Sensor-Based Prediction of Mental Effort during Learning from Physiological Data: A Longitudinal Case Study
Abstract
:1. Introduction
2. Review of Literature
2.1. The Use of Wearables in Education
2.2. Cognitive Load Theory
2.3. Purpose of the Present Study
- (1)
- How much data does it take to train a device to accurately detect an individual’s level of mental effort into the future, and how robust are these predictions over time?
- (2)
- Which machine-learning algorithms are most and least effective for merging self-report data with physiological data toward making accurate longitudinal predictions, including the automated detection of transitions between different levels of mental effort associated with different learning activities?
3. Materials and Methods
3.1. N = 1 Case Study Design
3.2. Data Collection and Preparation
3.3. Training and Testing the Machine-Learning Models
3.4. Traditional Machine-Learning Models
3.5. Time-Dependent Baseline Model
3.6. Deep-Learning Models
4. Results
4.1. Interpretive Modeling
4.2. Forecasting Mental Effort Using the Traditional Machine-Learning Models
Train % | Test % | Test Data | ||||
---|---|---|---|---|---|---|
First | Last | F1 | RMSE | No. of Transitions Present in the Test Set | No. of Transitions Detected | R-Squared * |
10 | 90 | 0.10 | 3.17 | 73 | 177,875 | 0 |
20 | 80 | 0.10 | 2.94 | 65 | 176,784 | 0 |
30 | 70 | 0.16 | 2.87 | 58 | 165,135 | 0 |
40 | 60 | 0.16 | 2.81 | 51 | 146,844 | 0 |
50 | 50 | 0.17 | 2.72 | 42 | 124,335 | 0 |
60 | 40 | 0.17 | 2.68 | 32 | 99,789 | 0 |
70 | 30 | 0.19 | 2.48 | 24 | 74,603 | 0 |
80 | 20 | 0.21 | 2.40 | 16 | 49,196 | 0 |
90 | 10 | 0.22 | 2.21 | 8 | 24,564 | 0 |
4.3. Forecasting Mental Effort Using the Time-Dependent Baseline Model
Train % | Test % | Test Data | ||||
---|---|---|---|---|---|---|
First | Last | F1 | RMSE | No. of Transitions Present in the Test Set | No. of Transitions Detected | R-Squared * |
10 | 90 | 0.24 | 1.46 | 73 | 37,639 | 0.62 |
20 | 80 | 0.06 | 1.78 | 65 | 6624 | 0.44 |
30 | 70 | 0.30 | 1.18 | 58 | 12,658 | 0.73 |
40 | 60 | 0.31 | 1.11 | 51 | 9968 | 0.74 |
50 | 50 | 0.33 | 1.06 | 42 | 6615 | 0.75 |
60 | 40 | 0.30 | 1.04 | 32 | 3967 | 0.76 |
70 | 30 | 0.26 | 1.00 | 24 | 2567 | 0.72 |
80 | 20 | 0.31 | 0.88 | 16 | 2205 | 0.75 |
90 | 10 | 0.22 | 0.95 | 8 | 830 | 0.61 |
4.4. Forecasting Mental Effort Using the Deep-Learning Models
Train % | Test % | Test Data | ||||
---|---|---|---|---|---|---|
First | Last | F1 | RMSE | No. of Transitions Present in the Test Set | No. of Transitions Detected | R-Squared * |
10 | 90 | 0.9998 | 0.22 | 73 | 413 | 0.99 |
20 | 80 | 0.9998 | 0.18 | 65 | 71 | 0.99 |
30 | 70 | 0.9998 | 0.13 | 58 | 58 | 0.9967 |
40 | 60 | 0.9997 | 0.13 | 51 | 51 | 0.9967 |
50 | 50 | 0.9997 | 0.09 | 42 | 42 | 0.9983 |
60 | 40 | 0.9998 | 0.08 | 32 | 32 | 0.9985 |
70 | 30 | 0.9998 | 0.07 | 24 | 24 | 0.9987 |
80 | 20 | 0.9998 | 0.06 | 16 | 16 | 0.999 |
90 | 10 | 0.9998 | 0.05 | 8 | 8 | 0.9989 |
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nuss, K.; Moore, K.; Nelson, T.; Li, K. Effects of Motivational Interviewing and Wearable Fitness Trackers on Motivation and Physical Activity: A Systematic Review. Am. J. Health Promot. 2021, 35, 226–235. [Google Scholar] [CrossRef]
- Brickwood, K.J.; Watson, G.; O’Brien, J.; Williams, A.D. Consumer-Based Wearable Activity Trackers Increase Physical Activity Participation: Systematic Review and Meta-Analysis. JMIR mHealth uHealth 2019, 7, e11819. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, F.L.; Marling, C.R.; Bunescu, R.C. The Promise and Perils of Wearable Physiological Sensors for Diabetes Management. J. Diabetes Sci. Technol. 2018, 12, 587–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-León, C.; Villalonga, C.; Munoz-Torres, M.; Ruiz, J.R.; Banos, O. Mobile and Wearable Technology for the Monitoring of Diabetes-Related Parameters: Systematic Review. JMIR mHealth uHealth 2021, 9, e25138. [Google Scholar] [CrossRef]
- Zhou, Z.X.; Tam, V.; Lui, K.S.; Lam, E.Y.; Yuen, A.; Hu, X.; Law, N. Applying Deep Learning and Wearable Devices for Educational Data Analytics. In Proceedings of the 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), Portland, OR, USA, 4–6 November 2019; pp. 871–878. [Google Scholar]
- Zhou, Z.X.; Tam, V.; Lui, K.S.; Lam, E.Y.; Hu, X.; Yuen, A.; Law, N. A Sophisticated Platform for Learning Analytics with Wearable Devices. In Proceedings of the 2020 IEEE 20th International Conference on Advanced Learning Technologies (ICALT), Tartu, Estonia, 6–9 July 2020; pp. 300–304. [Google Scholar]
- Gal, R.; May, A.M.; van Overmeeren, E.J.; Simons, M.; Monninkhof, E.M. The Effect of Physical Activity Interventions Comprising Wearables and Smartphone Applications on Physical Activity: A Systematic Review and Meta-Analysis. Sports Med. Open 2018, 4, 42. [Google Scholar] [CrossRef] [PubMed]
- Davergne, T.; Pallot, A.; Dechartres, A.; Fautrel, B.; Gossec, L. Use of Wearable Activity Trackers to Improve Physical Activity Behavior in Patients with Rheumatic and Musculoskeletal Diseases: A Systematic Review and Meta-Analysis. Arthritis Care Res. 2019, 71, 758–767. [Google Scholar] [CrossRef]
- Mehmood, R.; Lee, H. Towards Building a Computer Aided Education System for Special Students Using Wearable Sensor Technologies. Sensors 2017, 17, 317. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.M.; Su, W.C.; Chen, Y.L.; Wu, S.L.; Chen, J.J. Smart Interactive Education System Based on Wearable Devices. Sensors 2019, 19, 3260. [Google Scholar] [CrossRef] [Green Version]
- Romine, W.L.; Schroeder, N.L.; Graft, J.; Yang, F.; Sadeghi, R.; Zabihimayvan, M.; Kadariya, D.; Banerjee, T. Using Machine Learning to Train a Wearable Device for Measuring Students’ Cognitive Load during Problem-Solving Activities Based on Electrodermal Activity, Body Temperature, and Heart Rate: Development of a Cognitive Load Tracker for Both Personal and Classroom Use. Sensors 2020, 20, 4833. [Google Scholar]
- Sun, J.; Liu, Y. Using Smart Bracelets to Assess Heart Rate Among Students During Physical Education Lessons: Feasibility, Reliability, and Validity Study. JMIR mHealth uHealth 2020, 8, e17699. [Google Scholar] [CrossRef]
- Evmenova, A.S.; Graff, H.J.; Genaro Motti, V.; Giwa-Lawal, K.; Zheng, H. Designing a Wearable Technology Intervention to Support Young Adults with Intellectual and Developmental Disabilities in Inclusive Postsecondary Academic Environments. J. Spec. Educ. Technol. 2019, 34, 92–105. [Google Scholar] [CrossRef]
- Madeira, C.A.; Quintana, R.M.; Slotta, J.D. Wearable Technology for Teachers: Support for Classroom Orchestration. In Proceedings of the Annual Meeting of the American Educational Research Association, Washington, DC, USA, 8–12 April 2016. AERA Online Paper Repository. [Google Scholar]
- Jacob, S.; Ishimaru, S.; Dengel, A. Interest Detection While Reading Newspaper Articles by Utilizing a Physiological Sensing Wristband. In Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers, Singapore, 8–12 October 2018; pp. 78–81. [Google Scholar]
- Zhu, Z.; Ober, S.; Jafari, R. Modeling and Detecting Student Attention and Interest Level Using Wearable Computers. In Proceedings of the 2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Eindhoven, The Netherlands, 9–12 May 2017; pp. 13–18. [Google Scholar]
- Cain, R.; Lee, V.R. Measuring Electrodermal Activity to Capture Engagement in an Afterschool Maker Program. In Proceedings of the 6th Annual Conference on Creativity and Fabrication in Education, Stanford, CA, USA, 14–16 October 2016; pp. 78–81. [Google Scholar]
- Terriault, P.; Kozanitis, A.; Farand, P. Use of Electrodermal Wristbands to Measure Students’ Cognitive Engagement in the Classroom. In Proceedings of the Canadian Engineering Education Association (CEEA), Charlottetown, PE, Canada, 20–23 June 2021. [Google Scholar] [CrossRef]
- Camacho, V.L.; de la Guia, E.; Olivares, T.; Flores, M.J.; Orozco-Barbosa, L. Data Capture and Multimodal Learning Analytics Focused on Engagement with a New Wearable IoT Approach. IEEE Trans. Learn. Technol. 2020, 13, 704–717. [Google Scholar] [CrossRef]
- Wiberg, H.; Nilsson, E.; Lindén, P.; Svanberg, B.; Poom, L. Physiological Responses Related to Moderate Mental Load during Car Driving in Field Conditions. Biol. Psychol. 2015, 108, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Charles, R.L.; Nixon, J. Measuring Mental Workload Using Physiological Measures: A Systematic Review. Appl. Ergon. 2019, 74, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Kramer, A.F. Physiological Metrics of Mental Workload: A Review of Recent Progress. In Multiple-Task Performance; CRC Press: Boca Raton, FL, USA, 2020; pp. 279–328. [Google Scholar]
- De Waard, D. The Measurement of Drivers’ Mental Workload; The Traffic Research Centre VSC, University of Groningen: Groningen, The Netherlands, 1996. [Google Scholar]
- De Avila, U.E.R.; de França Campos, F.R. 15 Minutes of Attention in Class: Variability of Heart Rate, Personality, Emotion and Chronotype. Creat. Educ. 2019, 10, 2428–2447. [Google Scholar] [CrossRef] [Green Version]
- Di Lascio, E.; Gashi, S.; Santini, S. Unobtrusive Assessment of Students’ Emotional Engagement during Lectures Using Electrodermal Activity Sensors. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2018, 2, 103. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, Y.; Maniyeri, J.; Guan, C. Detection of Variations in Cognitive Workload Using Multi-Modality Physiological Sensors and a Large Margin Unbiased Regression Machine. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 2985–2988. [Google Scholar]
- Giannakos, M.N.; Sharma, K.; Papavlasopoulou, S.; Pappas, I.O.; Kostakos, V. Fitbit for Learning: Towards Capturing the Learning Experience Using Wearable Sensing. Int. J. Hum. Comput. Stud. 2020, 136, 102384. [Google Scholar] [CrossRef]
- Sweller, J. Cognitive Load Theory and Educational Technology. Educ. Technol. Res. Dev. 2020, 68, 1–16. [Google Scholar] [CrossRef]
- Sweller, J.; Chandler, P.; Kalyuga, S. Cognitive Load Theory; Springer: New York, NY, USA, 2011. [Google Scholar]
- Paas, F.; Sweller, J. Implications of cognitive load theory for multimedia learning. In The Cambridge Handbook of Multimedia Learning; Cambridge University Press: New York, NY, USA, 2014; pp. 27–42. [Google Scholar]
- Cowan, N. The Magical Mystery Four: How Is Working Memory Capacity Limited, and Why? Curr. Dir. Psychol. Sci. 2010, 19, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Cowan, N. The Magical Number 4 in Short-Term Memory: A Reconsideration of Mental Storage Capacity. Behav. Brain Sci. 2001, 24, 87–114. [Google Scholar] [CrossRef] [Green Version]
- Ayres, P. Subjective measures of cognitive load: What can they reliably measure? In Cognitive Load Measurement and Application: A Theoretical Framework for Meaningful Research and Practice; Routledge/Taylor & Francis Group: New York, NY, USA, 2018; pp. 9–28. ISBN 978-1-138-23897-8. [Google Scholar]
- De Jong, T. Cognitive Load Theory, Educational Research, and Instructional Design: Some Food for Thought. Instr. Sci. 2010, 38, 105–134. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, N.L.; Cenkci, A.T. Do Measures of Cognitive Load Explain the Spatial Split-Attention Principle in Multimedia Learning Environments? A Systematic Review. J. Educ. Psychol. 2019, 112, 254. [Google Scholar] [CrossRef]
- Sweller, J. Element Interactivity and Intrinsic, Extraneous, and Germane Cognitive Load. Educ. Psychol. Rev. 2010, 22, 123–138. [Google Scholar] [CrossRef]
- Leppink, J.; Paas, F.; Van der Vleuten, C.P.M.; Van Gog, T.; Van Merriënboer, J.J.G. Development of an Instrument for Measuring Different Types of Cognitive Load. Behav. Res. 2013, 45, 1058–1072. [Google Scholar] [CrossRef] [PubMed]
- Leppink, J.; Paas, F.; van Gog, T.; van der Vleuten, C.P.M.; van Merriënboer, J.J.G. Effects of Pairs of Problems and Examples on Task Performance and Different Types of Cognitive Load. Learn. Instr. 2014, 30, 32–42. [Google Scholar] [CrossRef]
- Sweller, J. The role of independent measures of load in cognitive load theory. In Cognitive Load Measurement and Application; Routledge: Oxfordshire, UK, 2018; pp. 3–7. ISBN 1-315-29625-X. [Google Scholar]
- Paas, F.G. Training Strategies for Attaining Transfer of Problem-Solving Skill in Statistics: A Cognitive-Load Approach. J. Educ. Psychol. 1992, 84, 429–434. [Google Scholar] [CrossRef]
- Antonenko, P.; Paas, F.; Grabner, R.; van Gog, T. Using Electroencephalography to Measure Cognitive Load. Educ. Psychol. Rev. 2010, 22, 425–438. [Google Scholar] [CrossRef]
- Cook, A.E.; Wei, W.; Preziosi, M.A. The use of ocular-motor measures in a convergent approach to studying cognitive load. In Cognitive Load Measurement and Application: A Theoretical Framework for Meaningful Research and Practice; Routledge/Taylor & Francis Group: New York, NY, USA, 2018; pp. 112–128. [Google Scholar]
- Lundervold, D.A.; Belwood, M.F. The best kept secret in counseling: Single-case (N=1) experimental designs. J. Couns. Dev. 2000, 78, 92–102. [Google Scholar] [CrossRef]
- Stake, R. The Art of Case Study Research; Sage Publications: New York, NY, USA, 1995. [Google Scholar]
- Morgan, D.L.; Morgan, R.K. Single-participant research design: Bringing science to managed care. Am. Psychol. 2001, 56, 119–127. [Google Scholar] [CrossRef]
- Foster, L.H. A best kept secret: Single-subject research design in counseling. Couns. Outcome Res. Eval. 2010, 1, 30–39. [Google Scholar] [CrossRef]
- Real-Time Physiological Signals. E4 EDA/GSR Sensor. Empatica. Available online: https://www.empatica.com/en-eu/research/e4/ (accessed on 20 November 2021).
- Hamilton, J.D. A new approach to the economic analysis of nonstationary time series and the business cycle. Econom. J. Econom. Soc. 1989, 57, 357–384. [Google Scholar] [CrossRef]
- Romine, W.; Schroeder, N.; Edwards, A.; Banerjee, T. Longitudinal Classification of Mental Effort Using Electrodermal Activity, Heart Rate, and Skin Temperature Data from a Wearable Sensor. In International Conference on Pattern Recognition; Springer: Cham, Switzerland, 2021; pp. 86–95. [Google Scholar]
- Albawi, S.; Mohammed, T.; Al-Zawi, S. Understanding of a convolutional neural network. In Proceedings of the 2017 International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Zhao, B.; Lu, H.; Chen, S.; Liu, J.; Wu, D. Convolutional neural networks for time series classification. J. Syst. Eng. Electron. 2017, 28, 162–169. [Google Scholar] [CrossRef]
- Connor, J.; Les, A. Recurrent neural networks and time series prediction. In Proceedings of the IJCNN-91-Seattle International Joint Conference on Neural Networks, Seattle, WA, USA, 8–12 July 1991; Volume 1. [Google Scholar]
- Manaswi, N.K. Understanding and Working with Keras. In Deep Learning with Applications Using Python; Apress: Berkeley, CA, USA, 2018. [Google Scholar] [CrossRef]
- Kingma, D.P.; Jimmy, B. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural. Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Dietterich, T. Overfitting and undercomputing in machine learning. ACM Comput. Surv. (CSUR) 1995, 27, 326–327. [Google Scholar] [CrossRef]
Mental Effort Level | EDA (mS) | TEMP (°C) | HR (bpm) | ACC X | ACC Y | ACC Z | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Time (s) | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
1 | 21,593 | 0.16 | 0.12 | 32.1 | 1.9 | 83.2 | 14.2 | −32.8 | 28.0 | −4.0 | 33.7 | 17.0 | 32.2 |
2 | 29,858 | 0.15 | 0.12 | 30.3 | 1.7 | 84.3 | 14.6 | −36.3 | 23.6 | −4.6 | 33.8 | 18.2 | 30.2 |
3 | 28,424 | 0.14 | 0.13 | 31.9 | 1.8 | 85.0 | 13.7 | −36.0 | 22.9 | −3.1 | 32.2 | 20.2 | 32.0 |
4 | 33,296 | 0.15 | 0.12 | 30.9 | 1.7 | 83.4 | 12.3 | −30.4 | 25.1 | −2.5 | 34.0 | 24.3 | 30.6 |
5 | 10,271 | 0.13 | 0.11 | 33.2 | 1.0 | 87.0 | 17.9 | −31.7 | 22.4 | −5.2 | 36.7 | 19.6 | 31.2 |
6 | 50,703 | 0.17 | 0.13 | 31.4 | 1.4 | 81.7 | 13.2 | −32.6 | 24.8 | −9.9 | 28.8 | 29.1 | 27.5 |
7 | 71,633 | 0.13 | 0.10 | 31.4 | 1.4 | 83.5 | 14.2 | −30.2 | 24.8 | −12.2 | 30.5 | 25.8 | 30.5 |
8 | 64,138 | 0.15 | 0.12 | 30.9 | 1.6 | 82.6 | 14.2 | −29.4 | 22.3 | −14.2 | 29.8 | 31.4 | 27.3 |
9 | 22,330 | 0.19 | 0.20 | 29.9 | .5 | 82.7 | 12.0 | −27.1 | 23.8 | −15.9 | 37.1 | 21.8 | 27.9 |
Feature a | Estimate | SE | χ2 (df = 1) | OR |
---|---|---|---|---|
EDA | 0.91 | 0.026 | 1200.9 | 2.48 |
TEMP | −0.19 | 0.0019 | 10,369.3 | 0.82 |
HR | −0.0012 | 0.0002 | 29.7 | 1.00 |
ACC X | 0.0011 | 0.00014 | 62.2 | 1.00 |
ACC Y | −0.0087 | 0.00010 | 7164.4 | 0.99 |
ACC Z | 0.0063 | 0.00011 | 3263.0 | 1.01 |
State | Feature | Estimate | SE | Z |
---|---|---|---|---|
1 | EDA * | −0.274 | 0.028 | −9.8 |
TEMP * | −0.057 | 0.0018 | −32.4 | |
HR * | 0.0012 | 0.0002 | 4.9 | |
ACC X * | 0.0012 | 0.0001 | 9.1 | |
ACC Y * | 0.0012 | 0.0001 | 11.8 | |
ACC Z * | 0.0035 | 0.0001 | 32.1 | |
Const * | 4.36 | 0.057 | 77.1 | |
Variance | 1.08 | 0.0023 | ||
2 | EDA * | 0.96 | 0.0175 | 55.0 |
TEMP * | −0.27 | 0.0014 | −194.0 | |
HR | −0.000002 | 0.0001 | 0.0 | |
ACC X * | 0.0009 | 0.0001 | 9.9 | |
ACC Y * | −0.0023 | 0.0001 | −31.5 | |
ACC Z * | −0.0009 | 0.0001 | −11.8 | |
Const * | 15.35 | 0.044 | 347.2 | |
Variance | 0.96 | 0.0014 |
Train % | Test % | Test Data | ||||
---|---|---|---|---|---|---|
First | Last | F1 | RMSE | No. of Transitions Present in the Test Set | No. of Transitions Detected | R-Squared * |
10 | 90 | 0.09 | 3.78 | 73 | 36,931 | 0.13 |
20 | 80 | 0.06 | 3.46 | 65 | 28,983 | 0.09 |
30 | 70 | 0.08 | 3.42 | 58 | 25,521 | 0.10 |
40 | 60 | 0.08 | 3.21 | 51 | 22,901 | 0.11 |
50 | 50 | 0.17 | 3.00 | 42 | 18,048 | 0.20 |
60 | 40 | 0.20 | 2.72 | 32 | 12,284 | 0.25 |
70 | 30 | 0.19 | 2.50 | 24 | 6348 | 0.24 |
80 | 20 | 0.21 | 2.43 | 16 | 4837 | 0.27 |
90 | 10 | 0.13 | 1.81 | 8 | 1291 | 0.18 |
Train % | Test % | Test Data | ||||
---|---|---|---|---|---|---|
First | Last | F1 | RMSE | No. of Transitions Present in the Test Set | No. of Transitions Detected | R-Squared * |
10 | 90 | 0.09 | 3.76 | 73 | 165,339 | 0 |
20 | 80 | 0.09 | 3.43 | 65 | 227,071 | 0 |
30 | 70 | 0.15 | 2.96 | 58 | 196,789 | 0 |
40 | 60 | 0.14 | 2.84 | 51 | 188,303 | 0 |
50 | 50 | 0.15 | 2.80 | 42 | 157,930 | 0 |
60 | 40 | 0.14 | 2.76 | 32 | 127,209 | 0 |
70 | 30 | 0.18 | 2.39 | 24 | 96,467 | 0 |
80 | 20 | 0.18 | 2.32 | 16 | 64,127 | 0 |
90 | 10 | 0.18 | 2.04 | 8 | 32,282 | 0 |
Train % | Test % | Test Data | ||||
---|---|---|---|---|---|---|
First | Last | F1 | RMSE | No. of Transitions Present in the Test Set | No. of Transitions Detected | R-Squared * |
10 | 90 | 0.87 | 0.31 | 73 | 4473 | 0.98 |
20 | 80 | 0.64 | 0.42 | 65 | 2946 | 0.97 |
30 | 70 | 0.9997 | 0.29 | 58 | 68 | 0.98 |
40 | 60 | 0.9997 | 0.128 | 51 | 51 | 0.9965 |
50 | 50 | 0.9997 | 0.109 | 42 | 42 | 0.9974 |
60 | 40 | 0.9998 | 0.177 | 32 | 32 | 0.993 |
70 | 30 | 0.9998 | 0.098 | 24 | 24 | 0.9974 |
80 | 20 | 0.9998 | 0.182 | 16 | 16 | 0.9893 |
90 | 10 | 0.9998 | 0.121 | 8 | 8 | 0.9937 |
Train % | Test % | Test Data | ||||
---|---|---|---|---|---|---|
First | Last | F1 | RMSE | No. of Transitions Present in the Test Set | No. of Transitions Detected | R-Squared * |
10 | 90 | 0.37 | 0.87 | 73 | 85,971 | 0.87 |
20 | 80 | 0.65 | 0.61 | 65 | 70,808 | 0.93 |
30 | 70 | 0.78 | 0.49 | 58 | 43,039 | 0.95 |
40 | 60 | 0.88 | 0.38 | 51 | 26,973 | 0.97 |
50 | 50 | 0.91 | 0.35 | 42 | 14,400 | 0.97 |
60 | 40 | 0.95 | 0.31 | 32 | 6369 | 0.98 |
70 | 30 | 0.97 | 0.27 | 24 | 3948 | 0.98 |
80 | 20 | 0.96 | 0.32 | 16 | 2469 | 0.97 |
90 | 10 | 0.99 | 0.21 | 8 | 457 | 0.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agarwal, A.; Graft, J.; Schroeder, N.; Romine, W. Sensor-Based Prediction of Mental Effort during Learning from Physiological Data: A Longitudinal Case Study. Signals 2021, 2, 886-901. https://doi.org/10.3390/signals2040051
Agarwal A, Graft J, Schroeder N, Romine W. Sensor-Based Prediction of Mental Effort during Learning from Physiological Data: A Longitudinal Case Study. Signals. 2021; 2(4):886-901. https://doi.org/10.3390/signals2040051
Chicago/Turabian StyleAgarwal, Ankita, Josephine Graft, Noah Schroeder, and William Romine. 2021. "Sensor-Based Prediction of Mental Effort during Learning from Physiological Data: A Longitudinal Case Study" Signals 2, no. 4: 886-901. https://doi.org/10.3390/signals2040051
APA StyleAgarwal, A., Graft, J., Schroeder, N., & Romine, W. (2021). Sensor-Based Prediction of Mental Effort during Learning from Physiological Data: A Longitudinal Case Study. Signals, 2(4), 886-901. https://doi.org/10.3390/signals2040051