Application of Resistometric Sensors for Real-Time Corrosion Monitoring of Coated Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Resistometric Sensors and Monitoring System
2.2. Coating Preparation
2.3. Accelerated Corrosion Tests
2.4. Electrochemical Impedance Spectroscopy
3. Results
3.1. Static Atmospheric Corrosion Test
3.2. Cyclic Atmospheric Corrosion Test
3.3. Immersion Test
3.4. Comparison of Coating Performance
3.5. Electrochemical Impedance Spectroscopy
4. Discussion
5. Conclusions
- Resistometric sensors have been shown to have a strong potential for the evaluation of the protective efficiency of organic coatings in both immersion and atmosphere. They provide particularly interesting information on the coating performance under dynamic atmospheric conditions, which better reflect typical operating conditions.
- The corrosion of the steel substrate increased strongly during drying. It can be explained by the shortening of the oxygen diffusion path and the formation of a highly concentrated electrolyte in coating defects.
- The protective ability of the coating increased with increasing thickness and the addition of the inhibitor.
- The potential limitations of using the resistometric technique lie mainly in the need for the efficient corrosion protection of the sensor reference track and electrical contacts.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koch, G. Cost of corrosion. In Trends in Oil and Gas Corrosion Research and Technologies; Woodhead Publishing: Amsterdam, The Netherlands, 2017; pp. 3–30. [Google Scholar] [CrossRef]
- Silva, T.A.R.; Marques, A.C.; dos Santos, R.G.; Shakoor, R.A.; Taryba, M.; Montemor, M.F. Development of BioPolyurethane Coatings from Biomass-Derived Alkylphenol Polyols-A Green Alternative. Polymers 2023, 15, 2561. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, P.A.; Kiil, S.; Dam-Johansen, K.; Weinell, C.E. Anticorrosive coatings: A review. J. Coat. Technol. Res. 2009, 6, 135–176. [Google Scholar] [CrossRef]
- Popova, K.; Prošek, T. Corrosion Monitoring in Atmospheric Conditions: A Review. Metals 2022, 12, 171. [Google Scholar] [CrossRef]
- Bender, R.; Féron, D.; Mills, D.; Ritter, S.; Bäßler, R.; Bettge, D.; De Graeve, I.; Dugstad, A.; Grassini, S.; Hack, T.; et al. Corrosion challenges towards a sustainable society. Mater. Corros. 2022, 73, 1730–1751. [Google Scholar] [CrossRef]
- Talbot, D.E.J.; Talbot, J.D.R. Corrosion Science and Technology, 3rd ed.; Taylor & Francis: Boca Raton, FL, USA, 2018; pp. 1–568. [Google Scholar]
- Montemor, M.F. Functional and smart coatings for corrosion protection: A review of recent advances. Surf. Coat. Technol. 2014, 258, 17–37. [Google Scholar] [CrossRef]
- Cui, G.; Bi, Z.; Wang, S.; Liu, J.; Xing, X.; Li, Z.; Wang, B. A comprehensive review on smart anti-corrosive coatings. Prog. Org. Coat. 2020, 148, 105821. [Google Scholar] [CrossRef]
- Raj, R.; Kahraman, R.; Shakoor, A.; Montemor, M.F.; Taryba, M. Tannic Acid-Loaded Hydroxyapatite Carriers for Corrosion Protection of Polyolefin-Coated Carbon Steel. Appl. Sci. 2022, 12, 10263. [Google Scholar] [CrossRef]
- Raj, R.; Taryba, M.; Morozov, Y.; Kahraman, R.; Shakoor, R.A.; Montemor, M.F. On the synergistic corrosion inhibition and polymer healing effects of polyolefin coatings modified with Ce-loaded hydroxyapatite particles applied on steel. Electrochim. Acta 2021, 388, 138648. [Google Scholar] [CrossRef]
- Trentin, A.; Pakseresht, A.; Duran, A.; Castro, Y.; Galusek, D. Electrochemical Characterization of Polymeric Coatings for Corrosion Protection: A Review of Advances and Perspectives. Polymers 2022, 14, 2306. [Google Scholar] [CrossRef]
- Calado, L.M.; Taryba, M.; Morozov, Y.; Carmezim, M.J.; Montemor, M.F. Novel smart and self-healing cerium phosphate-based corrosion inhibitor for AZ31 magnesium alloy. Corros. Sci. 2020, 170, 108648. [Google Scholar] [CrossRef]
- ISO 12944-2:2017; Paints and Varnishes—Corrosion Protection of Steel Structures by Protective Paint Systems—Part 2: Classification of Environments. ISO: Genève, Switzerland, 2017.
- Zajec, B.; Bajt Leban, M.; Kosec, T.; Kuhar, V.; Legat, A.; Lenart, S.; Fifer Bizjak, K.; Gavin, K. Corrosion Monitoring of Steel Structure Coating Degradation. Teh. Vjesn. 2018, 25, 1348–1355. [Google Scholar] [CrossRef]
- Hoseinpoor, M.; Prošek, T.; Babusiaux, L.; Mallegol, J. Toward more realistic time of wetness measurement by means of surface relative humidity. Corros. Sci. 2020, 177, 108999. [Google Scholar] [CrossRef]
- Zajec, B.; Leban, M.B.; Lenart, S.; Gavin, K.; Legat, A. Electrochemical impedance and electrical resistance sensors for the evaluation of anticorrosive coating degradation. Corros. Rev. 2017, 35, 65–74. [Google Scholar] [CrossRef]
- Deng, F.; Huang, Y.; Azarmi, F. Corrosion Behavior Evaluation of Coated Steel Using Fiber Bragg Grating Sensors. Coatings 2019, 9, 55. [Google Scholar] [CrossRef]
- ISO 12944-6:2018; Paints and Varnishes—Corrosion Protection of Steel Structures by Protective Paint Systems—Part 6: Laboratory Performance Test Methods. ISO: Genève, Switzerland, 2018.
- ISO 4628:2016; Paints and Varnishes—Evaluation of Degradation of Coatings—Designation of Quantity and Size of Defects, and of Intensity of Uniform Changes in Appearance. ISO: Genève, Switzerland, 2016.
- Upadhyay, V.; Battocchi, D. Localized electrochemical characterization of organic coatings: A brief review. Prog. Org. Coat. 2016, 99, 365–377. [Google Scholar] [CrossRef]
- Habib, S.; Nawaz, M.; Kahraman, R.; Ahmed, E.M.; Shakoor, R.A. Effect of the modified hybrid particle on the corrosion inhibition performance of polyolefin based coatings for carbon steel. J. Sci.-Adv. Mater. Dev. 2022, 7, 100466. [Google Scholar] [CrossRef]
- Nazarov, A.; Prošek, T.; Thierry, D. Application of EIS and SKP methods for the study of the zinc/polymer interface. Electrochim. Acta 2008, 53, 7531–7538. [Google Scholar] [CrossRef]
- Cano, E.; Lafuente, D.; Bastidas, D.M. Use of EIS for the evaluation of the protective properties of coatings for metallic cultural heritage: A review. J. Solid State Electr. 2010, 14, 381–391. [Google Scholar] [CrossRef]
- Loveday, D.; Peterson, P.; Rodgers, B. Evaluation of organic coatings with electrochemical impedance spectroscopy—Part 1: Fundamentals of electrochemical impedance spectroscopy. JCT J. Coat. Technol. 2004, 1, 46–52. [Google Scholar]
- Rammelt, U.; Reinhard, G. Application of Electrochemical Impedance Spectroscopy (EIS) for Characterizing the Corrosion-Protective Performance of Organic Coatings on Metals. Prog. Org. Coat. 1992, 21, 205–226. [Google Scholar] [CrossRef]
- Amirudin, A.; Thierry, D. Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals. Prog. Org. Coat. 1995, 26, 1–28. [Google Scholar] [CrossRef]
- Margarit-Mattos, I.C.P. EIS and organic coatings performance: Revisiting some key points. Electrochim. Acta 2020, 354, 136725. [Google Scholar] [CrossRef]
- Xia, D.H.; Deng, C.-M.; Macdonald, D.; Jamali, S.; Mills, D.; Luo, J.-L.; Strebl, M.G.; Amiri, M.; Jin, W.; Song, S.; et al. Electrochemical measurements used for assessment of corrosion and protection of metallic materials in the field: A critical review. J. Mater. Sci. Technol. 2022, 112, 151–181. [Google Scholar] [CrossRef]
- Diler, E.; Ledan, F.; LeBozec, N.; Thierry, D. Real-time monitoring of the degradation of metallic and organic coatings using electrical resistance sensors. Mater. Corros. 2017, 68, 1365–1376. [Google Scholar] [CrossRef]
- Mansfeld, F. Use of Electrochemical Impedance Spectroscopy for the Study of Corrosion Protection by Polymer Coatings. J. Appl. Electrochem. 1995, 25, 187–202. [Google Scholar] [CrossRef]
- Alamin, M.; Tian, G.Y.; Andrews, A.; Jackson, P. Corrosion detection using low-frequency RFID technology. Insight 2012, 54, 72–75. [Google Scholar] [CrossRef]
- Alamin, M. Passive Low Frequencey RFID for Detection and Monitoring of Corrosion Under Paint and Insulation. Ph.D. Thesis, Newcastle University, Newcastle upon Tyne, UK, 2014. [Google Scholar]
- Sunny, A.I.; Tian, G.Y.; Zhang, J.; Pal, M. Low frequency (LF) RFID sensors and selective transient feature extraction for corrosion characterisation. Sens. Actuators A Phys. 2016, 241, 34–43. [Google Scholar] [CrossRef]
- Daneshian, B.; Höche, D.; Knudsen, O.Ø.; Skilbred, A.W.B. Effect of climatic parameters on marine atmospheric corrosion: Correlation analysis of on-site sensors data. npj Mat. Degrad. 2023, 7, 10. [Google Scholar] [CrossRef]
- Seghier, M.E.A.B.; Knudsen, O.Ø.; Skilbred, A.W.B.; Höche, D. An intelligent framework for forecasting and investigating corrosion in marine conditions using time sensor data. npj Mat. Degrad. 2023, 7, 91. [Google Scholar] [CrossRef]
- Tatsuoka. Under-film Corrosion Monitoring by Painted Electrodes in High Humid Environment. In Proceedings of the EU-ROCORR 2024, Paris, France, 1–5 September 2024. [Google Scholar]
- Švadlena, J.; Stoulil, J. Evaluation of protective properties of acrylate varnishes used for conservation of historical metal artefacts. KOM–Corros. Mater. Prot. J. 2017, 61, 25–31. [Google Scholar] [CrossRef]
- Švadlena, J.; Voracova, E.; Stoulil, J. Corrosion of silver in environment containing halides, pseudohalides, or thiourea. Mater. Corros. 2020, 71, 1721–1728. [Google Scholar] [CrossRef]
- Prošek, T.; Taube, M.; Dubois, F.; Thierry, D. Application of automated electrical resistance sensors for measurement of corrosion rate of copper, bronze and iron in model indoor atmospheres containing short-chain volatile carboxylic acids. Corros. Sci. 2014, 87, 376–382. [Google Scholar] [CrossRef]
- Prošek, T.; Dubois, F.; Kouřil, M.; Scheffel, B.; Degres, Y.; Jouannic, M.; Taube, M.; Dubus, M.; Hubert, V.; Thierry, D. Appli-cation of automated corrosion sensors for real-time monitoring in atmospheres polluted with organic acids. In Proceedings of the 18th International Corrosion Congress 2011, Perth, WA, Australia, 20–24 November 2011. [Google Scholar]
- Msallamová, Š.; Kouřil, M.; Strachotová, K.C.; Stoulil, J.; Popova, K.; Dvořáková, P.; Lhotka, M. Protection of lead in an environment containing acetic acid vapour by using adsorbents and their characterization. Herit. Sci. 2019, 7, 76. [Google Scholar] [CrossRef]
- Msallamová, Š.; Kouřil, M.; Strachotová, K.C.; Stoulil, J.; Popova, K.; Dvořáková, P. Historical lead seals and the influence of disinfectants on the lead corrosion rate. Herit. Sci. 2019, 7, 18. [Google Scholar] [CrossRef]
- Strachotová, K.C.; Kuchťáková, K.; Kouřil, M.; Msallamová, Š. Protection of Lead in Acetic Acid Containing Air by Means of Corrosion Inhibitors. In Proceedings of the 27th International Conference on Metallurgy and Materials (Metal 2018), Brno, Czech Republic, 23–25 May 2018; pp. 1045–1050. [Google Scholar]
- Prošek, T.; Le Bozec, N.; Thierry, D. Application of automated corrosion sensors for monitoring the rate of corrosion during accelerated corrosion tests. Mater. Corros. 2014, 65, 448–456. [Google Scholar] [CrossRef]
- Diler, E.; Peltier, F.; Becker, J.; Thierry, D. Real-time corrosion monitoring of aluminium alloys under chloride-contaminated atmospheric conditions. Mater. Corros. 2021, 72, 1377–1387. [Google Scholar] [CrossRef]
- Gao, G.; Wang, T.; Makeyev, V. Corrosion Rates of Steel, Zinc and Bi-Metal Couples in the Field and in Laboratory Environments. SAE Trans. 2002, 111, 355–373. [Google Scholar]
- Van den Steen, N.; Simillion, H.; Thierry, D.; Deconinck, J. Modeling Film Thicknesses and Estimating Corrosion Depths Under Climate Control. In ECS Meeting Abstracts; IOP Publishing: Bristol, UK, 2016. [Google Scholar]
- Van den Steen, N.; Simillion, H.; Thierry, D.; Deconinck, J. Comparing Modeled and Experimental Accelerated Corrosion Tests on Steel. J. Electrochem. Soc. 2017, 164, C554–C562. [Google Scholar] [CrossRef]
- Dubus, M.; Prošek, T. Standardized assessment of cultural heritage environments by electrical resistance measurements. E-Preserv. Sci. 2012, 9, 67–71. [Google Scholar]
- Kouřil, M.; Prošek, T.; Dubus, M.; Taube, M.; Hubert, V.; Scheffel, B.; Degres, Y.; Jouannic, M.; Thierry, D. Korozní monitoring v rukách restaurátorů a konzervátorů/Corrosion monitoring in the hands of restorers and conservators. KOM–Corros. Mater. Prot. J. 2012, 56, 67–75. [Google Scholar]
- Prošek, T.; Kouřil, M.; Dubus, M.; Taube, M.; Hubert, V.; Scheffel, B.; Degres, Y.; Jouannic, M.; Thierry, D. Real-time monitoring of indoor air corrosivity in cultural heritage institutions with metallic electrical resistance sensors. Stud. Conserv. 2013, 58, 117–128. [Google Scholar] [CrossRef]
- Kreislová, K.; Fialová, P.; Boháčková, T. Indoor corrosivity in Klementinum baroque library hall, Prague. WIT Trans. Built Environ. 2021, 203, 123–131. [Google Scholar]
- Kouřil, M.; Prošek, T.; Scheffel, B.; Degres, Y. Corrosion monitoring in archives by the electrical resistance technique. J. Cult. Herit. 2014, 15, 99–103. [Google Scholar] [CrossRef]
- Vaissière, L.; Ragazzini, M.; Despert, G.; LeBozec, N.; Thierry, D. Cartography of corrosion aggressivity on vehicle in dynamic corrosion test in Renault. In Proceedings of the EUROCORR, Stockholm, Sweden, 4–8 September 2011; pp. 4–8. [Google Scholar]
- Kosec, T.; Kuhar, V.; Kranjc, A.; Malnaric, V.; Belingar, B.; Legat, A. Development of an Electrical Resistance Sensor from High Strength Steel for Automotive Applications. Sensors 2019, 19, 1956. [Google Scholar] [CrossRef]
- Popova, K.; Prošek, T.; Šefl, V.; Šedivý, M.; Kouřil, M.; Reiser, M. Application of flexible resistometric sensors for real-time corrosion monitoring under insulation. Mater. Corros. 2024, 75, 625–635. [Google Scholar] [CrossRef]
- Li, Z.L.; Fu, D.M.; Li, Y.; Wang, G.Y.; Meng, J.T.; Zhang, D.W.; Yang, Z.H.; Ding, G.Q.; Zhao, J.B. Application of An Electrical Resistance Sensor-Based Automated Corrosion Monitor in the Study of Atmospheric Corrosion. Materials 2019, 12, 1065. [Google Scholar] [CrossRef]
- Nawaz, M.; Kahraman, R.; Taryba, M.; Hassan, M.K.; Attaei, M.; Montemor, M.F.; Shakoor, R.A. Improved properties of polyolefin nanocomposite coatings modified with ceria nanoparticles loaded with 2-mercaptobenzothiazole. Prog. Org. Coat. 2022, 171, 107046. [Google Scholar] [CrossRef]
- Attaei, M.; Taryba, M.; Shakoor, R.A.; Kahraman, R.; Marques, A.C.; Montemor, M.F. Highly protective polyolefin coating modified with ceria nano particles treated with N,N,N′,N′-Tetrakis(2-hydroxyethyl)ethylenediamine for corrosion protection of carbon steel. Corros. Sci. 2022, 198, 110162. [Google Scholar] [CrossRef]
- Both, J.; Szabó, G.S.; Katona, G.; Muresan, L.M. Anticorrosive polystyrene coatings modified with tannic acid on zinc and steel substrates. J. Electrochem. Sci. Eng. 2022, 12, 721–730. [Google Scholar] [CrossRef]
- Van den Steen, N.; Simillion, H.; Dolgikh, O.; Terryn, H.; Deconinck, J. An integrated modeling approach for atmospheric corrosion in presence of a varying electrolyte film. Electrochim. Acta 2016, 187, 714–723. [Google Scholar] [CrossRef]
Exposure Conditions | Coating | Corrosion Depth [nm] |
---|---|---|
Static atmospheric test | 50 µm | 2 ± 1 |
20 µm | 2 ± 2 | |
20 µm + inhibitor | <DL | |
Bare surface | >12,500 1 | |
Immersion | 50 µm | <DL |
20 µm | 260 ± 66 | |
20 µm + inhibitor | <DL | |
Bare surface | 10,970 ± 1534 | |
Cyclic atmospheric test | 50 µm | <1 |
20 µm | 16 ± 1 | |
20 µm + inhibitor | <1 | |
Bare surface | >12,500 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popova, K.; Montemor, M.F.; Prošek, T. Application of Resistometric Sensors for Real-Time Corrosion Monitoring of Coated Materials. Corros. Mater. Degrad. 2024, 5, 573-592. https://doi.org/10.3390/cmd5040026
Popova K, Montemor MF, Prošek T. Application of Resistometric Sensors for Real-Time Corrosion Monitoring of Coated Materials. Corrosion and Materials Degradation. 2024; 5(4):573-592. https://doi.org/10.3390/cmd5040026
Chicago/Turabian StylePopova, Kateryna, Maria Fátima Montemor, and Tomáš Prošek. 2024. "Application of Resistometric Sensors for Real-Time Corrosion Monitoring of Coated Materials" Corrosion and Materials Degradation 5, no. 4: 573-592. https://doi.org/10.3390/cmd5040026
APA StylePopova, K., Montemor, M. F., & Prošek, T. (2024). Application of Resistometric Sensors for Real-Time Corrosion Monitoring of Coated Materials. Corrosion and Materials Degradation, 5(4), 573-592. https://doi.org/10.3390/cmd5040026