Assessing the Effects of Noise on Sound Identities of Historical Landmarks
Abstract
:1. Introduction
- According to article 2 of P.D. 1180/1981, “On the regulation of issues related to the establishment and operation of industries, handicrafts of all kinds, mechanical installations and warehouses and therefore the protection of the environment in general” (Government Gazette 293/A ‘6.10.1981), the maximum permissible noise level in ‘Areas where the urban element prevails’ is 50 dB (A).
- According to article 4 of Y.A. 211773/2012 on “Determination of assessment indicators and maximum permissible limits of environmental noise, produced by operation of transport projects, technical specifications of special acoustic studies of calculation and application (EAMYE) of noise-canceling devices (Government Gazette 1367/B ‘27.4.2012)”, the maximum permissible limits of road, rail, and air noise indicators are set to 70 dB(A) for the Lden (day-evening-night noise indicator) index and those are set to 60 dB(A) for the Lnight (night-time noise indicator) index.
2. Materials and Methods
2.1. Case Study Areas
- Areas at the street level: Aristotle University of Thessaloniki Campus, UMCA park, Aristotelous Square, and Dikastirion Square
- Areas higher than the street level: White Tower Terrace, Roof Garden Electra Palace, Pedagogical School of Aristotle University of Thessaloniki (tower), and Greek Telecommunication agency tower
- Areas below the street level: Byzantine Church of Panagia ton Halkeon, Byzantine Church Panagia Achiropoietou, Navarinou Square (Roman ruins of Galerius Palace), and Roman Market
2.2. Field Sampling Protocol
2.3. The Acoustic Ecology Approach
2.4. The Ecoacoustics Approach
2.5. Interviews with the CRESSON Methodology
3. Results
3.1. Sound Identity of the Roman Agora
3.1.1. Site
3.1.2. Quantitative Data Assessment of a Sound Recording
3.1.3. Qualitative Data
Sound Recording Identification
Verbal Description of the Sound Recording
3.1.4. Environment, Milieu, and Paysage
3.2. Sound Identity of Byzantine Church in Hagia Sophia Square
3.2.1. Site
3.2.2. Quantitative Data Assessment of a Sound Recording
3.2.3. Qualitative Data
Sound Recording Identification
Verbal Description of a Sound Recording
3.2.4. Environment, Milieu, and Paysage
4. Discussion
4.1. Roman Agora Soundscape
4.2. Hagia Sophia Soundscape
4.3. Restrictions of the Research
- to identify the sound identities of the study areas through selectively listening to sound recordings and semi-structured interviews;
- to assess whether altitude plays a role in the identification of quiet areas in the urban context.
4.4. Future Studies
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Von Humboldt, A. Ansichten der Natur; Studienausgabe Darmstadt; Wissenschaftliche Buchgesellschaft: Darmstadt, Germany, 1832. [Google Scholar]
- Gage, S.; Ummadi, P.; Shortridge, A.; Qi, J.; Kumar Jella, P. Using GIS to develop a network of acoustic environmental sensors. In Proceedings of the ESRI International User Conference, San Diego, CA, USA, 7–13 August 2004; pp. 15–28. [Google Scholar]
- Kang, J.; Schulte-Fortkamp, B. Soundscape and the Built Environment, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Stratoudakis, C.; Papadimitriou, K.A. Dynamic Interface for the Audio-Visual Reconstruction of Soundscape, Based on the Mapping of its Properties. In Proceedings of the 4th International Sound and Music Computing Conference SMC07, Lefkada, Greece, 11–13 July 2007. [Google Scholar]
- Schafer, R.M. The Tuning of the World; Knopf: New York, NY, USA, 1977. [Google Scholar]
- Schafer, R.M. The Soundscape: Our Sonic Environments and the Tuning of the World; Destiny Books: Rochester, VT, USA, 1994. [Google Scholar]
- Truax, B. Handbook of Acoustic Ecology, 1st ed.; Cambridge Street Publishing: Burnaby, BC, Canada, 1999. [Google Scholar]
- Krause, B. Wild Soundscapes in the National Parks: An Educational Program Guide to Listening and Recording; National Park Service: Washington, DC, USA, 2002. [Google Scholar]
- Shannon, G.; McKenna, M.F.; Angeloni, L.M.; Crooks, K.R.; Fristrup, K.M.; Brown, E.; Wattmeter, G. A synthesis of two decades of research documenting the effects of noise on wildlife. Biol. Rev. Camb. Philos. Soc. 2016, 91, 982–1005. [Google Scholar] [CrossRef]
- Liu, F.; Kang, J. A grounded theory approach to the subjective understanding of urban soundscape in Sheffield. Cities 2016, 50, 28–39. [Google Scholar] [CrossRef] [Green Version]
- Rajan, S.C.; Athira, K.; Jaishanker, R.; Sooraj, N.P.; Sarojkumar, V. Rapid assessment of biodiversity using acoustic indices. Biodivers. Conserv. 2019, 28, 2371–2383. [Google Scholar] [CrossRef]
- Patón, D.; Delgado, P.; Galet, C.; Muriel, J.; Méndez-Suárez, M.; Hidalgo-Sánchez, M. Using acoustic perception to water sounds in the planning of urban gardens. Build. Environ. 2020, 168, 106510. [Google Scholar] [CrossRef]
- Farina, A.; Gage, S.H. (Eds.) Ecoacoustics: The Ecological Role of Sounds, 1st ed.; John Wiley and Sons: Hoboken, NJ, USA, 2017; Available online: https://www.wiley.com/en-us/search?pq=Ecoacoustics%3A+The+Ecological+Role+of+sound%7Crelevance (accessed on 28 January 2020).
- Farina, A. Perspectives in ecoacoustics: A contribution to defining a discipline. J. Ecoacoust. 2018, 2, TRZD5I. [Google Scholar] [CrossRef]
- Sueur, J.; Farina, A. Ecoacoustics: The Ecological Investigation and Interpretation of Environmental Sound. Biosemiotics 2015, 8, 493–502. [Google Scholar] [CrossRef]
- Krause, B.; Farina, A. Using ecoacoustic methods to survey the impacts of climate change on biodiversity. Biol. Conserv. 2016, 195, 245–254. [Google Scholar] [CrossRef]
- Lin, T.; Tsao, Y. Source separation in ecoacoustics: A roadmap towards versatile soundscape information retrieval. Remote Sens. Ecol. Conserv. 2019, 6, 236–247. [Google Scholar] [CrossRef] [Green Version]
- Matsinos, Y.G.; Tsaligopoulos, A. Hot spots of ecoacoustics in Greece and the issue of background noise. J. Ecoacoust. 2018, 2. [Google Scholar] [CrossRef]
- Rossi, T.; Connell, S.D.; Nagelkerken, I. Silent oceans: Ocean acidification impoverishes natural soundscapes by altering sound production of the world’s noisiest marine invertebrate. Proc. R. Soc. B Biol. Sci. 2016, 283, 20153046. [Google Scholar] [CrossRef]
- Eichinski, P.; Sitbon, L.; Roe, P. Clustering acoustic events in environmental recordings for species richness surveys. Proced. Comput. Sci. 2015, 51, 640–649. [Google Scholar] [CrossRef]
- Risch, D.; Parks, S.E. Biodiversity assessment and environmental monitoring in freshwater and marine biomes using ecoacoustics. In Ecoacoustics: The Ecological Role of Sounds, 1st ed.; Farina, A., Gage, S.H., Eds.; John Wiley and Sons: Oxford, UK, 2017; pp. 145–168. [Google Scholar]
- Ross, S.R.; Friedman, N.R.; Dudley, K.L.; Yoshimura, M.; Yoshida, T.; Economo, E.P. Listening to ecosystems: Data-rich acoustic monitoring through landscape-scale sensor networks. Ecol. Res. 2018, 33, 135–147. [Google Scholar] [CrossRef]
- Wood, C.M.; Popescu, V.D.; Klinck, H.; Keane, J.J.; Gutiérrez, R.J.; Sawyer, S.C.; Peery, M.Z. Detecting small changes in populations at landscape scales: A bioacoustic site-occupancy framework. Ecol. Indic. 2019, 98, 492–507. [Google Scholar] [CrossRef]
- Mohareb, N.; Maassarani, S. Assessment of street-level noise in three different urban settings in Tripoli. Urban Clim. 2019, 29, 100481. [Google Scholar] [CrossRef]
- Tsaligopoulos, A.; Karapostoli, A.; Radicchi, A.; Economou, C.; Kyvelou, S.; Matsinos, Y.G. Ecological connectivity of urban quiet areas: The case of Mytilene, Greece. Cities Health 2019, 1–13. [Google Scholar] [CrossRef]
- Bruce, N.S.; Davies, W.J. The effects of expectation on the perception of soundscapes. Appl. Acoust. 2014, 85, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Aletta, F.; Gjestland, T.T.; Brown, L.A.; Botteldooren, D.; Schulte-Fortkamp, B.; Lavia, L. Ten questions on the soundscapes of the built environment. Build. Environ. 2016, 108, 284–294. [Google Scholar] [CrossRef] [Green Version]
- Karapostoli, A.; Votsi, N.E. Urban soundscapes in the historic centre of Thessaloniki: Sonic architecture and sonic identity. Sound Stud. 2018, 4, 162–177. [Google Scholar] [CrossRef]
- Masullo, M.; Castanò, F.; Toma, R.; Maffei, L. Historical Cloisters and Courtyards as Quiet Areas. Sustainability 2020, 12, 2887. [Google Scholar] [CrossRef] [Green Version]
- Fornara, F.; Troffa, R. Restorative experiences and perceived affective qualities in different built and natural urban places. In Revitalising Built Environments: Requalifying Old Places for New Uses; Yildiz, H.T., Guney, Y.I., Eds.; Istanbul Technical University: Istanbul, Turkey, 2009; pp. 1–10. [Google Scholar]
- Matsinos, Y.G.; Tsaligopoulos, A.; Economou, C. Identifying the Quiet Areas of a Small Urban Setting: The Case of Mytilene. Glob. NEST 2017, 19, 674–681. [Google Scholar]
- Bartalucci, C.; Borchi, F.; Carfagni, M.; Governi, L.; Zonfrillo, G.; Aspuru, I.; Natale, R. Guidelines for the Identification, Selection, Analysis and Management of Quiet Urban Areas. 2015. Available online: http://www.quadmap.eu/wp-content/uploads/2012/01/Guidelines_QUADMAP_ver2.0.pdf (accessed on 20 August 2020).
- Murphy, E.; King, E.A. Strategic environmental noise mapping: Methodological issues concerning the implementation of the EU Environmental Noise Directive and their policy implications. Environ. Int. 2010, 36, 290–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández, D.; Pascale, A.; Masullo, M.; Maffei, L.; Puyana, V. The value of the cloisters in Naples’ historical city centre as quiet and restorative places. In Proceedings of the 45° Congreso Español de Acústica—8° Congreso Ibérico de Acústica—European Symposium on Smart Cities and Environmental Acoustics, Murcia, Spain, 30 October 2014. [Google Scholar]
- Maffei, L.; Masullo, M.; Oliviero, A. Quiet areas inside historical city centers. In Proceedings of the Internoise 2017, Hong Kong, China, 27–30 August 2017. [Google Scholar]
- Payne, S.R.; Bruce, N. Exploring the Relationship between Urban Quiet Areas and Perceived Restorative Benefits. Int. J. Environ. Res. Public Health 2019, 16, 1611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization (WHO). Guidelines for Community Noise; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Hellenic Society for Acoustic Ecology. Available online: https://hseaen.wordpress.com/ (accessed on 18 August 2020).
- R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 18 August 2020).
- Sueur, J.; Aubin, T.; Simonis, C. Seewave, a Free Modular Tool for Sound Analysis and Synthesis. Bioacoustics 2008, 18, 213–226. [Google Scholar] [CrossRef]
- Villanueva-Rivera, L.J.; Pijanowski, B.C.; Doucette, J.; Pekin, B. A primer of acoustic analysis for landscape ecologists. Landsc. Ecol. 2011, 26, 1233. [Google Scholar] [CrossRef]
- Zeileis, A.; Kleiber, C. ineq: Measuring Inequality, Concentration, and Poverty (Version 0.2-13). 2014. Available online: https://cran.r-project.org/web/packages/ineq/index.html (accessed on 18 August 2020).
- Hellström, B. The Sonic Identity of European Cities: A Presentation of the Work Conducted by the Swiss-French researcher Pascal Amphoux. Soundsc. Stud. Methods 2002, 9, 59–82. [Google Scholar]
Roman Agora | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Time | Minute | 1′ | 2′ | 3′ | 4′ | ||||||||||||
Second | 15″ | 30″ | 45″ | 60″ | 15″ | 30″ | 45″ | 60″ | 15″ | 30″ | 45″ | 60″ | 15″ | 30″ | 45″ | 60″ | |
Background | Cars | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 1 |
Birds | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 1 | 2 | 3 | 1 | 2 | 3 | |
Foreground | Voices | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | |||||||
Car horns | 3 | ||||||||||||||||
Music | 3 | ||||||||||||||||
Dog barking | 3 | ||||||||||||||||
dB(A) | 43 | 44 | 63 | 43 | 42 | 43 | 43 | 44 | 45 | 43 | 44 | 45 | 42 | 47 | 42 | 43 |
Roman Agora | ||||
---|---|---|---|---|
Qualitative data | ||||
Background sounds | Biophony | 22 | volume | 52 |
Anthropophony | 30 | |||
Foreground sounds | Biophony | 18 | volume | 21 |
Anthropophony | 3 | |||
Quantitative data | ||||
dB(A) | minimum | 42 | average | 44.8 |
maximum | 63 | |||
Acoustic complexity | Left channel | 7609.19 | average | 7593.12 |
Right channel | 7577.05 | |||
NDSI | Left channel | −0.49 | average | −0.47 |
Right channel | −0.46 | |||
Acoustic diversity | Left channel | 0.04 | average | 0.05 |
Right channel | 0.05 | |||
Acoustic evenness | Left channel | 0.74 | average | 0.89 |
Right channel | 0.72 |
Byzantine Church in Hagia Sophia (Square) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Time | Minute | 1′ | 2′ | 3′ | 4′ | ||||||||||||
Second | 15″ | 30″ | 45″ | 60″ | 15″ | 30″ | 45″ | 60″ | 15″ | 30″ | 45″ | 60″ | 15″ | 30″ | 45″ | 60″ | |
Background | Cars | 2 | 1 | 2 | 2 | 2 | 2 | 3 | 1 | 2 | 1 | 1 | 2 | 2 | 3 | 1 | 2 |
Birds | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 3 | 1 | 2 | 2 | |
Foreground | Voices | 1 | 1 | 1 | 2 | 1 | |||||||||||
Car Brakes | 1 | 2 | 2 | ||||||||||||||
Dog Barking | 1 | 1 | |||||||||||||||
Music | 3 | 2 | 2 | 2 | 2 | ||||||||||||
Balcony Tent/Awning | 3 | ||||||||||||||||
dB(A) | 48 | 47 | 49 | 47 | 47 | 46 | 47 | 46 | 44 | 46 | 47 | 45 | 47 | 45 | 43 | 44 |
Byzantine Church in Hagia Sophia (Square) | ||||
---|---|---|---|---|
Qualitative data | ||||
Background sounds | Biophony | 29 | volume | 54 |
Anthropophony | 25 | |||
Foreground sounds | Biophony | 25 | volume | 27 |
Anthropophony | 2 | |||
Quantitative data | ||||
dB(A) | minimum | 43 | average | 46.1 |
maximum | 49 | |||
Acoustic complexity | Left channel | 7421.69 | average | 7401.08 |
Right channel | 7380.47 | |||
NDSI | Left channel | −0.47 | average | −0.48 |
Right channel | −0.50 | |||
Acoustic diversity | Left channel | 0.09 | average | 0.09 |
Right channel | 0.09 | |||
Acoustic evenness | Left channel | 0.74 | average | 0.73 |
Right channel | 0.72 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korkontzila, A.; Karapostoli, A.; Tsaligopoulos, A.; Matsinos, Y.G. Assessing the Effects of Noise on Sound Identities of Historical Landmarks. Acoustics 2020, 2, 719-734. https://doi.org/10.3390/acoustics2040039
Korkontzila A, Karapostoli A, Tsaligopoulos A, Matsinos YG. Assessing the Effects of Noise on Sound Identities of Historical Landmarks. Acoustics. 2020; 2(4):719-734. https://doi.org/10.3390/acoustics2040039
Chicago/Turabian StyleKorkontzila, Anastasia, Aimilia Karapostoli, Aggelos Tsaligopoulos, and Yiannis G. Matsinos. 2020. "Assessing the Effects of Noise on Sound Identities of Historical Landmarks" Acoustics 2, no. 4: 719-734. https://doi.org/10.3390/acoustics2040039
APA StyleKorkontzila, A., Karapostoli, A., Tsaligopoulos, A., & Matsinos, Y. G. (2020). Assessing the Effects of Noise on Sound Identities of Historical Landmarks. Acoustics, 2(4), 719-734. https://doi.org/10.3390/acoustics2040039