. J. Plast. 2023, 169, 103734. [Google Scholar] [CrossRef]
- Bai, Y.; She, C. Atomic structure evolution in metallic glasses under cyclic deformation. Comput. Mater. Sci. 2019, 169, 109094. [Google Scholar] [CrossRef]
- Priezjev, N.V. Fatigue Behavior of Cu-Zr Metallic Glasses under Cyclic Loading. Metals 2023, 13, 1606. [Google Scholar] [CrossRef]
- Sha, Z.D.; Qu, S.X.; Liu, Z.S.; Wang, T.J.; Gao, H. Cyclic Deformation in Metallic Glasses. Nano Lett. 2015, 15, 7010–7015. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.H.; Li, J.H.; Liu, B.X. Comparatively studying the local atomic structures of metallic glasses upon cyclic-loading by computer simulations. RSC Adv. 2017, 7, 18358–18365. [Google Scholar] [CrossRef]
- Shi, Y.; Louca, D.; Wang, G.; Liaw, P.K. Compression-compression fatigue study on model metallic glass nanowires by molecular dynamics simulations. J. Appl. Phys. 2011, 110, 023523. [Google Scholar] [CrossRef]
- Mendelev, M.; Kramer, M.; Ott, R.; Sordelet, D.; Yagodin, D.; Popel, P. Development of suitable interatomic potentials for simulation of liquid and amorphous Cu–Zr alloys. Philos. Mag. 2009, 89, 967–987. [Google Scholar] [CrossRef]
- Wakeda, M.; Saida, J. Heterogeneous structural changes correlated to local atomic order in thermal rejuvenation process of Cu-Zr metallic glass. Sci. Technol. Adv. Mater. 2019, 20, 632–642. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, X.; Wu, Y.; Wang, H.; Ma, D.; Lu, Z. Clustering-mediated enhancement of glass-forming ability and plasticity in oxygen-minor-alloyed Zr-Cu metallic glasses. Acta Mater. 2023, 261, 119386. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, M.; Wang, X.; Li, M. Gradient network architecture design induced strain delocalization and delayed failure in metallic glass matrix composites. Scr. Mater. 2023, 237, 115721. [Google Scholar] [CrossRef]
- Amigo, N. Modulation of plasticity by crystalline precipitates in CuZr metallic glasses. Mater. Today Commun. 2024, 39, 109018. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1039. [Google Scholar] [CrossRef]
- Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; in ’t Veld, P.J.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D.; et al. LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comp. Phys. Comm. 2022, 271, 108171. [Google Scholar] [CrossRef]
- Foroughi, A.; Ashuri, H.; Tavakoli, R.; Stoica, M.; Şopu, D.; Eckert, J. Structural modification through pressurized sub-Tg annealing of metallic glasses. J. Appl. Phys. 2017, 122, 215106. [Google Scholar] [CrossRef]
- Moitzi, F.; Şopu, D.; Holec, D.; Perera, D.; Mousseau, N.; Eckert, J. Chemical bonding effects on the brittle-to-ductile transition in metallic glasses. Acta Mater. 2020, 188, 273–281. [Google Scholar] [CrossRef]
- Shang, B.; Wang, W.; Greer, A.L.; Guan, P. Atomistic modelling of thermal-cycling rejuvenation in metallic glasses. Acta Mater. 2021, 213, 116952. [Google Scholar] [CrossRef]
- Amigo, N. Cryogenic thermal cycling rejuvenation in metallic glasses: Structural and mechanical assessment. J. Non-Cryst. Solids 2022, 596, 121850. [Google Scholar] [CrossRef]
- Peng, H.L.; Li, M.Z.; Wang, W.H. Structural Signature of Plastic Deformation in Metallic Glasses. Phys. Rev. Lett. 2011, 106, 135503. [Google Scholar] [CrossRef]
- Hu, Y.C.; Li, F.X.; Li, M.Z.; Bai, H.Y.; Wang, W.H. Five-fold symmetry as indicator of dynamic arrest in metallic glass-forming liquids. Nat. Commun. 2015, 6, 8310. [Google Scholar] [CrossRef]
- Shimizu, F.; Ogata, S.; Li, J. Theory of Shear Banding in Metallic Glasses and Molecular Dynamics Calculations. Mater. Trans. 2007, 48, 2923–2927. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2010, 18, 015012. [Google Scholar] [CrossRef]
- Cheng, Y.Q.; Cao, A.J.; Ma, E. Correlation between the elastic modulus and the intrinsic plastic behavior of metallic glasses: The roles of atomic configuration and alloy composition. Acta Mater. 2009, 57, 3253–3267. [Google Scholar] [CrossRef]
- Shi, Y.; Falk, M.L. Strain Localization and Percolation of Stable Structure in Amorphous Solids. Phys. Rev. Lett. 2005, 95, 095502. [Google Scholar] [CrossRef]
- Adibi, S.; Branicio, P.S.; Joshi, S.P. Suppression of Shear Banding and Transition to Necking and Homogeneous Flow in Nanoglass Nanopillars. Sci. Rep. 2015, 5, 15611. [Google Scholar] [CrossRef]
- Cheng, Y.; Ma, E. Atomic-level structure and structure–property relationship in metallic glasses. Prog. Mater. Sci. 2011, 56, 379–473. [Google Scholar] [CrossRef]
- Kartouzian, A.; Antonowicz, J.; Lünskens, T.; Lagogianni, A.; Heister, P.; Evangelakis, G.; Felici, R. Toward cluster-assembled metallic glasses. Mater. Express 2014, 4, 228–234. [Google Scholar] [CrossRef]
- Antonowicz, J.; Pietnoczka, A.; Pękała, K.; Latuch, J.; Evangelakis, G.A. Local atomic order, electronic structure and electron transport properties of Cu-Zr metallic glasses. J. Appl. Phys. 2014, 115, 203714. [Google Scholar] [CrossRef]
- Amigo, N. Characterization of Z cluster connectivity in CuZr metallic glasses. J. Mol. Model. 2024, 30, 184. [Google Scholar] [CrossRef]
- Albe, K.; Ritter, Y.; Şopu, D. Enhancing the plasticity of metallic glasses: Shear band formation, nanocomposites and nanoglasses investigated by molecular dynamics simulations. Mech. Mater. 2013, 67, 94–103. [Google Scholar] [CrossRef]
- Ritter, Y.; Albe, K. Chemical and topological order in shear bands of Cu64Zr36 and Cu36Zr64 glasses. J. Appl. Phys. 2012, 111, 103527. [Google Scholar] [CrossRef]
- Zhong, C.; Zhang, H.; Cao, Q.; Wang, X.; Zhang, D.; Ramamurty, U.; Jiang, J. Size distribution of shear transformation zones and their evolution towards the formation of shear bands in metallic glasses. J. Non-Cryst. Solids 2016, 445–446, 61–68. [Google Scholar] [CrossRef]
- Amigo, N.; Valencia, F.J. Species Content Effect on the Rejuvenation Degree of CuZr Metallic Glasses Under Thermal-Pressure Treatments. Met. Mater. Int. 2022, 28, 2068–2074. [Google Scholar] [CrossRef]
- Feng, S.; Chan, K.; Zhao, L.; Pan, S.; Qi, L.; Wang, L.; Liu, R. Rejuvenation by weakening the medium range order in Zr46Cu46Al8 metallic glass with pressure preloading: A molecular dynamics simulation study. Mater. Des. 2018, 158, 248–255. [Google Scholar] [CrossRef]
- Amigo, N. Structural and rheological properties of CuZrAl metallic glasses under pressure preloading. Comput. Mater. Sci. 2023, 216, 111819. [Google Scholar] [CrossRef]
- Li, S.; Yu, Y.; Branicio, P.S.; Sha, Z.D. Effects of rejuvenation modes on the microstructures and mechanical properties of metallic glasses. Mater. Today Commun. 2023, 36, 106493. [Google Scholar] [CrossRef]
- Park, K.W.; Fleury, E.; Seok, H.K.; Kim, Y.C. Deformation behaviors under tension and compression: Atomic simulation of Cu65Zr35 metallic glass. Intermetallics 2011, 19, 1168–1173. [Google Scholar] [CrossRef]
- Yang, G.; Xu, B.; Kong, L.; Li, J.; Zhao, S. Size effects in Cu50Zr50 metallic glass films revealed by molecular dynamics simulations. J. Alloys Compd. 2016, 688, 88–95. [Google Scholar] [CrossRef]
- Lin, W.H.; Teng, Y.; Sha, Z.D.; Yuan, S.Y.; Branicio, P.S. Mechanical properties of nanoporous metallic glasses: Insights from large-scale atomic simulations. Int. J. Plast. 2020, 127, 102657. [Google Scholar] [CrossRef]
- Katakareddi, G.; Yedla, N. The effect of loading methods on the microstructural evolution and degree of strain localization in Cu50Zr50 metallic glass composite nanowires: A molecular dynamics simulation study. J. Mol. Graph. Model. 2022, 115, 108216. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cheng, M.; Meng, L.; Yao, X. Microstructural evolution of shear bands formation of metallic glasses under different loading conditions and strain rates. J. Non-Cryst. Solids 2022, 584, 121525. [Google Scholar] [CrossRef]
- Wang, B.; Luo, L.; Guo, E.; Su, Y.; Wang, M.; Ritchie, R.O.; Dong, F.; Wang, L.; Guo, J.; Fu, H. Nanometer-scale gradient atomic packing structure surrounding soft spots in metallic glasses. Npj Comput. Mater. 2018, 4, 41. [Google Scholar] [CrossRef]
- Wang, B.; Luo, L.; Dong, F.; Wang, L.; Wang, H.; Wang, F.; Luo, L.; Su, B.; Su, Y.; Guo, J.; et al. Impact of hydrogen microalloying on the mechanical behavior of Zr-bearing metallic glasses: A molecular dynamics study. J. Mater. Sci. Technol. 2020, 45, 198–206. [Google Scholar] [CrossRef]
- Xie, L.; An, H.; Peng, Q.; Qin, Q.; Zhang, Y. Sensitive Five-Fold Local Symmetry to Kinetic Energy of Depositing Atoms in Cu-Zr Thin Film Growth. Materials 2018, 11, 2548. [Google Scholar] [CrossRef]
- Amigo, N.; Valencia, F. Mechanical and structural assessment of CuZr metallic glasses rejuvenated by thermal-pressure treatments. Comput. Mater. Sci. 2021, 198, 110681. [Google Scholar] [CrossRef]
- Li, H.; Jin, C.G.; Sha, Z.D. The effect of pressure-promoted thermal rejuvenation on the fracture energy of metallic glasses. J. Non-Cryst. Solids 2022, 590, 121674. [Google Scholar] [CrossRef]
- Zaccone, A.; Scossa-Romano, E. Approximate analytical description of the nonaffine response of amorphous solids. Phys. Rev. B 2011, 83, 184205. [Google Scholar] [CrossRef]
- Antonowicz, J.; Pietnoczka, A.; Evangelakis, G.A.; Mathon, O.; Kantor, I.; Pascarelli, S.; Kartouzian, A.; Shinmei, T.; Irifune, T. Atomic-level mechanism of elastic deformation in the Zr-Cu metallic glass. Phys. Rev. B 2016, 93, 144115. [Google Scholar] [CrossRef]
- Milkus, R.; Zaccone, A. Local inversion-symmetry breaking controls the boson peak in glasses and crystals. Phys. Rev. B 2016, 93, 094204. [Google Scholar] [CrossRef]
- Ross, P.; Küchemann, S.; Derlet, P.M.; Yu, H.; Arnold, W.; Liaw, P.; Samwer, K.; Maaß, R. Linking macroscopic rejuvenation to nano-elastic fluctuations in a metallic glass. Acta Mater. 2017, 138, 111–118. [Google Scholar] [CrossRef]
- Pan, J.; Wang, Y.X.; Guo, Q.; Zhang, D.; Greer, A.L.; Li, Y. Extreme rejuvenation and softening in a bulk metallic glass. Nat. Commun. 2018, 9, 560. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, Y.; Pineda, E.; Yang, Y.; Qiao, J. Achieving structural rejuvenation in metallic glass by modulating B relaxation intensity via easy-to-operate mechanical cycling. Int. J. Plast. 2022, 157, 103402. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, W.; Song, L.; Huo, J.; Yao, J.; Wang, J.; Li, Y. Decoupling between enthalpy and mechanical properties in rejuvenated metallic glass. Scr. Mater. 2023, 223, 115056. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amigo, N. Cyclic Loading of Metallic Glasses Prepared Using Cryogenic Treatments. Corros. Mater. Degrad. 2024, 5, 439-449. https://doi.org/10.3390/cmd5040020
Amigo N. Cyclic Loading of Metallic Glasses Prepared Using Cryogenic Treatments. Corrosion and Materials Degradation. 2024; 5(4):439-449. https://doi.org/10.3390/cmd5040020
Chicago/Turabian StyleAmigo, Nicolás. 2024. "Cyclic Loading of Metallic Glasses Prepared Using Cryogenic Treatments" Corrosion and Materials Degradation 5, no. 4: 439-449. https://doi.org/10.3390/cmd5040020
APA StyleAmigo, N. (2024). Cyclic Loading of Metallic Glasses Prepared Using Cryogenic Treatments. Corrosion and Materials Degradation, 5(4), 439-449. https://doi.org/10.3390/cmd5040020