Design of Optimal Sound Absorbers Using Acoustic Diffusers for Multipurpose Auditoriums
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source Spectrum
2.2. Auditorium Model
2.3. Diffusers
2.4. Theoretical Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Physical Model of PARDOS Software Tool
- represents the SPL from the source;
- , with representing the slant distances for the links of paths chosen between each node’s geometrical centers;
- N represents the number of nodes for every path;
- represents the wavenumber;
- represents the diffraction coefficient and the reflection coefficient, where the application is dependent on the form of incidence on either the obstacle or ground;
- represents the obstacle coefficient factor;
- α is the air-absorbent coefficient in Np/m. In turn, this parameter depends on the following input variables, which are related to the source’s frequency emission (f) and the physical properties of the air: static pressure (Ps), Celsius temperature (T), and percentage relative humidity (H).
References
- Hui, A.; Kursell, J.; Jackson, M.W. (Eds.) Music, Sound and the Laboratory from 1750 to 1980 (Osiris); University of Chicago Press: Chicago, IL, USA, 2013; Volume 1. [Google Scholar]
- Gouk, P. Music, Science and Natural Magic in Seventeenth-Century England; Yale University Press: New Haven, CT, USA, 1999. [Google Scholar]
- Hui, A. The Psychophysical Ear: Musical Experiments, Experimental Sounds, 1840–1910; The MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Thompson, E. The Soundscape of Modernity: Architectural Acoustics and the Culture of Listening in America, 1900–1933; The MIT Press: Cambridge, MA, USA, 2002. [Google Scholar]
- D’Orazio, D.; Silingardi, V.; De Cesaris, S.; Garai, M. Musician-oriented stage measurements in Italian historical theatres. J. Temporal Des. Arch. Environ. 2015, 12, 76–82. [Google Scholar]
- Topa, M.D.; Toma, N.; Kirei, B.S.; Sărăcuţ, I.; Farina, A. Experimental Acoustic Evaluation of an Auditorium. Adv. Acoust. Vib. 2012, 2012, 868247. [Google Scholar] [CrossRef]
- Long, M. Architectural Acoustics; Elsevier Academic Press: Amsterdam, The Netherlands, 2014; pp. 666–682. [Google Scholar]
- Rossing, T.D. Springer Handbook of Acoustics; Springer: Berlin/Heidelberg, Germany, 2014; pp. 306–323. [Google Scholar] [CrossRef]
- Everest, F.A.; Pohlmann, K.C. Master Handbook of Acoustics, 5th, ed.; McGraw-Hill: New York, NY, USA, 2009; Volume 5. [Google Scholar] [CrossRef]
- Schroeder, M.R. Diffuse sound reflection by maximum-length sequences. J. Acoust. Soc. Am. 1975, 65, 958–963. [Google Scholar] [CrossRef]
- Schroeder, M.R. Toward better acoustics for concert halls. Phys. Today 1980, 33, 24. [Google Scholar] [CrossRef]
- D’Antonio, P.; Cox, T. Two decades of sound diffuser design and development—Part 1: Applications and design. J. Audio Eng. Soc. 1998, 46, 955–976. [Google Scholar]
- Cox, T.J.; D’Antonio, P. Thirty years since “diffuse sound reflection by maximum length sequences”: Where are we now? J. Acoust. Soc. Am. 2005, 118, 2016. [Google Scholar] [CrossRef]
- Cox, T.J. Acoustic diffusers: The good, the bad and the ugly. In Proceedings of the Institute of Acoustics, Reproduced Sound 20th Conference, Oxford, UK, 9 September 2004. [Google Scholar]
- Mahmoud, F.; Kablief, Z.; Mohammadreza, M.; Mahdieh, N. Using the Schroeder diffuser to improve parallel noise barriers’ performance. Noise Control Eng. J. 2014, 62, 210–217. [Google Scholar] [CrossRef]
- Buret, M.; Iu, K.K.; Lam, Y.W.; Leung, C. Application of quadratic residue diffusers to transportation noise control. In Proceedings of the 37th International Congress and Exposition on Noise Control Engineering, Paper no. 0164, Shanghai, China, 26–29 October 2008. [Google Scholar]
- Huang, J.; Dupont, P.; Undurti, A.; Triedman, J.; Cleveland, R. Producing diffuse ultrasound reflections from medical instruments using a quadratic residue diffuser. Ultrasound Med. Biol. 2006, 32, 721–727. [Google Scholar] [CrossRef] [PubMed]
- Cox, T.J. The optimization of profiled diffusers. J. Acoust. Soc. Am. 1995, 97, 2928–2936. [Google Scholar] [CrossRef]
- Cox, T.J.; Angus, J.A.S.; D’Antonio, P. Ternary and quadriphase sequence diffusers. J. Acoust. Soc. Am. 2006, 119, 310–319. [Google Scholar] [CrossRef]
- Cox, T.J.; Hughes, R.J.; Angus JA, S.; Pogson, M.A.; Whittaker, D.M.; Gehring, G.A. Acoustics Research Centre, University of Salford, Salford Diffusive benefits of cylinders in front of a Schroeder diffuser. J. Acoust. Soc. Am. 2010, 128, 3. [Google Scholar]
- Szeląg, A.; Rubacha, J.; Pilch, A.; Majchrzak, A.; Kamisinski, T. Reflective panels with Schroeder diffusers—A measure to broaden the effective frequency range of sound reflection from overhead stage canopies. Appl. Acoust. 2020, 157. [Google Scholar] [CrossRef]
- Tomaz, R. A Way to innovate Schroeder Type Diffusers. In Proceedings of the ACUSTICA 2004, 4th Iberoamerican Acoustics Congress, Guimaraes, Portugal, September 2004; p. 156 /p.1. [Google Scholar]
- Bolejko, R.; Pruchnicki, P. Sound Diffusers Based on Number Theory with Random Variations of Surface Acoustic Impedance. In Proceedings of the 104th Convention of the Audio Engineering Society, Amsterdam, The Netherlands, 16–19 May 1998; p. 4711. [Google Scholar]
- Perry, T. Acoustic Diffuser Design by Optimization: I. Literature Review. Bachelor’s Thesis, University of Victoria, Victoria, BC, Canada, 2011. [Google Scholar]
- Dessi-Olive, J.; Hsu, T. Generating acoustic diffuser arrays with shape grammars. In Proceedings of the Sim AUD 2019, Atlanta, GA, USA, 7–9 April 2019. [Google Scholar]
- Pilch, A. Optimized diffusers for shoe-box shaped performance halls. Appl. Acoust. 2021, 178, 108019. [Google Scholar] [CrossRef]
- Jiménez, N.; Cox, T.J.; Romero-García, V.; Groby, J.P. Metadiffusers: Deep-subwavelength sound diffusers. Sci. Rep. 2017, 7, 5389. [Google Scholar] [CrossRef] [PubMed]
- Commins, D.E.; Auletta, N.; Suner, B. Diffusion and absorption of quadratic residue diffusers. Proc. IOA 1988, 10, 223–232. [Google Scholar]
- Fujiwara, K.; Miyajima, T. Absorption characteristics of a practically constructed Schroeder diffusers of quadratic residue type. Appl. Acoust. 1992, 35, 149–152. [Google Scholar] [CrossRef]
- Fujiwara, K. A study on the sound absorption of a quadratic-residue type diffuser. Acustica 1992, 81, 370–378. [Google Scholar]
- Cox, T.J.; D’Antonio, P. Absorption by surface diffusers. In Proceedings of the Proc. IOA Conference Auditorium Acoustics, London, UK, 19–21 July 2002. [Google Scholar]
- Cox, T.J.; D’Antonio, P. Acoustic phase gratings for reduced specular reflection. Appl. Acoust. 2000, 60, 167–186. [Google Scholar] [CrossRef]
- Wu, T.; Cox, T.J.; Lam, Y.W. From a profiled diffuser to an optimized absorber. J. Acoust. Soc. Am. 2000, 108, 643–650. [Google Scholar] [CrossRef]
- Cox, T.J.; D’Antonio, P. Acoustic Absorbers and Diffusers, 2nd, ed.; Taylor & Francis: Abingdon, UK, 2009. [Google Scholar]
- Belyaev, I.V.; Golubev, A.Y.; Zverev, A.Y.; Makashov, S.Y.; Palchikovskiy, V.V.; Sobolev, A.F.; Chernykh, V.V. Experimental Investigation of Sound Absorption of Acoustic Wedges for Anechoic Chambers. Akust. Zhurnal 2015, 61, 636–644. [Google Scholar]
- Wu, T.; Cox, T.J.; Lam, Y.W. A profiled structure with improved low frequency absorption. J. Acoust. Soc. Am. 2001, 110, 3064–3070. [Google Scholar] [CrossRef]
- Wu, T. Profiled Absorbers: Theory, Measurement and Design. Ph.D. Thesis, University of Salfordm, Salford, UK, 2003. [Google Scholar]
- Kamisiński, T.; Pilch, A.; Rubacha, J. Large format acoustic structures in the concert halls. In Proceedings of the EuroRegio 2016, Porto, Portugal, 13–15 June 2016. [Google Scholar]
- Czerwinski, A.; Dziechciowski, Z. Evaluation of Acoustical Properties of an Auditorium after a Modernisation Program. Acoust. Biomed. Eng. 2014, 4A, 125. [Google Scholar] [CrossRef]
- Pangau, C.M.F. Measurement of Acoustic Performance of an Auditorium. J. Phys. Conf. Ser. 2018, 1075, 012042. [Google Scholar] [CrossRef]
- Pardo-Quiles, D.; Rodríguez, J.-V.; Molina-García-Pardo, J.-M.; Juan-Llácer, L. Traffic Noise Mitigation Using Single and Double Barrier Caps of Different Shapes for an Extended Frequency Range. Appl. Sci. 2020, 10, 5746. [Google Scholar] [CrossRef]
- Kim, Y.H.; Kim, J.H.; Jeon, J.Y. Scale model investigations of diffuser application strategies for acoustical design of performance venues. Acta Acust. United Acust. 2011, 97, 791–799. [Google Scholar] [CrossRef]
- Pilch, A.; Kamisiński, T. The Effect of Geometrical and Material Modification of Sound Diffusers on Their Acoustic Parameters. Arch. Acoust. 2011, 36, 955–966. [Google Scholar] [CrossRef]
- Redondo, J.; Sánchez-Pérez, J.V.; Blasco, X.; Herrero, J.M.; Vorländer, M. Optimized sound diffusers based on sonic crystals using a multiobjective evolutionary algorithm. J. Acoust. Soc. Am. 2016, 139, 2807–2814. [Google Scholar] [CrossRef] [PubMed]
- Cox, T.J.; D’Antonio, P. Fractal Sound Diffusers. In Proceedings of the 103rd Convention of the Audio Engineering Society, New York, NY, USA, 26–29 September 1997; p. 4578. [Google Scholar]
- D’Antonio, P.; Konnert, J. The QRD Diffractal: A New One- or Two-Dimensional Fractal Sound Diffusor. J. Audio Eng. Soc. 1992, 40, 117–129. [Google Scholar]
- Li, Y.; Jiang, X.; Li, R.; Liang, B.; Zou, X.; Yin, L.; Cheng, J. Experimental realization of full control of reflected waves with subwavelength acoustic metasurfaces. Phys. Rev. Appl. 2014, 2, 064002. [Google Scholar] [CrossRef]
- Cummer, S.A.; Christensen, J.; Alù, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 2016, 1, 16001. [Google Scholar] [CrossRef]
- Ma, G.; Sheng, P. Acoustic metamaterials: From local resonances to broad horizons. Sci. Adv. 2016, 2, e1501595. [Google Scholar] [CrossRef] [PubMed]
- Popa, B.-I.; Cummer, S.A. Non-reciprocal and highly nonlinear active acoustic metamaterials. Nat. Commun. 2014, 5, 3398. [Google Scholar] [CrossRef] [PubMed]
- Mei, J.; Ma, G.; Yang, M.; Yang, Z.; Wen, W.; Sheng, P. Dark acoustic metamaterials as super absorbers for low-frequency sound. Nat. Commun. 2012, 3, 756. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, N.; Huang, W.; Romero-García, V.; Pagneux, V.; Groby, J.-P. Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption. Appl. Phys. Lett. 2016, 109, 121902. [Google Scholar] [CrossRef]
- Zhu, Y.; Fan, X.; Liang, B.; Cheng, J.; Jing, Y. Ultrathin acoustic metasurface-based Schroeder diffuser. Phys. Rev. X 2017, 7, 021034. [Google Scholar] [CrossRef]
- Kumar, S.; Lee, H.P. The Present and Future Role of Acoustic Metamaterials for Architectural and Urban Noise Mitigations. Acoustics 2019, 1, 590–607. [Google Scholar] [CrossRef]
- Lee, D.; Nguyen, D.M.; Rho, J. Acoustic wave science realized by metamaterials. Nano Converg. 2017, 4, 3. [Google Scholar] [CrossRef]
- Assouar, B.; Liang, B.; Wu, Y.; Li, Y.; Cheng, J.-C.; Jing, Y. Acoustic metasurfaces. Nat. Rev. Mater. 2018, 1, 460–472. [Google Scholar] [CrossRef]
- Redondo, J.; Pico, R.; Roig, B. Time domain simulation of sound diffusers using finite-difference schemes. Acta Acust. United Acust. 2007, 93, 611–622. [Google Scholar]
- Cox, T.J.; Dalenback, B.-I.L.; Antonio, P.D.; Embrechts, J.J.; Jeon, J.Y.; Mommertz, E.; Vorlander, M. A tutorial on scattering and diffusion coefficients for room acoustics surfaces. Acta Acust. United Acust. 2006, 92, 1–15. [Google Scholar]
- Shtrepi, L.; Astolfi, A.; Puglisi, G.E.; Masoero, M.C. Effects of the Distance from a Diffusive Surface on the Objective and Perceptual Evaluation of the Sound Field in a Small Simulated Variable-Acoustics Hall. Appl. Sci. 2017, 7, 224. [Google Scholar] [CrossRef]
- ANSI S3.5 (R2007); American National Standard Methods for the Calculation of the Speech Intelligibility Index. American National Standards Institute: New York, NY, USA, 2007.
- ANSI 3.5-1997; American National Standard—Methods for Calculation of the Speech Intelligibility Index. American National Standards Institute: New York, NY, USA, 1997.
- Pavlovic, C.V. Derivation of primary parameters and procedures for use in speech intelligibility predictions. J. Acoust. Soc. Am. 1987, 82, 413–422. [Google Scholar] [CrossRef]
- ANSI S3.5, 1969; Methods for the Calculation of the Articulation Index. American National Standards Institute: New York, NY, USA, 1986.
- Dunn, H.K.; White, S.D. Statistical measurements on conversational speech. J. Acoust. Soc. Am. 1940, 11, 278–288. [Google Scholar] [CrossRef]
- French, N.R.; Steinberg, J.C. Factors governing the intelligibility of speech of sounds. J. Acoust. Soc. Am. 1947, 19, 90–119. [Google Scholar] [CrossRef]
- Moralesa, M.; Leembruggen, G.; Dance, S.; Shield, B.M. A revised speech spectrum for STI calculations. Appl. Acoust. 2018, 132, 33–42. [Google Scholar] [CrossRef]
- Sun, R. Characterization of the Acoustic Properties of Cementitious. Materials. Thesis, Loughborough University, London, UK, 2017. [Google Scholar]
- Pardo-Quiles, D.; Rodríguez, J.-V.; Rodríguez-Rodríguez, I. PARDOS: An Educational Software Tool for the Analysis of Sound Propagation. IEEE Access 2020, 8, 194933–194949. [Google Scholar] [CrossRef]
- Kouyoumjian, R.G.; Pathak, P.H. A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface. Proc. IEEE 1974, 62, 1448–1461. [Google Scholar] [CrossRef]
- Cox, T.J.; D’Antonio, P. Acoustic Absorbers and Diffusers: Theory, Design and Application; Spon Press: London, UK; Spon Press: New York, NY, USA, 2006; ISBN 0415296498. [Google Scholar]
- Pardo-Quiles, D.; Rodríguez, J.-V. A Fast UTD-based Method for the Analysis of Multiple Acoustic Diffractions over a Series of Obstacles with Arbitrary Modeling, Height and Spacing. Symmetry 2020, 12, 654. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Air temperature (°C) | 20 |
Air pressure (Pa) | 101,325 |
Air characteristic impedance (Rayl) | 413 |
Air humidity (%) | 50 |
Speed of sound (m/s) | 344 |
Maximum frequency (Hz) | 10,000 |
Minimum frequency (Hz) | 10 |
Number of frequency bins | 1500 |
Maximum number of hops (between source and receiver) | 10 |
Ceiling specific resistance (Rayl) | 1 × 106 |
Ceiling specific reactance (Rayl) | 0 |
Ceiling density (kg/m3) | 2000 |
Row | Rectangles | Cylinders | Edges | Wedges | Y-Shaped |
---|---|---|---|---|---|
1 | 1.89 | 2.14 | 2.13 | 2.02 | 1.79 |
5 | 0.89 | 6.05 | 6.07 | 5.56 | 0.13 |
10 | 2.57 | 2.83 | 3.15 | 2.81 | 0.39 |
15 | 1.02 | 0.79 | 0.86 | 1.13 | 0.48 |
20 | 1.48 | 1.03 | 1.22 | 1.62 | 0.70 |
Row 1 | Row 5 | Row 10 | Row 15 | Row 20 | |
---|---|---|---|---|---|
Free space | 75.20 | 64.14 | 58.43 | 55.00 | 52.55 |
Y-shaped | 75.43 | 64.14 | 58.48 | 55.11 | 52.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pardo-Quiles, D.; Rodríguez-Rodríguez, I.; Rodríguez, J.-V. Design of Optimal Sound Absorbers Using Acoustic Diffusers for Multipurpose Auditoriums. Acoustics 2024, 6, 219-239. https://doi.org/10.3390/acoustics6010012
Pardo-Quiles D, Rodríguez-Rodríguez I, Rodríguez J-V. Design of Optimal Sound Absorbers Using Acoustic Diffusers for Multipurpose Auditoriums. Acoustics. 2024; 6(1):219-239. https://doi.org/10.3390/acoustics6010012
Chicago/Turabian StylePardo-Quiles, Domingo, Ignacio Rodríguez-Rodríguez, and José-Víctor Rodríguez. 2024. "Design of Optimal Sound Absorbers Using Acoustic Diffusers for Multipurpose Auditoriums" Acoustics 6, no. 1: 219-239. https://doi.org/10.3390/acoustics6010012
APA StylePardo-Quiles, D., Rodríguez-Rodríguez, I., & Rodríguez, J. -V. (2024). Design of Optimal Sound Absorbers Using Acoustic Diffusers for Multipurpose Auditoriums. Acoustics, 6(1), 219-239. https://doi.org/10.3390/acoustics6010012